Chapter 4

TRANSMISSION CONTROL PROTOCOL (TCP):
A CASE STUDY

Abstract

1.

The Transmission Control Protocol (TCP) [rfc793] providagble, connection-

This chapter uses TCP peformance modeling as a case stutlystoaie
several of the performance evaluation methodologiesdinired in the previous
chapter. In particular, this chapter develops and presesisple and accurate
stochastic model for the steady-state throughput of a TORRé®mo0 bulk data
transfer as a function of round-trip time and loss behavidure model builds
upon extensive prior work on TCP Reno throughput models ifterd from
these prior works in three key aspects. First, this modebchtces an analytical
characterization of the TCP NewReno fast recovery algaritBecond, the model
incorporates an accurate formulation of NewReno’s timédmaltaviour. Third,
the model is formulated using a flexible two-parameter losd@hthat can better
represent the diverse packet loss scenarios encountefE@®yn the Internet.

We have validated our model by conducting a large numbermfilsitions
using thens-2simulator and by conducting emulation and Internet expenits
using a NewReno implementation in the BSD TCP/IP protoaatkst The main
findings from the experiments are: (1) the proposed modeirately predicts the
steady-state throughput for TCP NewReno bulk data trasisfedter a wide range
of network conditions; (2) TCP NewReno significantly oufpems TCP Reno
in many of the scenarios considered; and (3) using existdg Reno models to
estimate TCP NewReno throughput may introduce significants

Introduction

oriented, full-duplex, unicast data delivery on the IntgrriModern TCP imple-
mentations also include congestion control mechanisntsatiept the source
transmission behaviour to network conditions by dynanhycabmputing the

congestion windowsize. The goal of TCP congestion control is to increase

the congestion window size if there is additional bandwiakiilable on the
network, and decrease the congestion window size whenitheomgestion. It
is widely agreed that the congestion control schemes in TIOFde stability
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for the “best effort” Internet. These mechanisms increasevark utilization,
prevent starvation of flows, and ensure inter-protocohfesss [FIFa99].

In today’s Internet, several variants of TCP are deployetiest variants
differ with respect to their congestion control and segntess recovery tech-
nigues. The basic congestion control algorithms, narsiely starf congestion
avoidance andfast retransmitwere introduced in TCP Tahoe [Ja88]. In TCP
Reno [Ja90], théast recoveryalgorithm was added. This algorithm uses du-
plicate acknowledgements (ACKS) to trigger the transroissif new segments
during the recovery phase, so that the network “pipe” doéempty following a
fast retransmit. TCP NewReno introducediprovedfast recovery algorithm
that can recover from multiple losses in a single window a@édavoiding many
of the retransmission timeout events that Reno experignf8¥82]. TCP’s
selective acknowledgement (SACK) option was proposeddwvakceivers to
ACK out-of-order data [FaFI96]. With SACK TCP, a sender magaver from
multiple losses more quickly than with NewReno. The afonstiomed TCP
variants use segment losses to estimate available bafdwi@P Vegas uses
a novel congestion control mechanism that attempts to tletagestion in the
network before segment loss occurs [BrOP94]. TCP Vegasgheryis not
widely deployed on the Internet today.

Analytic modeling of TCP’s congestion-controlled thropgh has received
considerable attention in the literature (e.g., [AIABOGr8al0l, CaSAQOQ,
Floyd97, GoGRO02, Ku98?, ?, ?, ?, PaFTK98,?, SaVe03, SiKV01, Sik-
dar2003]). These analytical models have: (1) improved owgleustanding of
the sensitivity of TCP to different network parameters;d@vided insight use-
ful for development of new congestion control algorithmstigh bandwidth-
delay networks and wireless networks; and (3) provided axséa controlling
the sending rate of non-TCP flows such that network resourzgsbe shared
fairly with competing TCP flows. Most of these throughput ralschre based on
TCP Reno [AIAB00, CaSAOQO, Floyd97, GoGR@2?, ?, ?, PaFTK987?], while
some models are based on SACK [SiIKV01, Sikdar2003], Vegagd@3], and
NewReno [Ku98]. A detailed NewReno throughput model, ha@veseems
missing from the literature.

This chapter presents an analytic model for the throughfit€ P NewReno
bulk data transfer as a function of round-trip time (RTT) &g rate. Our work
is motivated, in part, by previous studies that indicate #@P NewReno is
widely deployed on the Internet [MeAFO05, PaFI01]. Furtherey RFC 3782
indicates that NewReno is preferable to Reno, as NewRendda® better
support for TCP peers without SACK [rfc3782].

Our TCP NewReno throughput model builds upon the well-knd®emo
model proposed by Padhgeal.[PaFTK98], but differs from this PFTK model
in three important ways. First, we explicitly model the feestovery algorithm
of TCP NewReno. In prior work [PaFTK98], Reno’s fast recqvimature was
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Table 4.1. Comparison of TCP Throughput Models (segments per roupditrie R)

Model TCP Reno [PaFTK98] (PFTK) TCP NewReno Detail
/3 1, W3g
. 2p ;‘Fm . _
Simple (NoTO) = (@ war 3)R Section IlI-A
1 l+—1vr§vq
P q i -
Full Model R+/(2p/3)+RTO min(1,3,/(3p/8))p(1+32p?) N R+pro((1+2p+4p2) RTO+(1+log - ) R) Section lIl-B
whereN = (% + 2 + (1 — pro)(1+ Wq))

not modeled. Depending on the segment loss characteyriatidewReno flow
may spend significant time in the fast recovery phase, sgnoim RTT an
amount of data approximately equal to the slow start thiesh8econd, we
present an accurate formulation of NewReno’s timeout biebavincluding
the possibility of incurring a timeout following an unsusséul fast recovery.
Third, our approach uses a two-parameter loss model thaincate! the loss
event rate, as well as the burstiness of segment lossesaitbss event. These
two characteristics have orthogonal effects on TCP: a lesstdriggers either
fastrecovery or atimeout, whereas the burstiness of |@dtags the duration of
the fast recovery period, and thus the performance of NewRearvez2006].

Table 4.1 summarizes the Reno and NewReno models discustbesichap-
ter. (The notation used is defined in Table 4.2.) While soreearchers believe
that the PFTK model is adequate for modeling NewReno thipuighve show
in this chapter that this is not the case. In general, usiegstimple version
of PFTK overestimates throughput, since timeouts are gghowhile (incor-
rectly) parameterizing the PFTK model with packet loss rattead of loss
event rate tends to underestimate throughput. In some,dagsg two oppos-
ing errors offset each other, coincidentally leading todypoedictions. As the
Full TCP Reno model has been applied extensively in diversasa includ-
ing TCP friendly rate control [FIHPJOO, MahantiO5], actiggeue manage-
ment [FiBo00], and overlay bandwidth management [HDAZ)5we compare
how accurately the Full Reno model estimates NewReno'sutfimput. Our
results show that the Full Reno model overestimates thyouigflor both Reno
and NewReno bulk transfers. Ingeneral, we find that a detaHaracterization
of NewReno fast recovery behaviour, as provided in our mddekquired to
characterize NewReno throughput accurately.

We validated our model by conducting a comprehensive sdtilations
using thens-2simulator. In addition, we empirically validated our modbgi
experimenting with the TCP NewReno implementation in theDBBCP/IP
protocol stack in an emulation environment, and with Inérexperiments.
Our results show that the proposed model can predict stsidy-throughput
of a TCP NewReno bulk data transfer for a wide range of networiditions.
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Our TCP NewReno model also differs substantially from KusidewReno
model [Ku98]. First, Kumar's model was developed for a lomeda network
(LAN) environment and did not consider the effect of progamadelay on TCP
throughput. Propagation delays cannot be ignored in emviemts such as the
Internet, and our model explicitly considers RTT effectsecéd, Kumar's
model, unlike the model presented here, does not have adclosa. Specif-
ically, throughput estimation using the Kumar model [Ku@8jjuires use of
numerical methods to compute the expected window size anexpected cy-
cle time. In contrast, our model provides a simple closethftar throughput
computation. The third (and probably the most significaiffeence between
the two models is with respect to the modeling of NewRena$ facovery
behaviour. In Kumar's work, the transmission of new segmamid the dura-
tion of fast recovery are not explicitly modeled; his modensiders only the
probability of TCP transitioning to fast recovery. The iroped fast recovery
algorithm is NewReno's key innovation with respect to itsgra Reno, and
we explicitly model TCP NewReno's fast recovery behavioudétail. In ad-
dition, our extensive simulation experiments demonstatestantially greater
throughput differences between Reno and NewReno (e.g50%&)- than in
Kumar's work. We do not present any comparisons with KumidesvyReno
throughput model because that model was developed for amentally dif-
ferent network environment (i.e., a LAN with negligible pemation delay,
and a wireless link with random packet loss), and furtheendias not been
experimentally validated [Ku98].

The remainder of this chapter is organized as follows. $adB presents an
overview of NewReno’s fast recovery algorithm and our modghssumptions.
The proposed analytic model for TCP NewReno throughput éseamted in
Section 3. The model is validated using simulations in $ecti, network
emulations in Section 5, and Internet experiments in Sedio Section 5
concludes the chapter.

2.  Background and Assumptions
The NewReno Fast Recovery Algorithm

This section presents an overview of NewReno'’s improvet rfecovery
algorithm [rfc3782]. All other congestion control compane of NewReno,
namely slow start, congestion avoidance, and fast retrighane identical to
that of Reno. The reader is referred to references [Ja99), for a detailed
treatment of TCP Reno congestion control.

During congestion avoidance, receipt of four back-to-biggntical ACKs
(referred to as “triple duplicate ACKs”) causes the sendgudrform fast re-
transmit and to enter fast recovery. In fast retransmit, dbeder does the
following:
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1 retransmits the lost segment;

2 sets the slow start threshol@dthresh to cwnd/2 (wherecwnd is the
current congestion window size); and

3 setscwnd to ssthresh (new) plus 3 segments.

Infastrecovery (FR), the sender continues to increasesthgastion window
by one segment for each subsequent duplicate ACK receivée. intuition
behind the fast recovery algorithm is that these duplicaBK4 indicate that
some segments are reaching the destination, and thus caedéourigger new
segment transmissions. The sender can transmit new segifpatmitted by
its congestion window.

In TCP Reno, receipt of a non-duplicate ACK resultsvimdow deflation
cwnd is set tossthresh (i.e., the congestion window size in effect when the
sender entered FR), FR terminates, and normal congestiiteance behaviour
resumes. When multiple segments are dropped from the santwiof data,
Reno may enter and leave FR several times, causing muléglections of the
congestion window.

TCP NewReno modifies Reno’s FR behaviour on receipt of a ntighte
ACK, by distinguishing between a “full” ACK (FA) and a “paall’ ACK (PA).
A full ACK acknowledges all segments that were outstandinthe start of
FR, whereas a partial ACK acknowledges some but not all efdabtstanding
data. Unlike Reno, where a partial ACK terminates FR, NewRetransmits
the segment next in sequence based on the partial ACK, andeedhe con-
gestion window by one less than the number of segments ad&dged by
the partial ACK. Thus NewReno recovers from multiple segnh@sses in the
same window by retransmitting one lost segment per RTT, i@n@in FR
until a full ACK is received.

On receiving a full ACK, NewReno setsund to ssthresh, terminates FR,
and resumes congestion avoidance.

Assumptions

This section outlines our assumptions regarding the agfjdic, the sender/receiver,
and the network. Except for the segment loss model, all csuraptions are
similar to those in prior work (e.g., [CaSA00, GoGR@2PaFTK98, SaVe03,
SiKVO01)).

Application Layer. Our model focuses on the steady-state throughput for
TCP bulk transfers We consider an application process that has an infinite
amount of data to send from a source node to a destination node
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Figure 4.1. The Two-Parameter Segment Loss Model

TCP Sender and Receiver. Our model assumes that the sender is using the
TCP NewReno congestion control algorithm. The sender awaysmits full-
sized (i.e., MSS) segments whenever the congestion winlowsait to do so.

We assume that the sender is constrained only by the coagesithidow size,
and not by the receiver's buffer size or advertised windowsoAthe receiver
sends one ACK for each received segment, and ACKs are nester Thhese
assumptions can be relaxed at the cost of somewhat more eompldels using
arguments similar to those in prior work [GoGR02, PaFTK98].

Similar to assumptions in other bulk transfer models [PaB8 kKSaVe03], our
analysis ignores TCP’s three-way connection establishiplease and initial
slow start phase because the congestion avoidance algatidminates during
a long-lived TCP bulk data transfer.

Latency Model. The latency of the TCP transfer is measured in terms
of “rounds”. The first round begins with the start of congestavoidance;

its duration is one RTT. All other rounds begin immediatefteathe previous
round, and also lastone RTT. The only exception is the ro@id¢rminates fast
recovery and switches to congestion avoidance: its durattuld be shorter
than one RTT.

As in prior work [PaFTK98, SaVe03], we assume that the rownatibn is
much larger than the time required to transmit segments ouad, and that
the round duration is independent of the congestion windiae. sSegment
transmission may be bursty or arbitrarily spaced withinrtend.

Loss Model. Our work introduces a novel two-parameter segment loss
model that captures both the frequency of loss events andurstiness of
segment losses within a loss event. We define a loss eventdLii€gin with
the first segment loss in a round that eventually causes T@Bnsition from
the congestion avoidance phase to either the fast recotagepor the timeout
phase.

For a congestion window size &, all losses within the neXt’’ segments
(starting from the firstloss) are considered part of the saEd his hierarchical
relationship between an LE and losses within an LE is ilatstl in Figure 4.1.
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Note that an LE can start at any segment, but once it stagjgaiis at most one
RTT (equivalently,)¥’). The loss events are assumed to occur independently
with probability p. Segments transmitted during an LE (except the first) are
assumed to be lost independently with probability.e., parametey captures

the “burstiness” of the segment losses within an LE). Thepa@meters can

be set separately, to model either homogenqus: (p) or non-homogeneous

(¢ # p) loss processes [Yajnik].

Many throughput models in the literature assume a restrieggsion of the
foregoing loss model (e.g., [CaSA00, GoGR02, SaVe03, SiH)//0 These
models assume that following the first segment loss in a roalhdubsequent
segments transmitted in that round are lost. This assumjstiappropriate for
networks where packet losses occur from buffer overrun iopDail queues;
however, this assumption is inappropriate when packeefosgcur because
of active queue management policies or because of the ¢basgics of the
transmission medium, as in the case of wireless networks.

Estimation of the two parametefs (the loss event rate) angl (the seg-
ment loss rate within a loss event) is specific to the apdinabtf the model.
For example, for applications such as TCP friendly rate robrdf non-TCP
flows [FIHPJOO, MahantiO5], the loss event ratean be estimated using the
Average Loss Interval (ALI) technique [FIHPJOO], which qoumesp as the
inverse of the weighted average of the number of packetsvextéetween
loss events. Similar measurement-based approaches magdthéoestimate
using non-invasive sampling [GoGR02]. Another practigaian, discussed in
Section 4.0, is to estimatgindirectly from the measured characteristics (e.g.,
loss event rate, overall packet loss rate).

3.  The Analytic Model

This section develops the stochastic throughput model €@P NewReno
bulk data transfer. The model is developed in two steps. bii@e 3.0, the
model is developed assuming that all loss events are idehtify triple du-
plicate ACKs. Subsequently, in Section 3.0, an enhancecehisdieveloped
that handles both triple duplicate ACKs and timeouts. Theehootation is
summarized in Table 4.2.

Model without Timeout (NoTO)

In this section, we assume that all loss events are idenkifig¢dple duplicate
ACKs, so that no timeouts occur. The model developed herefésred to as
the “NoTO” model.

Ignoring the initial slow start phase, it follows from thegaments given
in [PaFTK98, SaVe03] that the evolution of the congestiondsiv can be
viewed as a concatenation of statistically identicgtles where each cycle
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Table 4.2. Model Notation

Parameter | Definition
p Loss event rate
q Segment loss rate within a loss event
R Average round-trip time
RTO Average duration of first timeout in
a series of timeouts
w Average of the peak congestion window sige

[0 ¢ New during ion avoi  New transmission during ion avoidance, but lost
=

[ : New transmission during fast recovery t : Retransmission during fast recovery (except full ack (FA))

A E
Round > 1 2 3 4 5 6 7 8

CAFR period (i-1) CAFR period i

Figure 4.2. Segment Transmissions in Two Adjacent and Identical CAFRoBe

consists of a congestion avoidance period, followed bydiier® of segment
loss and a fast recovery period. Each of these cycles isdcall€ongestion
Avoidance/Fast Recovery (CAFR) period.

The throughput of the flow can be computed by analyzing onk SA&FR
cycle. LetSc g be the expected number of segments successfully trandmitte
during a CAFR period. LeD¢s4rr denote the expected time duration of the
period. Then the average throughput of the flow is:

ScAFR

. 4.1
Dcarr 1)

TNoTrO =

Before determining the expectations of the variables indfiqu 4.1, let us
consider the illustration in Figure 4.2. Figure 4.2 showsdbgment transmis-
sions per round in two adjacent and identical CAFR periods.f&kus on the
ith such CAFR period, and use this example to illustrate tfierdint events in a
CAFR period. Each CAFR consists of congestion avoidancdeastdecovery.
The first round of a CAFR period corresponds to the start ofestion avoid-
ance (marked | in Figure 4.2). During congestion avoidatioe,congestion
window opens linearly, increasing by one (vertically) thamber of segments
transmitted per round. We note that the time gap between twizdntally
adjacent rectangles in the same CAFR period, on averagalsetipg RTT. In
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roundW/2+1 = 7in Figure 4.2, three (non-contiguous) transmitted segment
are lost. The first of these lost segments (marked J in Fig@d<gidetected in
the following round upon receipt of triple duplicate ACKsesulting in termi-
nation of congestion avoidance and a fast retransmit (ndaxkim Figure 4.2).
TCP then enters fast recovery.

We use the terndrop windowto refer to the window’s worth of segments
starting from the first lost segment in roukid/2 + 1 to the segment transmitted
just before the receipt of the first duplicate ACK. Supposa th segments
are lost in the drop window. As shown in Figure 4.2 (and Figli®), fast
recovery continues fom RTTs with TCP sending up to approximatéelly/2
new segments per RTT. TCP exits fast recovery and resumeghoongestion
avoidance behaviour when a full ACK (FA) is received.

From our assumptions regarding statistically identicalFRAperiods, we
extrapolate and consider the case where two adjacent CAk&Ipare exactly
identical, as shown for example in Figure 4.2. From Figuzwe see that
Scarr can be expressed as the sum of: 1) the expected number of ssgme
transmitted between the end of one LE and the start of thdiiefd.g., between
D and J in Figure 4.2); and 2) the expected number of segnadrasismitted
between the first loss and the last loss (e.g., between J andrigure 4.2)
of a loss event. It follows from the assumptions regardirgs levents that the
expected value ak is 1/p [PaFTK98, SaVe03]. Therefore,

1
ScArr = ’ + 4. 4.2)

Next, we derived. Form uniformly spaced drops in a typical window of
sizeW, the expected number of segments transmitted betweenghariit the
last loss in the same CAFR period (e.g., between J and L in&i2) is:

W
=W = o (4.3)

The expected value of can be obtained as follows. L&{1V, m) denote the
probability ofm segment losses from a drop window of size By definition,
the first segment in the drop window is always lost. Becaugensats are
lost independently of other segments, the probability that 1 segments are
lost from the remaining? — 1 segments in the window follows the Binomial
probability mass function. Therefore,

AW,m)=CwW3 (1 —q)V g™, (4.4)

whereC" ! represents the binomial coefficient.
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Dy = (W/2+1) RTT D; RTT ‘ RTT ‘ RTT

Figure 4.3. Time View of a CAFR Period

Since we have assumed that all losses are identifiable Hg dliyplicate
ACKs, we know thatn < W — 3. Hencé,

w-=-3
Elm] =Y mAW,m)~1+ (W -1)g~ 1+ Wq. (4.5)

m=1

SubstitutingE'[m] into Equation 4.3, we obtain:

W2q
= ) 4.6
1+ Wy (4.6)
Finally, substituting) into Equation 4.2 we obtain:
W2q
S, =—+ . 4.7
oarr = o+ Ty 4.7)

To computeW in terms ofp and ¢, we need an alternate expression for
Scargr. From Figure 4.2, note th&l- 4 g can be expressed as the sum of: 1)
the expected number of segmefsts; transmitted in the linear increase phase
(from round 1 to round¥//2 + 1); 2) the expected number of segments
transmitted from the start of rounid’/2 4 2 (marked M in Figure 4.2) until
triple duplicate ACKs terminate congestion avoidance (Rigure 4.2); and 3)
the expected number of segmenstsy transmitted during fast recovery (from
N to Q in Figure 4.2). Therefore,

Scarr = St + Sg + Srr. (4.8)

We will determineSgx, first. The time view of a CAFR period shown in
Figure 4.3 may be helpful in following the ensuing discussidVhen TCP
detects a segment loss and enters fast recovery, the edpmaateber of out-
standing segments I#. With m drops from the window, the source receives
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W — m duplicate ACKs during the first RTT of fast recovery. Each ldigte
ACK increases the congestion window by one segment, so atthef the first
RTT the congestion window size will b%W — m. This inflated congestion
window allows TCP to sen% — m new segments during the first RTT of fast
recovery, providedn < % The second RTT starts with the reception of the
first partial ACK (PA1). Immediately following the receipt the partial ACK,
TCP retransmits the next lost segment and also transmitsiewesegment.
During this second RTT of fast recoveﬂgé — m additional duplicate ACKs
will arrive, increasing the congestion window size by theneaamount. This
window increase allows the transmission%f— m new segments as well. In
total, TCP transmitég—’ — m + 1 segments in the second RTT. Farsegment
losses, fast recovery requires exactiyround-trip times to recover all the lost
segments with TCP transmittin‘g —m+ 7 — 1 new segments in thgh RTT

of fast recovery. Generalizing we obtain:

w m
S?;Q:Z(%—m—i—j—l):%(W—m—l). (4.9)
j=1

If m > % TCP will not transmit any new data during the first RTT of fast
recovery, because the congestion window %YE — m at this time is smaller
than the amount of outstanding d&ta With each partial ACK, the congestion
window size increases by one segment. Thus, TCP need% partial ACKs
to inflate the congestion window size to the number of outitansegments
W. Therefore, on arrival of theém — % + 1)th partial ACK, TCP can transmit
one new segment. In the next RTT, TCP will transmit two newrsags, and
so on. In general:

m—1 2
el w _wrw
Spp 2 = EW (2 m—i—k)— 3 T (4.10)

Using Equations 4.4, 4.9, and 4.10, the expected humbenofkrgments
transmitted during fast recovery is:

% m<W =3 m>%
Srr=Y_ AW,m)Spg* + > AW,m)Spp *
m=1 m=%+1
w2 W
z7(q—q2)+7(1—5q+3qz)—(1—2q+q2). (4.11)

We next determine5y; for Equation 4.8. Immediately following receipt
of a full ACK, fast recovery is terminated and the congestindow is reset
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to W/2 (e.g., | in Figure 4.2). This also ends the current cycle aowanal
congestion avoidance begins. In this phase, the congestiadow increases
by one segment per round until it reaches the assumed paskafdd” in round
W/2 + 1. It therefore follows that:

w
3 3
Spr= Y i= gW2 + ZW. (4.12)
W

To determineS for Equation 4.8, we consider its two extreme boundary
cases. If the first loss occurs at the start of rol¥id2 + 1, then the number
of segmentsS’B transmitted in the next round until termination of congesti
avoidance is 0. SimilarIyS'B = W — 1 if the first loss occurs at the end of
roundW/2 + 1. Therefore, we approximateS; with its median valuéV, 2.

Substituting the expressions fot,;, Srr, andSs into Equation 4.8 and
simplifying, we obtain:

ScAFR =

(B+g-9)w24 (F-F+%)W-(1-2+¢"). (413

Equating the right-hand sides of Equation 4.7 and Equati&B,4and ne-
glecting high-order terms, we can express the valuB/oih terms ofp andgq
as:

10pq — 5p + /p(24 + 32q + 49p)

p(3 + 4q)
Equation 4.14 encapsulates the essential characteridtmsr two-parameter
loss model, which are illustrated graphically in Figure AMhenp is very small,
W is large, but decreases @ss increased (i.e., fast recovery takes longer, and
is less likely to succeed). Asincreases|V decreases, anghas a negligible
impact, since fast recovery is rarely applicable.

W = . (4.14)

W Value from Equation 14

Figure 4.4. Effect of p andg on Window ValuelW

To obtain the expected time duration of a CAFR period, weraggfier to
the time view of a CAFR period, shown in Figure 4.3. From tHisstration,
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we note that:
Dcarr = Drr + Dg + Drg, (4.15)

where Dy is the expected duration of a linear increase periog,is the ex-
pected delay from the start of round (W/2+2) to the end of estign avoidance,
and Drp is the expected duration of the fast recovery phase. Thdidaoraf
the linear increase phase is:

w
Drr = (7 + 1> R. (4.16)
Form segment losses in the drop window, fast recovery requirgsund-trip
times. Therefore,

DFR:E[”ITL]R% (1+Wq)R (4.17)

Using arguments similar to those used for determintf)g we approximate
using Dg = £. SubstitutingD;, Dg, and Dpg into Equation 4.15, we
obtain:

w 5
Dearn =% +Wa+ 3) R (4.18)
Finally, substituting Equation 4.7 and Equation 4.18 intu&ion 4.1, we

obtain:
1 + W2q
P 1+Wgq (419)

Yi+wq+3)R

Tnoro = (

wherelV can be computed from Equation 4.14.

Full Model (Full)

This section extends the foregoing model to include timgastloss indica-
tions. We refer to this as the “Full” model.

We again view the congestion window evolution as a concéitamnef statisti-
cally identical cycles. Each cycle consists of several CAERods followed by
a CATOSS period, where a CATOSS period is the concatenafioongestion
avoidance (CA), timeout (TO), and slow start (SS) periodsslzown in Fig-
ure 4.5. Therefore, the throughput of a TCP NewReno flow caexpessset]
as:

(1 —pro)Scarr + pro(Sca + Sto + Sss)
1 —pro)Dcarr + pro(Dca + Dro + Dgs)

Trui = ( (4.20)
wherepro is the probability that a loss event leads to a timea$ik is the
expected number of successful segment transmissions iiod pétype X, and
Dx isthe expected duration of a period of ty§e Obviously,Dc =D+ Dg.
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Figure 4.5. Segment Transmissions in a Cycle (multiple CAFRs followgCATOSS )

Intuitively, Sc4=Srr + Sg. However, we us&c4 = S instead, since TCP
forgets outstanding data after timeout.

TCP NewReno may experience a timeout either from the coiugesatoid-
ance phase or from the fast recovery phase. The former ti@msiccurs when
TCP does not receive enough duplicate ACKSs to trigger fastmemit/fast re-
covery, while the latter transition occurs when retranseditsegments are lost
during the fast recovery phase. We expresgs as:

PTO = PDTO + PIFR (4.21)

wherep pro is the probability of directly transitioning to timeout froconges-
tion avoidance ang; g is the probability of a timeout due to an unsuccessful
fast recovery.

We determinevpro as follows. TCP experiences direct timeout when more
thanW — 3 segments are lost from a drop window of siZé Recalling the
definition of A(W, m) in Equation 4.4, we get:

W

PDTO = Z A(W,m). (4.22)
m=W -2

When TCP NewReno loses no more th&n— 3 segments from a drop win-
dow of sizeW, it enters fast recovery. On entering fast recovery, a tumeo
will occur if any segments retransmitted during fast recp\are lost. We ap-
proximate this condition by assuming that if a new loss ewaurs during
fast recovery, then the segment retransmitted in that RTfasifrecovery is
also lost, thus triggering timeout. (While we do not explicmodel successive
occurrences of FR, this assumption implicitly capturegftsct by increasing
the probability of timeout.) Fom losses in the drop window, NewReno needs
m round-trip times, sending approximatéllj/2 segments (including retrans-
missions) per RTT. The probability that thilh segment is lost given that the
previousi — 1 segments arrived at the destinatiorfis- p)'~'p. Therefore, it
follows from our assumptions that:

W-3
prrr = > AW,m) [p+ (1 =pp+-+(1—p)*= p)

m=1
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= Z_3A<W,m> [1-a-p=]. (4.23)

m=1

Substituting Equations 4.22 and 4.23 in Equation 4.21, we ge

W-3 W
pro=1- Y A(W,m)|(1-p) |

m=1

(4.24)

Derivation of the expected duration of timeout is similar[RaFTK98].
Furthermore, during timeout TCP does not transmit any neynsats. Thus,

Sto=0 and (4.25)
Dro = RTO 1+p+2p2+4p31+_854+16p5+32p6. (4.26)

In the slow start phase, the initial window size is 1 and thedaiv size is
doubled every round until the slow start threshol@f 2) is reached. In the
last round of slow start, TCP transmits W/2 segments and®etngestion
avoidance. We count the duration and segments of the lastroluslow start
as being part of congestion avoidance. Hence,

555:1+2+4+---+%:21“"9%—1 and (4.27)
Dgs = (zog¥ + 1) R. (4.28)

Following the approach in [SaVe03], we can replace the natoeof Equa-

tion 4.20 with% + liv;ﬂq. Substituting Equations 4.18, 4.26, 4.28, dnd

into Equation 4.20, we obtain:

W2q

1
1
_ p  1+Wgq
Trun = NRtpro((1+2p+4p?)RTO+(1+10g W )R)’ (4.29)

whereN = (% +2+(1—pro)(1+ Wq)), andW can be computed from
Equation 4.14.

To apply this model, the user should obtain the loss eveetprapacket
loss rateg, and round-trip timeR. The ratio ofg to p determinesn, and then
the value ofg in the model can be computed using Equation 4.5. (Also see
Section 4.0 and Equation 4.30.)

4. Model Validation

This section validates the proposed NewReno throughpuéhusihg thens-
2 network simulatot. The results reported here also illustrate the performance
advantages of NewReno over Reno. Finally, we quantify tbf#eantiveness of
existing TCP Reno models in predicting TCP NewReno throughp
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Network Model and Traffic Models

Before discussing the simulation results, we present tis& setup used
in the ns-2 simulations. Specifically, we describe the netvwoodel and the
various traffic models used. To conserve space when prageht results, we
describe only the setup changes with respect to the defettihgs discussed
here.

The results reported here, with the exception of those iti&e4.0, are for a
simple dumbbell network topology with a single common lestdck between
all sources and sinks. Each source/sink pair is connectut thottleneck link
via a high bandwidth access link. The propagation delayiseoftcess links are
varied to simulate the desired round-trip delay betweenuacsdsink pair. We
refer to the flows that are being actively monitored as theetioound” flows,
with all other traffic designated as “background” flows.

All experiments have two long duration foreground flows: dtewvReno
flow and one Reno flow. These long duration flows simulate tHk Bata
transfer sessions of interest. The receive buffers for ¢éineground flows are
sufficiently provisioned such that their buffer space atisements do not limit
the congestion window size. The experiments vary the btk bandwidths
(e.g., 15 Mbps to 60 Mbps), the round-trip delays of the floeug.( 20 ms to
460 ms), the bottleneck queue management policies (e.gpTail and RED),
and the load/mix of background traffic (e.g., mix of long diga FTP transfers,
shortduration HTTP sessions, and constant bit rate UDP ¥los RED queue
management, thevinthresh and themaxthresh are set tol /3 and2/3 of
the corresponding queue size limit, based on recommemgatio Section 6
of [adaptivered]:

Background HTTP traffic is simulated using a model similathiat in [Ma-
hanti05, SaVe03]. Specifically, each HTTP session corwiatsnique client/server
pair. The client sends a single request packet across ther¢e) bottleneck
link to its dedicated server. The server, upon receivingréugiest, uses TCP
to send the file to the client. Upon completion of the datastiam the client
waits for a period of time before issuing the next requesiesEhwaiting times
are exponentially distributed and have a mean of 500 ms. Tdeifies are
drawn from a Pareto distribution with mean 48 KB and shapdd simulate
the observed heavy-tailed nature of HTTP transfers [ArWi97

Background HTTP and FTP sessions use TCP NewReno with a maxim
congestion window size of 64 KB. The packet size is 1 KB. Akkkets are
of identical size except HTTP request packets and posdilgyast packet of
each HTTP response. The round-trip propagation delaysesktbhackground
flows are uniformly distributed between 20 ms and 460 ms, ister® with
measurements reported in the literature [AIGD,
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The background UDP flows are constant bit rate UDP flows withXabps
each. The packet size is 1 KB and the one-way propagatiog ftelaach UDP
flow is 35 ms.

The results reported here are for the “Full” TCP NewReno rhoaldless
stated otherwise. As a representative TCP Reno throughpdeimwe use
the full PFTK model from Table 4.1, which has similar modgliassump-
tions [PaFTK98]. This TCP Reno throughput model has beerlwidsed in
prior work (e.g., [FIHPJOO, Mahanti05, HDAOS]).

The necessary input parameters for both analytical modelstaained from
the simulation trace file. Allthe losses in a single windowlafa are counted as
one loss event. The loss event ratis taken to be the ratio of the total number
of loss events to the total number of segment transmissiarthe period of
interest. For simplicity, we assume a homogeneous losgpsdc= p), unless
stated otherwise. The average round-trip tii@vas measured at the sender,
and RT'O was approximated &&R.

In simulations where multiple long duration flows share agkgnbottle-
neck link, systematic discrimination has been observeéhagaome connec-
tions [Floyd92, FIKo02]. Suclphaseeffects, however, rarely arise in experi-
ments that consider a mix of long and short duration flowd) Wwéterogeneous
round-trip propagation delays [FIKo02]. As aprecautigmaeasure, the exper-
iments reported here start all flows at slightly differentéis. The background
flows start at uniformly distributed times between 0 and ®s€s, and the fore-
ground flows start at uniformly distributed times betweem8 & seconds, all
measured in simulation time since the start of a run. Eachraxgnt simulates
1000 seconds of run. Results are reported using data frolagthie50 simulated
seconds.

Bursty Loss Model

Our first experiment illustrates the flexibility of our novelo-parameter
loss model, and the key differences between our NewReno Inaodkthe
PFTK model. The simulation results reported here are &ingleforeground
NewReno flow traversing a 45 Mbps bottleneck link. No backgibflows are
present, and the round-trip propagation delay of the NewoRlew is 75 ms. A
specialized drop module that takes as input two paramgtamngm was placed
on the access link of the TCP Sink node. This drop module stesd@ernoulli
loss events at rate whenever a loss event occurs,back-to-back packets are
dropped.

We first develop an approximation for computipfyom the measured char-
acteristics of the flow. Given the average loss atghserved over the entire
duration of the transfer, and the loss event fate relation betweed, ¢, p, and
W can be obtained as follows. The expected number of segnes@dger loss
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Figure 4.6. Model Accuracy with Bursty Packet Losses)

event ism = ¢/p. Using Equation 4.5, we obtain:

La/p—1
Ww—1’

whereWV is computed from Equation 4.14 usigpg= q.

Figure 4.6(a) shows the simulation throughput for the Nemdféow, along
with the results from the analytic model. Inthe experimentsvas varied from
1 to 20 while keeping the loss event rate fixed at 0.05%. Thiygneesults are
shown for the full NewReno model, withapproximated using Equation 4.30.
When the loss event rate is low (0.05%), and there is a siraglkat loss per loss
event, the results from the NewReno model and the PFTK moelsimilar. As
the number of packet drops per loss event increases, the simulated NewReno
throughput decreases roughly linearly, since the duratibfast recovery is
proportional to the number of drops. Our model tracks tresidrwell, while
the PFTK model does not consider the number of packet dqogsloss event.

Figure 4.6(b) shows similar results for a higher loss evatetr The value o
was varied from 1 to 10, while keeping the loss event rate fatekd0%. These
results show even greater differences between the NewRenelnand the
PFTK model. As the loss event rate increases, or as the nushpacket drops
per loss event increases, the simulated NewReno througleomeases signif-
icantly compared to that predicted by the PFTK model, while MewReno
model follows the downward trend well.

These results demonstrate the accuracy and robustnessasfadytic model.
The two-parameter loss model is particularly useful in secigs that involve
bursty packet losses. In earlier work [Parvez2006], we uked parameter
(and a fixed loss event raté to study the effect of bursty packet losses on two
variants of NewReno, namely Slow-but-Steady (SBS) and tiapa(IMP).
Contrary to RFC 3782, we find that the SBS variant offers sopéroughput
to IMP in all but the most extreme packet loss scenarios,(2.0r more
segment losses per window [Parvez2006]). Similar experimménot shown
here) clearly demonstrate the superiority of partial winatzflation versus full

(4.30)
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window deflation in TCP NewReno. These insights were madsilplesby the
two-parameter loss model.

Bernoulli Packet Loss

Before validating the model with background traffic, vatida is carried
out in isolation. The configuration considered here coasistwo foreground
flows traversing a 15 Mbps bottleneck link. A Bernoulli packeop module
was placed on the access link of each foreground flow. Théebettk router’s
buffer was sufficiently provisioned such that there were mogestion-induced
packet losses. Experiments varied the imposed Bernoulkgidoss rate from
0.01% to 10%.

Figure 4.7 shows the throughput from the simulations andrbdels from
representative experiments with round-trip propagatielaylof the foreground
flows set to 75 ms. For the imposed Bernoulli loss rates, tmeesponding
observed loss event rates (LER) and packet (segment) liess(RLR) for both
foreground flows are shown in Figure 4.8.

Several important observations are evident from the reguRigure 4.7. The
results show that the proposed NewReno throughput miideRénoModel in
the figures) is able to track accurately the simulation tghmut over the entire
range of loss rates considered. The prediction error of conlet) defined as
|simulation — model|/simulation, ranges from 0% to 15% with an average



26

0.8 0.8
PFTKreno -
0.7 PFTK

06 &
0.5

PFTKreno -
PFTK

0.7
NewRenoSim -a- NewRenoSim -
0.6 NewRenoModel —=—
RenoSim v

NewRenoModel —=—
RenoSim v

0.4
0.3

Throughput (Mbps)
Throughput (Mbps)

0.2

0.1

0
100 120 140 160 180 200 100 120 140 160 180 200
Background Flows Background Flows

(a) DropTail (b) RED

Figure 4.9. Model Accuracy with Background HTTP/FTP Traffic

error of 9.0%. Furthermore, if the PFTK mod@F({K in the figure) is naively
used to estimate NewReno throughput (based on the lossrateriperienced
by the foreground NewReno flow), the prediction errors raingim 0% to 32%,

with an average absolute prediction error of 11%.

The PFTK modelis poor at predicting the simulated Reno thinpuit PFTKreno
in the figures, based on the observed loss event rate for tegrimind Reno
flow), especially at high loss rates. At high loss rates, iplglfpacket losses per
window are possible, leading to multiple window reductiooiseven timeout.
The PFTK model essentially considers a single drop per hemsteand is thus
unable to predict the throughput accurately. The averagdigion error is
25%.

The higher prediction errors in the PFTK model can be atte@tio the omis-
sion of the Reno fast recovery algorithm from their model] éme correlated
packet loss assumptions of their model. Note that with then®dli packet
drop module, most packet losses are isolated single pactips dhat can be
recovered using a single fast recovery phase. For low pdogstrates (e.qg.,
2% or lower), the throughputs for simulated Reno and NewRlems are thus
similar (because of the Bernoulli packet loss assumption).

HTTP/FTP Background Traffic

The simulation results reported in this section are for a HpMbottleneck
link with a queue of capacity 150 packets. In order to ingzde the effect
of varying degrees of multiplexing, the total number of bgrdund flows is
varied from 100 to 200, using a mix of 75% HTTP and 25% FTP floRath
foreground flows have a round-trip propagation delay of 75 ms

Figure 4.9 shows the simulated throughputs of NewReno and Rewell as
the throughputs from the analytic models. Figure 4.9(a)ligfDropTail bottle-
neck router, while Figure 4.9(b) is for a RED bottleneck ssuflThe simulation
results in Figure 4.9(a) show that NewReno throughput s#0-30% higher
than that of Reno. This is because the cross traffic genelaissy packet
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losses at the DropTail router buffer. NewReno is able to vecefficiently
from these losses using its improved fast recovery algwritihe performance
differences between Reno and NewReno decrease when REPsjaeuused,
as can be seen in Figure 4.9(b). The overall throughput Wigb & slightly
lower as well.

From Figure 4.9, we also note that the proposed analytic hicateks the
throughput of the foreground flow for the range of backgrotnadfic consid-
ered. The prediction error of our analytic model averagd&awith DropTalil
queues, and 8.9% for the RED queue management policy.

The results also show that the PFTK model overestimates Retto and
NewReno throughputs. The average prediction error is 20% @ropTail
queues, due to the bursty losses induced by the HTTP workldadever, the
average prediction error for RED queues (9.9%) is lower."\W\RIED queues, the
burstiness of packet losses decreases, allowing some pathet losses to be
recovered by the Reno fast recovery algorithm. The PFTK rnesigentially
captures a single packet loss per loss event, though it &sstimat packet
losses are correlated within a round. While the PFTK modeitsnded for
bottleneck routers with DropTail queue management, ratthen those with
active queue management, the PFTK model has been appliedatter context
by others [Floyd97, PaFI01].

Our results indicate that our NewReno model provides radtirobust re-
sults for both DropTail and RED packet loss scenarios. We o shown that
the PFTK model is inadequate for modeling NewReno throughespecially
when the bottleneck link is shared by many bursty flows.

Multiple Bottlenecks

This section reports validation results from an experimsattup with mul-
tiple bottlenecks. The network topology used here consists/o dumbbell
networks connected in series at the bottlenecks. Eaclebettk link had a ca-
pacity of 15 Mbps with a buffer space for 150 packets. Two ldagation TCP
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flows, one NewReno and one Reno, traversed both bottlenack Ilirhe fore-
ground flows had a round-trip propagation delay of 75 ms. Bemnd traffic
was applied to the bottleneck links such that each backgrdlow traversed
only a single bottleneck link. Specifically, each bottldnéiok experienced
background traffic mix that consisted of 75% HTTP flows and Z5Be flows.
We varied the total number of flows per bottleneck from 100G06.2

Note that although statistically identical backgrounddea simulated on
each bottleneck link, randomness in the HTTP traffic gefm@rgirocess can
result in slightly different (and time-varying) backgralifoads on the bottle-
neck links. It is also noteworthy that the foreground flowsyneaperience
losses aboth bottleneck links, and thus the results presented here drdino
rectly comparable to those for the experiments with a sibgldeneck link.

Figure 4.10 shows the throughput from the simulations ardékults from
the analytic models. As shown in Figure 4.10, our NewRenautihput model
closely tracks the simulation throughput over the entimgeaof background
load simulated. The average prediction error in these éxgerts is 3.4%.

Compared to the DropTail experiment results, the resutisfthe experi-
ments with RED queues show somewhat higher prediction frrdhe pre-
diction errors in this setting average 7.5%. We note thatNk&/Reno flow
experienced slightly higher packet loss in the RED expemisie

Similar to earlier results, we observe that the predictionrs increase sig-
nificantly if the PFTK model is used to estimate NewReno tghmut. In
the multiple bottleneck experiments, the average prastiatirror of the PFTK
model (when tracking NewReno throughput) is 25% for Dropfi@iters and
27% for RED queue management. The inaccuracy of the PFTK Inaodes
from its failure to consider the number of packet drops psslevent. Our
model accurately captures the effect of multiple drops @ndbration of the
fast recovery period.
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UDP Background Traffic

This section considers the impact of background trafficigatedominantly
generated by On-Off Constant Bit Rate (CBR) UDP flows. Thesegrments
reported here are for a 15 Mbps bottleneck link with a queui bf 150 packets.
The background traffic consists of a fixed number of HTTP/F&Ekground
flows (24 HTTP sessions and 8 FTP sessions), and a varyingenwoh@n-Off
CBR UDP flows, whose On and Off times are drawn from a heavgedtareto
distribution with 1.2 as the shape parameter. The two fawg flows, namely
NewReno and Reno, each have a round-trip propagation deléyms.

The results in Figure 4.11 again show that TCP NewReno canifisigntly
outperform TCP Reno under similar network conditions. Wsoabbserve
that the proposed analytic model closely tracks NewRermutftrput, with an
average prediction error of 3.1% in the DropTail experinsersimilar to the
results reported in the earlier sections, the PFTK modehigtser prediction
error (9.0%). For RED queues (not shown here), the two mogelduce
comparable results, each with an average prediction eelonb10%.

System Scaling

The next experiment studies the robustness of our modektsdhling of
network model and workload parameters.

Figure 4.12 shows the simulated throughput of the foregidiows and the
results from the analytic models for a range of bottleneakdwadths. Here,
the initial experimental setup had a 15 Mbps bottleneck Viith a buffer of
50 packets and 100 background flows. The background flowsstafsl 0%
FTP flows and 90% HTTP sessions. At each step, all systemre=soand
the background loads are scaled upwards. Thus, for each oefigaration,
the bottleneck capacity is increased by 15 Mbps, the queeddyi 50 packets,
and the number of background flows by 100 (90 HTTP sessiond @rilrP
sessions). The foreground NewReno and Reno flows each haend-trip
propagation delay of 75 ms.
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The simulation results show that NewReno throughput iscglpi 20-35%
higher than Reno throughput under identical network ciomait It can be
observed that our NewReno analytic model accurately tréoghroughput
observed in the simulations for a wide range of bandwidthdie &verage
prediction error of the NewReno model is 5.1%. Similar toaiations made
in earlier sections, predicting NewReno throughput with BFTK throughput
model has higher prediction errors (e.g., an average gredierror of 11%).
The average prediction error of PFTK for Reno throughput7/®1

Bottleneck Buffer Size

The next experiment tests the sensitivity to the bottlermdter size, which
affects the overall packet loss rate as well as the burstiobgacket losses. In
this experiment, we set the number of background flows to WD, 50 FTP
flows and 50 HTTP flows. The bottleneck buffer is changed frénpackets
to 150 packets in increments of 25. The other simulationrpatars are kept
identical to the experiments in Section 4.0.

Figure 4.13 shows the throughput results along with modsligtions for the
different buffer sizes. The NewReno model tracks the sitmarahroughput
reasonably well, with an average prediction error of 2.9%e PFTK model
prediction for NewReno throughput is poor, with an averagpeligtion error of
28%. The accuracy of our model stems from its careful comatam of the fast
recovery process for bursty losses. As in other cases witktyopacket losses,
the PFTK model overestimates the throughput, since it ritfgliassumes that
all losses are recoverable within a simple fast recoveriodahat lasts only a
single RTT (assuming a timeout does not occur).

This experiment reinforces the generalized observaticamenn Section 4.0,
and shows that the proposed NewReno model provides morstritisaughput
predictions than PFTK when congestion loss dominates.
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5.  Emulation Experiments

We validated our TCP NewReno throughput model using a re& 3@lirce
and a real TCP sink on an emulated wide area network in ourdédmy. This
section describes the experimental testbed used for éonylahe emulated
network configuration, and the experimental results.

Testbed Configuration

The testbed consists of three physical machines on a 100 ptiyage Eth-
ernet LAN, as shown in Figure 4.14. One machine serves as@iesburce
node, with another as the TCP destination node, and the dkittle network
emulator.

The TCP source node was a 1.8 GHz Intel Pentium 4 machine WiiviB
of RAM, running the FreeBSD 4.11 operating system. We vetifteat the
NewReno implementation inthe FreeBSD kernel conformeltd@CP NewReno
description in RFC 3782. In addition, we instrumented theeBSD kernel to
collect statistics required for model validation such as tlamber of timeout
(TO) events, the number of fast recovery (FR) events, tha toansfer du-
ration (in seconds), the total bytes successfully transfe(Bytes), and the
fine-grained RTT. The TCP destination node was a 2.8 GHz Keeh with
1 GB of RAM. This machine was running Linux 2.6.8 as the opagsystem.

We used perf® for generating TCP bulk data transfers. This software Jyree
available from NLANR, is used for measuring TCP and UDP penfance. In
our experiments, we ratperf inthe TCP-mode to generate traffic representing
bulk data transfer.

We used the Internet Protocol and Traffic Network EmulatefTNE) [SiBUOO]
to emulate a wide area network. IP-TNE is a high-performantarnetwork
emulation tool that uses a parallel discrete-event sirmuraternel. In our
experiments, alliperf traffic between the TCP source and TCP destination
traverses the virtual (simulated) wide area network. IPEENwnsfers IP pack-
ets as needed between the real and the simulated networkp@atels packet
transmissions in the emulated wide area network. IP-TNEmasing on a
3.2 GHz Intel Xeon machine with 4 GB of RAM; the operating syston this
machine was Red Hat Enterprise Linux Academic Server Hu#io
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Table 4.3. Summary of Emulation Experiments

Loss | TO | FR | RTT (ms) | Duration Bytes
Rate (sec.)
0.50% 5 556 55.56 500.54 169,942,625
1.00% | 21 | 765 57.31 502.33 | 116,768,593
1.50% | 38 | 841 58.48 502.62 89,441,537
2.00% | 68 | 864 59.06 501.92 72,544,825
250% | 113 | 775 59.65 502.11 55,202,129
3.00% | 129 | 777 60.23 502.92 47,554,586

Emulated Network

The experiments reported here use a simple dumbbell nettomdogy.
There is a single bottleneck link of capacity 10 Mbps betwibenT CP source
node and the TCP sink node. The TCP source and destinatias rmod each
connected to the bottleneck link by a 100 Mbps access linthdmexperiments,
the round-trip propagation delay of the emulated netwoBOisns.

Allrouters in the emulated network use FIFO queueing, witbfdTail queue
management. We installed a Bernoulli packet drop moduldheratcess link
of the TCP destination node to drop packets at a predetedmaie. The
buffer at the bottleneck router was sufficiently provisidrseich that there were
no congestion-induced packet losses. This setup is sirbpteallows us to
compare the emulation results with those from2simulations.

Results

In our emulation experiments, we varied the imposed padsst tate from
0.5% to 3%, in steps of 0.5%. Table 4.3 summarizes statisitizined from the
emulation experiments. Note that summing the number of RRT& events
represents the total number of loss events experiencedeby @t flow. The
segment size (oBegsizefor all transfers is 1448 byte excluding TCP and IP
headers. Asin [PaFTK98], we use the expres% to estimate the
loss event ratg. This computed loss event rate and the measured RTT are used
as inputs to our “Full” TCP NewReno throughput model. In computation
of the model estimated throughputs, we used the approxdmati= p.

In the absence of loss (p=0%), the NewReno flow fully utilitess10 Mbps
bottleneck link. The achieved throughput is 9.59 Mbps ediclg TCP/IP
header overhead, and 9.93 Mbps including TCP/IP overhead.

Figure 4.15 shows the (emulated) throughput attained by @flow, along
with the throughput predicted by our model. All these thiapigt calculations
exclude the TCP/IP header overhead. At 1.5% imposed lossthat emulation
throughput is 1.42 Mbps and the model prediction is 1.46 Miopgespond-
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Figure 4.15. Model Accuracy in WAN Emulation

ingly the prediction error is 3.0%. The maximum estimatioroeobserved is
21% (at an imposed packet loss rate of 3%), and the averadeiwa error is
11%.

In general, our model predicts the TCP NewReno throughpctessfully
in the experiments considered.

6. Internet Experiments

As afinal step for model validation, we conducted severatgrpents on the
Internet. With help from selected colleagues around theeleave measured
the throughput achieved for 5 MB file transfers from our BSDixXUserver
site in Calgary to 6 different client locations: USA, CanatliK, Australia,
Bangladesh, and Japan. For space reasons, we only preselts feom the
latter experiment, which had the worst-case predictioaraybserved.

To validate our model predictions at different loss rates agdded controlled
levels of packet loss to our experiments using DummyNez{@@8]. We varied
the imposed packet loss rate (PLR) from 0.5% to 3%, leavimgitvadth and
delay unchanged. Actual losses always exceed the impoded PL

Table 4.4 shows the results from the Japan experiment. ThHg fFewReno
model predicts the observed throughputs reasonably with,am average pre-
diction error of 12%. These model predictions use the assomp = p. The
native network path (i.e., with zero imposed PLR) is losspegiencing a loss
event rate (LER) of 0.98%, and a PLR of 6.21%. The predictiooréor this
case is high at 31%, because the average number of segmses losr loss
event (n = % = 6.4) is relatively large, and the assumptign= p is vio-
lated. Usingy = V”;—:ll in the model (denoted with *" in Table 4.4) reduces the
prediction error to 0.94%.
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Table 4.4. Experimental Results from Calgary to Japan
Imposed| TO | FR | Actual | RTT | Duration | Expt | Model

PLR LER | (ms) (sec) (Kbps) | (Kbps)
0.00% 7 27 | 0.98% | 229 | 106.34 379 497
382

0.50% 5 39 | 1.27% | 245 | 120.12 335 394
1.00% 9 58 | 1.93% | 237 | 134.84 299 297
150% | 24 | 87 | 3.19% | 253 | 195.73 206 202
2.50% | 59 | 100 | 4.57% | 256 | 277.23 145 147
200% | 26 | 76 | 2.93% | 300 | 302.13 133 173
3.00% | 59 | 119 | 5.12% | 260 | 290.15 139 141

7. Conclusions

This chapter presented an analytic model for the bulk datester perfor-
mance of TCP NewReno. The model expresses steady-staiglimat in terms
of RTT and loss rate.

The NewReno throughput model has three important featiriest, we ex-
plicitly model the fast recovery algorithm of TCP NewRendigh is important
since a NewReno flow may spend a significant amount of timeerfdht re-
covery phase. Second, we also consider the possibilitycofriing a timeout
following an unsuccessful fast recovery phase. Third, oahdical model uses
a flexible two-parameter loss model that captures both tbe évent rate, as
well as the burstiness of segment losses within a loss eapdtthus is able to
better capture the dynamics of TCP loss events on the Irterne

We validated our model with extensives-2 simulation experiments. We
also validated our model using a real TCP NewReno implentienta Our
results show that the proposed model can predict steatly-5@P NewReno
throughput for a wide range of network conditions, unlikesérg Reno models.
The results also illustrate the significant performanceaathges of NewReno
over Reno in many scenarios because of NewReno'’s improwtddeaovery
algorithm.

Ourns-2simulation scripts are available frafttp: //www. cpsc.ucalgary.ca/~carey/software. html
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Notes

1. This window reduction strategy is referred topastial window deflation In full window deflation
cwnd is set tossthresh when partial ACKs are received. The current NewReno prdposaFC 3782
recommends the partial window deflation option.

2. This approximation assumess small. All subsequent approximations also assumegtimsmall.

3. This approximation introduces a small amount of errap miir model.

4. This expressionignores the duration of anincompleteéasvery phase, as well as any new segments
transmitted therein.

5. http://www.isi.edu/nsnam/ns.

6. While the difficulties of setting RED parameters are vagltumented in the literature, our modeling
results are consistent for other reasonable settings of p&E&meters.

7. In Figure 4.6, we used the loss event rate parameterize the PFTK model. Using the packet loss
ratemp makes the prediction error even worse.

8. http://dast.nlanr.net/Projects/Iperf/
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