
Chapter 4

TRANSMISSION CONTROL PROTOCOL (TCP):
A CASE STUDY

Abstract
This chapter uses TCP peformance modeling as a case study to illustrate

several of the performance evaluation methodologies introduced in the previous
chapter. In particular, this chapter develops and presentsa simple and accurate
stochastic model for the steady-state throughput of a TCP NewReno bulk data
transfer as a function of round-trip time and loss behaviour. The model builds
upon extensive prior work on TCP Reno throughput models but differs from
these prior works in three key aspects. First, this model introduces an analytical
characterization of the TCP NewReno fast recovery algorithm. Second, the model
incorporates an accurate formulation of NewReno’s timeoutbehaviour. Third,
the model is formulated using a flexible two-parameter loss model that can better
represent the diverse packet loss scenarios encountered byTCP on the Internet.

We have validated our model by conducting a large number of simulations
using thens-2simulator and by conducting emulation and Internet experiments
using a NewReno implementation in the BSD TCP/IP protocol stack. The main
findings from the experiments are: (1) the proposed model accurately predicts the
steady-state throughput for TCP NewReno bulk data transfers under a wide range
of network conditions; (2) TCP NewReno significantly outperforms TCP Reno
in many of the scenarios considered; and (3) using existing TCP Reno models to
estimate TCP NewReno throughput may introduce significant errors.

1. Introduction

The TransmissionControl Protocol (TCP) [rfc793] providesreliable, connection-
oriented, full-duplex, unicast data delivery on the Internet. Modern TCP imple-
mentations also include congestion control mechanisms that adapt the source
transmission behaviour to network conditions by dynamically computing the
congestion windowsize. The goal of TCP congestion control is to increase
the congestion window size if there is additional bandwidthavailable on the
network, and decrease the congestion window size when thereis congestion. It
is widely agreed that the congestion control schemes in TCP provide stability
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for the “best effort” Internet. These mechanisms increase network utilization,
prevent starvation of flows, and ensure inter-protocol fairness [FlFa99].

In today’s Internet, several variants of TCP are deployed. These variants
differ with respect to their congestion control and segmentloss recovery tech-
niques. The basic congestion control algorithms, namelyslow start, congestion
avoidance, andfast retransmit, were introduced in TCP Tahoe [Ja88]. In TCP
Reno [Ja90], thefast recoveryalgorithm was added. This algorithm uses du-
plicate acknowledgements (ACKs) to trigger the transmission of new segments
during the recovery phase, so that the network “pipe” does not empty following a
fast retransmit. TCP NewReno introduced animprovedfast recovery algorithm
that can recover from multiple losses in a single window of data, avoiding many
of the retransmission timeout events that Reno experiences[rfc3782]. TCP’s
selective acknowledgement (SACK) option was proposed to allow receivers to
ACK out-of-order data [FaFl96]. With SACK TCP, a sender may recover from
multiple losses more quickly than with NewReno. The aforementioned TCP
variants use segment losses to estimate available bandwidth. TCP Vegas uses
a novel congestion control mechanism that attempts to detect congestion in the
network before segment loss occurs [BrOP94]. TCP Vegas, however, is not
widely deployed on the Internet today.

Analytic modeling of TCP’s congestion-controlled throughput has received
considerable attention in the literature (e.g., [AlAB00, Bansal01, CaSA00,
Floyd97, GoGR02, Ku98,?, ?, ?, ?, PaFTK98,?, SaVe03, SiKV01, Sik-
dar2003]). These analytical models have: (1) improved our understanding of
the sensitivity of TCP to different network parameters; (2)provided insight use-
ful for development of new congestion control algorithms for high bandwidth-
delay networks and wireless networks; and (3) provided a means for controlling
the sending rate of non-TCP flows such that network resourcesmay be shared
fairly with competing TCP flows. Most of these throughput models are based on
TCP Reno [AlAB00, CaSA00, Floyd97, GoGR02,?,?,?,?, PaFTK98,?],while
some models are based on SACK [SiKV01, Sikdar2003], Vegas [SaVe03], and
NewReno [Ku98]. A detailed NewReno throughput model, however, seems
missing from the literature.

This chapterpresents ananalytic model for the throughput of a TCP NewReno
bulk data transfer as a function of round-trip time (RTT) andloss rate. Our work
is motivated, in part, by previous studies that indicate that TCP NewReno is
widely deployed on the Internet [MeAF05, PaFl01]. Furthermore, RFC 3782
indicates that NewReno is preferable to Reno, as NewReno provides better
support for TCP peers without SACK [rfc3782].

Our TCP NewReno throughput model builds upon the well-knownReno
model proposed by Padhyeet al.[PaFTK98], but differs from this PFTK model
in three important ways. First, we explicitly model the fastrecovery algorithm
of TCP NewReno. In prior work [PaFTK98], Reno’s fast recovery feature was
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Table 4.1. Comparison of TCP Throughput Models (segments per round trip time R)
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not modeled. Depending on the segment loss characteristics, a NewReno flow
may spend significant time in the fast recovery phase, sending per RTT an
amount of data approximately equal to the slow start threshold. Second, we
present an accurate formulation of NewReno’s timeout behaviour, including
the possibility of incurring a timeout following an unsuccessful fast recovery.
Third, our approach uses a two-parameter loss model that canmodel the loss
event rate, as well as the burstiness of segment losses within a loss event. These
two characteristics have orthogonal effects on TCP: a loss event triggers either
fast recovery or a timeout, whereas the burstiness of lossesaffects the duration of
the fast recovery period, and thus the performance of NewReno [Parvez2006].

Table 4.1 summarizes the Reno and NewReno models discussed in this chap-
ter. (The notation used is defined in Table 4.2.) While some researchers believe
that the PFTK model is adequate for modeling NewReno throughput, we show
in this chapter that this is not the case. In general, using the simple version
of PFTK overestimates throughput, since timeouts are ignored, while (incor-
rectly) parameterizing the PFTK model with packet loss rateinstead of loss
event rate tends to underestimate throughput. In some cases, these two oppos-
ing errors offset each other, coincidentally leading to good predictions. As the
Full TCP Reno model has been applied extensively in diverse areas, includ-
ing TCP friendly rate control [FlHPJ00, Mahanti05], activequeue manage-
ment [FiBo00], and overlay bandwidth management [HDA05,?], we compare
how accurately the Full Reno model estimates NewReno’s throughput. Our
results show that the Full Reno model overestimates throughput for both Reno
and NewReno bulk transfers. In general, we find that a detailed characterization
of NewReno fast recovery behaviour, as provided in our model, is required to
characterize NewReno throughput accurately.

We validated our model by conducting a comprehensive set of simulations
using thens-2simulator. In addition, we empirically validated our modelby
experimenting with the TCP NewReno implementation in the BSD TCP/IP
protocol stack in an emulation environment, and with Internet experiments.
Our results show that the proposed model can predict steady-state throughput
of a TCP NewReno bulk data transfer for a wide range of networkconditions.
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Our TCP NewReno model also differs substantially from Kumar’s NewReno
model [Ku98]. First, Kumar’s model was developed for a localarea network
(LAN) environment and did not consider the effect of propagation delay on TCP
throughput. Propagation delays cannot be ignored in environments such as the
Internet, and our model explicitly considers RTT effects. Second, Kumar’s
model, unlike the model presented here, does not have a closed form. Specif-
ically, throughput estimation using the Kumar model [Ku98]requires use of
numerical methods to compute the expected window size and the expected cy-
cle time. In contrast, our model provides a simple closed form for throughput
computation. The third (and probably the most significant) difference between
the two models is with respect to the modeling of NewReno’s fast recovery
behaviour. In Kumar’s work, the transmission of new segments and the dura-
tion of fast recovery are not explicitly modeled; his model considers only the
probability of TCP transitioning to fast recovery. The improved fast recovery
algorithm is NewReno’s key innovation with respect to its parent Reno, and
we explicitly model TCP NewReno’s fast recovery behaviour in detail. In ad-
dition, our extensive simulation experiments demonstratesubstantially greater
throughput differences between Reno and NewReno (e.g., 30-50%) than in
Kumar’s work. We do not present any comparisons with Kumar’sNewReno
throughput model because that model was developed for a fundamentally dif-
ferent network environment (i.e., a LAN with negligible propagation delay,
and a wireless link with random packet loss), and furthermore, has not been
experimentally validated [Ku98].

The remainder of this chapter is organized as follows. Section 13 presents an
overview of NewReno’s fast recovery algorithm and our modeling assumptions.
The proposed analytic model for TCP NewReno throughput is presented in
Section 3. The model is validated using simulations in Section 4, network
emulations in Section 5, and Internet experiments in Section 6. Section 5
concludes the chapter.

2. Background and Assumptions

The NewReno Fast Recovery Algorithm

This section presents an overview of NewReno’s improved fast recovery
algorithm [rfc3782]. All other congestion control components of NewReno,
namely slow start, congestion avoidance, and fast retransmit, are identical to
that of Reno. The reader is referred to references [Ja90,?, ?] for a detailed
treatment of TCP Reno congestion control.

During congestion avoidance, receipt of four back-to-backidentical ACKs
(referred to as “triple duplicate ACKs”) causes the sender to perform fast re-
transmit and to enter fast recovery. In fast retransmit, thesender does the
following:
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1 retransmits the lost segment;

2 sets the slow start thresholdssthresh to cwnd/2 (wherecwnd is the
current congestion window size); and

3 setscwnd to ssthresh (new) plus 3 segments.

In fast recovery (FR), the sender continues to increase the congestion window
by one segment for each subsequent duplicate ACK received. The intuition
behind the fast recovery algorithm is that these duplicate ACKs indicate that
some segments are reaching the destination, and thus can be used to trigger new
segment transmissions. The sender can transmit new segments if permitted by
its congestion window.

In TCP Reno, receipt of a non-duplicate ACK results inwindow deflation:
cwnd is set tossthresh (i.e., the congestion window size in effect when the
sender entered FR), FR terminates, and normal congestion avoidance behaviour
resumes. When multiple segments are dropped from the same window of data,
Reno may enter and leave FR several times, causing multiple reductions of the
congestion window.

TCP NewReno modifies Reno’s FR behaviour on receipt of a non-duplicate
ACK, by distinguishing between a “full” ACK (FA) and a “partial” ACK (PA).
A full ACK acknowledges all segments that were outstanding at the start of
FR, whereas a partial ACK acknowledges some but not all of this outstanding
data. Unlike Reno, where a partial ACK terminates FR, NewReno retransmits
the segment next in sequence based on the partial ACK, and reduces the con-
gestion window by one less than the number of segments acknowledged1 by
the partial ACK. Thus NewReno recovers from multiple segment losses in the
same window by retransmitting one lost segment per RTT, remaining in FR
until a full ACK is received.

On receiving a full ACK, NewReno setscwnd to ssthresh, terminates FR,
and resumes congestion avoidance.

Assumptions

This sectionoutlines ourassumptions regarding the application, the sender/receiver,
and the network. Except for the segment loss model, all our assumptions are
similar to those in prior work (e.g., [CaSA00, GoGR02,?, PaFTK98, SaVe03,
SiKV01]).

Application Layer. Our model focuses on the steady-state throughput for
TCP bulk transfers. We consider an application process that has an infinite
amount of data to send from a source node to a destination node.
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Figure 4.1. The Two-Parameter Segment Loss Model

TCP Sender and Receiver. Our model assumes that the sender is using the
TCP NewReno congestion control algorithm. The sender always transmits full-
sized (i.e., MSS) segments whenever the congestion window allows it to do so.
We assume that the sender is constrained only by the congestion window size,
and not by the receiver’s buffer size or advertised window. Also, the receiver
sends one ACK for each received segment, and ACKs are never lost. These
assumptions can be relaxed at the cost of somewhat more complex models using
arguments similar to those in prior work [GoGR02, PaFTK98].

Similar to assumptions in other bulk transfer models [PaFTK98, SaVe03], our
analysis ignores TCP’s three-way connection establishment phase and initial
slow start phase because the congestion avoidance algorithm dominates during
a long-lived TCP bulk data transfer.

Latency Model. The latency of the TCP transfer is measured in terms
of “rounds”. The first round begins with the start of congestion avoidance;
its duration is one RTT. All other rounds begin immediately after the previous
round, and also last one RTT. The only exception is the round that terminates fast
recovery and switches to congestion avoidance: its duration could be shorter
than one RTT.

As in prior work [PaFTK98, SaVe03], we assume that the round duration is
much larger than the time required to transmit segments in a round, and that
the round duration is independent of the congestion window size. Segment
transmission may be bursty or arbitrarily spaced within theround.

Loss Model. Our work introduces a novel two-parameter segment loss
model that captures both the frequency of loss events and theburstiness of
segment losses within a loss event. We define a loss event (LE)to begin with
the first segment loss in a round that eventually causes TCP totransition from
the congestion avoidance phase to either the fast recovery phase or the timeout
phase.

For a congestion window size ofW
′

, all losses within the nextW
′

segments
(starting from the first loss) are considered part of the sameLE. This hierarchical
relationship between an LE and losses within an LE is illustrated in Figure 4.1.
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Note that an LE can start at any segment, but once it starts, itspans at most one
RTT (equivalently,W

′

). The loss events are assumed to occur independently
with probability p. Segments transmitted during an LE (except the first) are
assumed to be lost independently with probabilityq (i.e., parameterq captures
the “burstiness” of the segment losses within an LE). The twoparameters can
be set separately, to model either homogenous (q = p) or non-homogeneous
(q 6= p) loss processes [Yajnik].

Many throughput models in the literature assume a restricted version of the
foregoing loss model (e.g., [CaSA00, GoGR02, SaVe03, SiKV01]). These
models assume that following the first segment loss in a round, all subsequent
segments transmitted in that round are lost. This assumption is appropriate for
networks where packet losses occur from buffer overrun in DropTail queues;
however, this assumption is inappropriate when packet losses occur because
of active queue management policies or because of the characteristics of the
transmission medium, as in the case of wireless networks.

Estimation of the two parametersp (the loss event rate) andq (the seg-
ment loss rate within a loss event) is specific to the application of the model.
For example, for applications such as TCP friendly rate control of non-TCP
flows [FlHPJ00, Mahanti05], the loss event ratep can be estimated using the
Average Loss Interval (ALI) technique [FlHPJ00], which computesp as the
inverse of the weighted average of the number of packets received between
loss events. Similar measurement-based approaches may be used to estimateq
using non-invasive sampling [GoGR02]. Another practical option, discussed in
Section 4.0, is to estimateq indirectly from the measured characteristics (e.g.,
loss event rate, overall packet loss rate).

3. The Analytic Model

This section develops the stochastic throughput model for TCP NewReno
bulk data transfer. The model is developed in two steps. In Section 3.0, the
model is developed assuming that all loss events are identified by triple du-
plicate ACKs. Subsequently, in Section 3.0, an enhanced model is developed
that handles both triple duplicate ACKs and timeouts. The model notation is
summarized in Table 4.2.

Model without Timeout (NoTO)

In this section, we assume that all loss events are identifiedby triple duplicate
ACKs, so that no timeouts occur. The model developed here is referred to as
the “NoTO” model.

Ignoring the initial slow start phase, it follows from the arguments given
in [PaFTK98, SaVe03] that the evolution of the congestion window can be
viewed as a concatenation of statistically identicalcycles, where each cycle
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Table 4.2. Model Notation
Parameter Definition
p Loss event rate
q Segment loss rate within a loss event
R Average round-trip time
RTO Average duration of first timeout in

a series of timeouts
W Average of the peak congestion window size

: New transmission during congestion avoidance

: New transmission during fast recovery : Retransmission during fast recovery (except full ack (FA))

: New transmission during congestion avoidance, but eventually lost
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Figure 4.2. Segment Transmissions in Two Adjacent and Identical CAFR Periods

consists of a congestion avoidance period, followed by detection of segment
loss and a fast recovery period. Each of these cycles is called a Congestion
Avoidance/Fast Recovery (CAFR) period.

The throughput of the flow can be computed by analyzing one such CAFR
cycle. LetSCAFR be the expected number of segments successfully transmitted
during a CAFR period. LetDCAFR denote the expected time duration of the
period. Then the average throughput of the flow is:

TNoTO =
SCAFR

DCAFR
. (4.1)

Before determining the expectations of the variables in Equation 4.1, let us
consider the illustration in Figure 4.2. Figure 4.2 shows the segment transmis-
sions per round in two adjacent and identical CAFR periods. We focus on the
ith such CAFR period, and use this example to illustrate the different events in a
CAFR period. Each CAFR consists of congestion avoidance andfast recovery.
The first round of a CAFR period corresponds to the start of congestion avoid-
ance (marked I in Figure 4.2). During congestion avoidance,the congestion
window opens linearly, increasing by one (vertically) the number of segments
transmitted per round. We note that the time gap between two horizontally
adjacent rectangles in the same CAFR period, on average, equals the RTT. In
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roundW/2+1 = 7 in Figure 4.2, three (non-contiguous) transmitted segments
are lost. The first of these lost segments (marked J in Figure 4.2) is detected in
the following round upon receipt of triple duplicate ACKs, resulting in termi-
nation of congestion avoidance and a fast retransmit (marked N in Figure 4.2).
TCP then enters fast recovery.

We use the termdrop windowto refer to the window’s worth of segments
starting from the first lost segment in roundW/2+1 to the segment transmitted
just before the receipt of the first duplicate ACK. Suppose that m segments
are lost in the drop window. As shown in Figure 4.2 (and Figure4.3), fast
recovery continues form RTTs with TCP sending up to approximatelyW/2
new segments per RTT. TCP exits fast recovery and resumes normal congestion
avoidance behaviour when a full ACK (FA) is received.

From our assumptions regarding statistically identical CAFR periods, we
extrapolate and consider the case where two adjacent CAFR periods are exactly
identical, as shown for example in Figure 4.2. From Figure 4.2 we see that
SCAFR can be expressed as the sum of: 1) the expected number of segmentsα
transmitted between the end of one LE and the start of the nextLE (e.g., between
D and J in Figure 4.2); and 2) the expected number of segmentsδ transmitted
between the first loss and the last loss (e.g., between J and L in Figure 4.2)
of a loss event. It follows from the assumptions regarding loss events that the
expected value ofα is 1/p [PaFTK98, SaVe03]. Therefore,

SCAFR =
1

p
+ δ. (4.2)

Next, we deriveδ. For m uniformly spaced drops in a typical window of
sizeW , the expected number of segments transmitted between the first and the
last loss in the same CAFR period (e.g., between J and L in Figure 4.2) is:

δ = W −
W

E[m]
. (4.3)

The expected value ofm can be obtained as follows. LetA(W,m) denote the
probability ofm segment losses from a drop window of sizeW . By definition,
the first segment in the drop window is always lost. Because segments are
lost independently of other segments, the probability thatm − 1 segments are
lost from the remainingW − 1 segments in the window follows the Binomial
probability mass function. Therefore,

A(W,m) = CW−1
m−1 (1 − q)W−mqm−1, (4.4)

whereCW−1
m−1 represents the binomial coefficient.
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Since we have assumed that all losses are identifiable by triple duplicate
ACKs, we know thatm ≤ W − 3. Hence2,

E[m] =
W−3∑

m=1

mA(W,m) ≈ 1 + (W − 1)q ≈ 1 + Wq. (4.5)

SubstitutingE[m] into Equation 4.3, we obtain:

δ =
W 2q

1 + Wq
. (4.6)

Finally, substitutingδ into Equation 4.2 we obtain:

SCAFR =
1

p
+

W 2q

1 + Wq
. (4.7)

To computeW in terms ofp and q, we need an alternate expression for
SCAFR. From Figure 4.2, note thatSCAFR can be expressed as the sum of: 1)
the expected number of segmentsSLI transmitted in the linear increase phase
(from round 1 to roundW/2 + 1); 2) the expected number of segmentsSβ

transmitted from the start of roundW/2 + 2 (marked M in Figure 4.2) until
triple duplicate ACKs terminate congestion avoidance (N inFigure 4.2); and 3)
the expected number of segmentsSFR transmitted during fast recovery (from
N to Q in Figure 4.2). Therefore,

SCAFR = SLI + Sβ + SFR. (4.8)

We will determineSFR first. The time view of a CAFR period shown in
Figure 4.3 may be helpful in following the ensuing discussion. When TCP
detects a segment loss and enters fast recovery, the expected number of out-
standing segments isW . With m drops from the window, the source receives
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W − m duplicate ACKs during the first RTT of fast recovery. Each duplicate
ACK increases the congestion window by one segment, so at theend of the first
RTT the congestion window size will be32W − m. This inflated congestion
window allows TCP to sendW2 −m new segments during the first RTT of fast
recovery, providedm ≤ W

2 . The second RTT starts with the reception of the
first partial ACK (PA1). Immediately following the receipt of the partial ACK,
TCP retransmits the next lost segment and also transmits onenew segment.
During this second RTT of fast recovery,W

2 − m additional duplicate ACKs
will arrive, increasing the congestion window size by the same amount. This
window increase allows the transmission ofW

2 − m new segments as well. In
total, TCP transmitsW2 − m + 1 segments in the second RTT. Form segment
losses, fast recovery requires exactlym round-trip times to recover all the lost
segments with TCP transmittingW2 −m + j − 1 new segments in thejth RTT
of fast recovery. Generalizing we obtain:

S
m≤W

2
FR =

m∑

j=1

(
W

2
− m + j − 1

)
=

m

2
(W − m − 1) . (4.9)

If m > W
2 , TCP will not transmit any new data during the first RTT of fast

recovery, because the congestion window size3
2W − m at this time is smaller

than the amount of outstanding dataW . With each partial ACK, the congestion
window size increases by one segment. Thus, TCP needsm− W

2 partial ACKs
to inflate the congestion window size to the number of outstanding segments
W . Therefore, on arrival of the(m− W

2 +1)th partial ACK, TCP can transmit
one new segment. In the next RTT, TCP will transmit two new segments, and
so on. In general:

S
m> W

2
FR =

m−1∑

k=m−W
2

+1

(
W

2
− m + k

)
=

W 2

8
−

W

4
. (4.10)

Using Equations 4.4, 4.9, and 4.10, the expected number of new segments
transmitted during fast recovery is:

SFR =

W
2∑

m=1

A(W,m) S
m≤W

2
FR +

W−3∑

m= W
2

+1

A(W,m) S
m> W

2
FR

≈
W 2

2

(
q − q2

)
+

W

2

(
1 − 5q + 3q2

)
−

(
1 − 2q + q2

)
. (4.11)

We next determineSLI for Equation 4.8. Immediately following receipt
of a full ACK, fast recovery is terminated and the congestionwindow is reset
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to W/2 (e.g., I in Figure 4.2). This also ends the current cycle and normal
congestion avoidance begins. In this phase, the congestionwindow increases
by one segment per round until it reaches the assumed peak value ofW in round
W/2 + 1. It therefore follows that:

SLI =
W∑

i= W
2

i =
3

8
W 2 +

3

4
W. (4.12)

To determineSβ for Equation 4.8, we consider its two extreme boundary
cases. If the first loss occurs at the start of roundW/2 + 1, then the number
of segmentsS

′

β transmitted in the next round until termination of congestion

avoidance is 0. Similarly,S
′

β = W − 1 if the first loss occurs at the end of
roundW/2 + 1. Therefore, we approximate3 Sβ with its median valueW/2.

Substituting the expressions forSLI , SFR, andSβ into Equation 4.8 and
simplifying, we obtain:

SCAFR =

(
3
8 + q

2 − q2

2

)
W 2 +

(
7
4 − 5q

2 + 3q2

2

)
W −

(
1 − 2q + q2

)
. (4.13)

Equating the right-hand sides of Equation 4.7 and Equation 4.13, and ne-
glecting high-order terms, we can express the value ofW in terms ofp andq
as:

W =
10pq − 5p +

√
p(24 + 32q + 49p)

p(3 + 4q)
. (4.14)

Equation 4.14 encapsulates the essential characteristicsof our two-parameter
loss model, which are illustrated graphically in Figure 4.4. Whenp is very small,
W is large, but decreases asq is increased (i.e., fast recovery takes longer, and
is less likely to succeed). Asp increases,W decreases, andq has a negligible
impact, since fast recovery is rarely applicable.
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Figure 4.4. Effect ofp andq on Window ValueW

To obtain the expected time duration of a CAFR period, we again refer to
the time view of a CAFR period, shown in Figure 4.3. From this illustration,
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we note that:
DCAFR = DLI + Dβ + DFR, (4.15)

whereDLI is the expected duration of a linear increase period,Dβ is the ex-
pected delay from the start of round (W/2+2) to the end of congestion avoidance,
andDFR is the expected duration of the fast recovery phase. The duration of
the linear increase phase is:

DLI =

(
W

2
+ 1

)
R. (4.16)

Form segment losses in the drop window, fast recovery requiresm round-trip
times. Therefore,

DFR = E[m]R ≈ (1 + Wq)R (4.17)

Using arguments similar to those used for determiningSβ, we approximate
using Dβ = R

2 . SubstitutingDLI , Dβ, andDFR into Equation 4.15, we
obtain:

DCAFR =

(
W

2
+ Wq +

5

2

)
R (4.18)

Finally, substituting Equation 4.7 and Equation 4.18 into Equation 4.1, we
obtain:

TNoTO =

1
p + W 2q

1+Wq(
W
2 + Wq + 5

2

)
R

, (4.19)

whereW can be computed from Equation 4.14.

Full Model (Full)

This section extends the foregoing model to include timeouts as loss indica-
tions. We refer to this as the “Full” model.

We again view the congestion window evolution as a concatenation of statisti-
cally identical cycles. Each cycle consists of several CAFRperiods followed by
a CATOSS period, where a CATOSS period is the concatenation of congestion
avoidance (CA), timeout (TO), and slow start (SS) periods, as shown in Fig-
ure 4.5. Therefore, the throughput of a TCP NewReno flow can beexpressed4

as:

TFull =
(1 − pTO)SCAFR + pTO(SCA + STO + SSS)

(1 − pTO)DCAFR + pTO(DCA + DTO + DSS)
(4.20)

wherepTO is the probability that a loss event leads to a timeout.SX is the
expected number of successful segment transmissions in a period of typeX , and
DX is the expected duration of a period of typeX. Obviously,DCA=DLI +Dβ.
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Figure 4.5. Segment Transmissions in a Cycle (multiple CAFRs followed by CATOSS )

Intuitively, SCA=SLI + Sβ. However, we useSCA = SLI instead, since TCP
forgets outstanding data after timeout.

TCP NewReno may experience a timeout either from the congestion avoid-
ance phase or from the fast recovery phase. The former transition occurs when
TCP does not receive enough duplicate ACKs to trigger fast retransmit/fast re-
covery, while the latter transition occurs when retransmitted segments are lost
during the fast recovery phase. We expresspTO as:

pTO = pDTO + pIFR (4.21)

wherepDTO is the probability of directly transitioning to timeout from conges-
tion avoidance andpIFR is the probability of a timeout due to an unsuccessful
fast recovery.

We determinepDTO as follows. TCP experiences direct timeout when more
thanW − 3 segments are lost from a drop window of sizeW . Recalling the
definition ofA(W,m) in Equation 4.4, we get:

pDTO =
W∑

m=W−2

A(W,m). (4.22)

When TCP NewReno loses no more thanW − 3 segments from a drop win-
dow of sizeW , it enters fast recovery. On entering fast recovery, a timeout
will occur if any segments retransmitted during fast recovery are lost. We ap-
proximate this condition by assuming that if a new loss eventoccurs during
fast recovery, then the segment retransmitted in that RTT offast recovery is
also lost, thus triggering timeout. (While we do not explicitly model successive
occurrences of FR, this assumption implicitly captures itseffect by increasing
the probability of timeout.) Form losses in the drop window, NewReno needs
m round-trip times, sending approximatelyW/2 segments (including retrans-
missions) per RTT. The probability that theith segment is lost given that the
previousi− 1 segments arrived at the destination is(1− p)i−1p. Therefore, it
follows from our assumptions that:

pIFR =
W−3∑

m=1

A(W,m)
[
p + (1 − p)p + · · · + (1 − p)

mW
2

−1p
]



TCP: A Case Study 21

=
W−3∑

m=1

A(W,m)
[
1 − (1 − p)

mW
2

]
. (4.23)

Substituting Equations 4.22 and 4.23 in Equation 4.21, we get:

pTO = 1 −
W−3∑

m=1

A(W,m)
[
(1 − p)

mW
2

]
. (4.24)

Derivation of the expected duration of timeout is similar to[PaFTK98].
Furthermore, during timeout TCP does not transmit any new segments. Thus,

STO = 0 and (4.25)

DTO = RTO 1+p+2p2+4p3+8p4+16p5+32p6

1−p . (4.26)

In the slow start phase, the initial window size is 1 and the window size is
doubled every round until the slow start threshold (W/2) is reached. In the
last round of slow start, TCP transmits W/2 segments and enters congestion
avoidance. We count the duration and segments of the last round of slow start
as being part of congestion avoidance. Hence,

SSS = 1 + 2 + 4 + · · · + W
4 = 21+log W

4 − 1 and (4.27)

DSS =
(
logW

4 + 1
)

R. (4.28)

Following the approach in [SaVe03], we can replace the numerator of Equa-
tion 4.20 with 1

p + W 2q
1+Wq . Substituting Equations 4.18, 4.26, 4.28, andDCA

into Equation 4.20, we obtain:

TFull =
1
p
+ W2q

1+Wq

NR+pTO((1+2p+4p2)RTO+(1+log W
4 )R)

, (4.29)

whereN =
(

W
2 + 3

2 + (1 − pTO)(1 + Wq)
)
, andW can be computed from

Equation 4.14.
To apply this model, the user should obtain the loss event rate p, packet

loss ratẽq, and round-trip timeR. The ratio ofq̃ to p determinesm, and then
the value ofq in the model can be computed using Equation 4.5. (Also see
Section 4.0 and Equation 4.30.)

4. Model Validation

This section validates the proposed NewReno throughput model using thens-
2 network simulator5. The results reported here also illustrate the performance
advantages of NewReno over Reno. Finally, we quantify the ineffectiveness of
existing TCP Reno models in predicting TCP NewReno throughput.
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Network Model and Traffic Models

Before discussing the simulation results, we present the basic setup used
in the ns-2 simulations. Specifically, we describe the network model and the
various traffic models used. To conserve space when presenting the results, we
describe only the setup changes with respect to the default settings discussed
here.

The results reported here, with the exception of those in Section 4.0, are for a
simple dumbbell network topology with a single common bottleneck between
all sources and sinks. Each source/sink pair is connected tothe bottleneck link
via a high bandwidth access link. The propagation delays of the access links are
varied to simulate the desired round-trip delay between a source/sink pair. We
refer to the flows that are being actively monitored as the “foreground” flows,
with all other traffic designated as “background” flows.

All experiments have two long duration foreground flows: oneNewReno
flow and one Reno flow. These long duration flows simulate the bulk data
transfer sessions of interest. The receive buffers for the foreground flows are
sufficiently provisioned such that their buffer space advertisements do not limit
the congestion window size. The experiments vary the bottleneck bandwidths
(e.g., 15 Mbps to 60 Mbps), the round-trip delays of the flows (e.g., 20 ms to
460 ms), the bottleneck queue management policies (e.g., DropTail and RED),
and the load/mix of background traffic (e.g., mix of long duration FTP transfers,
short duration HTTP sessions, and constant bit rate UDP flows). For RED queue
management, theminthresh and themaxthresh are set to1/3 and2/3 of
the corresponding queue size limit, based on recommendations in Section 6
of [adaptivered].6

Background HTTP traffic is simulated using a model similar tothat in [Ma-
hanti05, SaVe03]. Specifically, eachHTTP sessionconsistsof a unique client/server
pair. The client sends a single request packet across the (reverse) bottleneck
link to its dedicated server. The server, upon receiving therequest, uses TCP
to send the file to the client. Upon completion of the data transfer, the client
waits for a period of time before issuing the next request. These waiting times
are exponentially distributed and have a mean of 500 ms. The file sizes are
drawn from a Pareto distribution with mean 48 KB and shape 1.2to simulate
the observed heavy-tailed nature of HTTP transfers [ArWi97].

Background HTTP and FTP sessions use TCP NewReno with a maximum
congestion window size of 64 KB. The packet size is 1 KB. All packets are
of identical size except HTTP request packets and possibly the last packet of
each HTTP response. The round-trip propagation delays of these background
flows are uniformly distributed between 20 ms and 460 ms, consistent with
measurements reported in the literature [Al00,?].
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The background UDP flows are constant bit rate UDP flows with rate 1 Mbps
each. The packet size is 1 KB and the one-way propagation delay for each UDP
flow is 35 ms.

The results reported here are for the “Full” TCP NewReno model, unless
stated otherwise. As a representative TCP Reno throughput model, we use
the full PFTK model from Table 4.1, which has similar modeling assump-
tions [PaFTK98]. This TCP Reno throughput model has been widely used in
prior work (e.g., [FlHPJ00, Mahanti05, HDA05,?]).

The necessary input parameters for both analytical models are obtained from
the simulation trace file. All the losses in a single window ofdata are counted as
one loss event. The loss event ratep is taken to be the ratio of the total number
of loss events to the total number of segment transmissions,in the period of
interest. For simplicity, we assume a homogeneous loss process (q = p), unless
stated otherwise. The average round-trip timeR was measured at the sender,
andRTO was approximated as3R.

In simulations where multiple long duration flows share a single bottle-
neck link, systematic discrimination has been observed against some connec-
tions [Floyd92, FlKo02]. Suchphaseeffects, however, rarely arise in experi-
ments that consider a mix of long and short duration flows, with heterogeneous
round-trip propagation delays [FlKo02]. As a precautionary measure, the exper-
iments reported here start all flows at slightly different times. The background
flows start at uniformly distributed times between 0 and 2 seconds, and the fore-
ground flows start at uniformly distributed times between 5 and 7 seconds, all
measured in simulation time since the start of a run. Each experiment simulates
1000 seconds of run. Results are reported using data from thelast 750 simulated
seconds.

Bursty Loss Model

Our first experiment illustrates the flexibility of our noveltwo-parameter
loss model, and the key differences between our NewReno model and the
PFTK model. The simulation results reported here are for asingleforeground
NewReno flow traversing a 45 Mbps bottleneck link. No background flows are
present, and the round-trip propagation delay of the NewReno flow is 75 ms. A
specialized drop module that takes as input two parametersp andm was placed
on the access link of the TCP Sink node. This drop module schedules Bernoulli
loss events at ratep; whenever a loss event occurs,m back-to-back packets are
dropped.

We first develop an approximation for computingq from the measured char-
acteristics of the flow. Given the average loss rateq̃ observed over the entire
duration of the transfer, and the loss event ratep, a relation betweeñq, q, p, and
W can be obtained as follows. The expected number of segment losses per loss
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Figure 4.6. Model Accuracy with Bursty Packet Losses)

event ism = q̃/p. Using Equation 4.5, we obtain:

q ≈
q̃/p − 1

W − 1
, (4.30)

whereW is computed from Equation 4.14 usingq = q̃.
Figure 4.6(a) shows the simulation throughput for the NewReno flow, along

with the results from the analytic model. In the experiments, m was varied from
1 to 20 while keeping the loss event rate fixed at 0.05%. The analytic results are
shown for the full NewReno model, withq approximated using Equation 4.30.
When the loss event rate is low (0.05%), and there is a single packet loss per loss
event, the results from the NewReno model and the PFTK model are similar. As
the number of packet dropsm per loss event increases, the simulated NewReno
throughput decreases roughly linearly, since the durationof fast recovery is
proportional to the number of drops. Our model tracks this trend well, while
the PFTK model does not consider the number of packet drops7 per loss event.

Figure 4.6(b) shows similar results for a higher loss event rate. The value ofm
was varied from 1 to 10, while keeping the loss event rate fixedat 1.0%. These
results show even greater differences between the NewReno model and the
PFTK model. As the loss event rate increases, or as the numberof packet drops
per loss event increases, the simulated NewReno throughputdecreases signif-
icantly compared to that predicted by the PFTK model, while our NewReno
model follows the downward trend well.

These results demonstrate the accuracy and robustness of our analytic model.
The two-parameter loss model is particularly useful in scenarios that involve
bursty packet losses. In earlier work [Parvez2006], we usedthe q parameter
(and a fixed loss event ratep) to study the effect of bursty packet losses on two
variants of NewReno, namely Slow-but-Steady (SBS) and Impatient (IMP).
Contrary to RFC 3782, we find that the SBS variant offers superior throughput
to IMP in all but the most extreme packet loss scenarios (e.g., 26 or more
segment losses per window [Parvez2006]). Similar experiments (not shown
here) clearly demonstrate the superiority of partial window deflation versus full
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window deflation in TCP NewReno. These insights were made possible by the
two-parameter loss model.

Bernoulli Packet Loss

Before validating the model with background traffic, validation is carried
out in isolation. The configuration considered here consists of two foreground
flows traversing a 15 Mbps bottleneck link. A Bernoulli packet drop module
was placed on the access link of each foreground flow. The bottleneck router’s
buffer was sufficiently provisioned such that there were no congestion-induced
packet losses. Experiments varied the imposed Bernoulli packet loss rate from
0.01% to 10%.

Figure 4.7 shows the throughput from the simulations and themodels from
representative experiments with round-trip propagation delay of the foreground
flows set to 75 ms. For the imposed Bernoulli loss rates, the corresponding
observed loss event rates (LER) and packet (segment) loss rates (PLR) for both
foreground flows are shown in Figure 4.8.

Several important observations are evident from the results in Figure 4.7. The
results show that the proposed NewReno throughput model (NewRenoModel in
the figures) is able to track accurately the simulation throughput over the entire
range of loss rates considered. The prediction error of our model, defined as
|simulation − model|/simulation, ranges from 0% to 15% with an average
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Figure 4.9. Model Accuracy with Background HTTP/FTP Traffic

error of 9.0%. Furthermore, if the PFTK model (PFTK in the figure) is naively
used to estimate NewReno throughput (based on the loss eventrate experienced
by the foreground NewReno flow), the prediction errors rangefrom 0% to 32%,
with an average absolute prediction error of 11%.

The PFTK model is poorat predicting the simulatedReno throughput (PFTKreno
in the figures, based on the observed loss event rate for the foreground Reno
flow), especially at high loss rates. At high loss rates, multiple packet losses per
window are possible, leading to multiple window reductions, or even timeout.
The PFTK model essentially considers a single drop per loss event, and is thus
unable to predict the throughput accurately. The average prediction error is
25%.

The higher prediction errors in the PFTK model can be attributed to the omis-
sion of the Reno fast recovery algorithm from their model, and the correlated
packet loss assumptions of their model. Note that with the Bernoulli packet
drop module, most packet losses are isolated single packet drops that can be
recovered using a single fast recovery phase. For low packetloss rates (e.g.,
2% or lower), the throughputs for simulated Reno and NewRenoflows are thus
similar (because of the Bernoulli packet loss assumption).

HTTP/FTP Background Traffic

The simulation results reported in this section are for a 15 Mbps bottleneck
link with a queue of capacity 150 packets. In order to investigate the effect
of varying degrees of multiplexing, the total number of background flows is
varied from 100 to 200, using a mix of 75% HTTP and 25% FTP flows.Both
foreground flows have a round-trip propagation delay of 75 ms.

Figure 4.9 shows the simulated throughputs of NewReno and Reno as well as
the throughputs from the analytic models. Figure 4.9(a) is for a DropTail bottle-
neck router, while Figure 4.9(b) is for a RED bottleneck router. The simulation
results in Figure 4.9(a) show that NewReno throughput is often 20-30% higher
than that of Reno. This is because the cross traffic generatesbursty packet



TCP: A Case Study 27

 0

 0.1

 0.2

 0.3

 0.4

 100  120  140  160  180  200

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows (per bottleneck)

PFTKreno
PFTK

NewRenoModel
NewRenoSim

RenoSim

 0

 0.1

 0.2

 0.3

 0.4

 100  120  140  160  180  200

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows (per bottleneck)

PFTKreno
PFTK

NewRenoSim
NewRenoModel

RenoSim

(a) DropTail (b) RED

Figure 4.10. Model Accuracy with Multiple Bottlenecks

losses at the DropTail router buffer. NewReno is able to recover efficiently
from these losses using its improved fast recovery algorithm. The performance
differences between Reno and NewReno decrease when RED queues are used,
as can be seen in Figure 4.9(b). The overall throughput with RED is slightly
lower as well.

From Figure 4.9, we also note that the proposed analytic model tracks the
throughput of the foreground flow for the range of backgroundtraffic consid-
ered. The prediction error of our analytic model averages 4.4% with DropTail
queues, and 8.9% for the RED queue management policy.

The results also show that the PFTK model overestimates bothReno and
NewReno throughputs. The average prediction error is 20% with DropTail
queues, due to the bursty losses induced by the HTTP workload. However, the
average prediction error for RED queues (9.9%) is lower. With RED queues, the
burstiness of packet losses decreases, allowing some of thepacket losses to be
recovered by the Reno fast recovery algorithm. The PFTK model essentially
captures a single packet loss per loss event, though it assumes that packet
losses are correlated within a round. While the PFTK model isintended for
bottleneck routers with DropTail queue management, ratherthan those with
active queue management, the PFTK model has been applied in the latter context
by others [Floyd97, PaFl01].

Our results indicate that our NewReno model provides relatively robust re-
sults for both DropTail and RED packet loss scenarios. We have also shown that
the PFTK model is inadequate for modeling NewReno throughput, especially
when the bottleneck link is shared by many bursty flows.

Multiple Bottlenecks

This section reports validation results from an experimentsetup with mul-
tiple bottlenecks. The network topology used here consistsof two dumbbell
networks connected in series at the bottlenecks. Each bottleneck link had a ca-
pacity of 15 Mbps with a buffer space for 150 packets. Two longduration TCP
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Figure 4.11. Model Accuracy with Background UDP Traffic

flows, one NewReno and one Reno, traversed both bottleneck links. The fore-
ground flows had a round-trip propagation delay of 75 ms. Background traffic
was applied to the bottleneck links such that each background flow traversed
only a single bottleneck link. Specifically, each bottleneck link experienced
background traffic mix that consisted of 75% HTTP flows and 25%FTP flows.
We varied the total number of flows per bottleneck from 100 to 200.

Note that although statistically identical background load is simulated on
each bottleneck link, randomness in the HTTP traffic generation process can
result in slightly different (and time-varying) background loads on the bottle-
neck links. It is also noteworthy that the foreground flows may experience
losses atbothbottleneck links, and thus the results presented here are not di-
rectly comparable to those for the experiments with a singlebottleneck link.

Figure 4.10 shows the throughput from the simulations and the results from
the analytic models. As shown in Figure 4.10, our NewReno throughput model
closely tracks the simulation throughput over the entire range of background
load simulated. The average prediction error in these experiments is 3.4%.

Compared to the DropTail experiment results, the results from the experi-
ments with RED queues show somewhat higher prediction errors. The pre-
diction errors in this setting average 7.5%. We note that theNewReno flow
experienced slightly higher packet loss in the RED experiments.

Similar to earlier results, we observe that the prediction errors increase sig-
nificantly if the PFTK model is used to estimate NewReno throughput. In
the multiple bottleneck experiments, the average prediction error of the PFTK
model (when tracking NewReno throughput) is 25% for DropTail routers and
27% for RED queue management. The inaccuracy of the PFTK model arises
from its failure to consider the number of packet drops per loss event. Our
model accurately captures the effect of multiple drops on the duration of the
fast recovery period.
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UDP Background Traffic

This section considers the impact of background traffic thatis predominantly
generated by On-Off Constant Bit Rate (CBR) UDP flows. The experiments
reported here are for a 15 Mbps bottleneck link with a queue limit of 150 packets.
The background traffic consists of a fixed number of HTTP/FTP background
flows (24 HTTP sessions and 8 FTP sessions), and a varying number of On-Off
CBR UDP flows, whose On and Off times are drawn from a heavy-tailed Pareto
distribution with 1.2 as the shape parameter. The two foreground flows, namely
NewReno and Reno, each have a round-trip propagation delay of 75 ms.

The results in Figure 4.11 again show that TCP NewReno can significantly
outperform TCP Reno under similar network conditions. We also observe
that the proposed analytic model closely tracks NewReno throughput, with an
average prediction error of 3.1% in the DropTail experiments. Similar to the
results reported in the earlier sections, the PFTK model hashigher prediction
error (9.0%). For RED queues (not shown here), the two modelsproduce
comparable results, each with an average prediction error below 10%.

System Scaling

The next experiment studies the robustness of our model to the scaling of
network model and workload parameters.

Figure 4.12 shows the simulated throughput of the foreground flows and the
results from the analytic models for a range of bottleneck bandwidths. Here,
the initial experimental setup had a 15 Mbps bottleneck linkwith a buffer of
50 packets and 100 background flows. The background flows consist of 10%
FTP flows and 90% HTTP sessions. At each step, all system resources and
the background loads are scaled upwards. Thus, for each new configuration,
the bottleneck capacity is increased by 15 Mbps, the queue size by 50 packets,
and the number of background flows by 100 (90 HTTP sessions and10 FTP
sessions). The foreground NewReno and Reno flows each have a round-trip
propagation delay of 75 ms.
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The simulation results show that NewReno throughput is typically 20-35%
higher than Reno throughput under identical network conditions. It can be
observed that our NewReno analytic model accurately tracksthe throughput
observed in the simulations for a wide range of bandwidths. The average
prediction error of the NewReno model is 5.1%. Similar to observations made
in earlier sections, predicting NewReno throughput with the PFTK throughput
model has higher prediction errors (e.g., an average prediction error of 11%).
The average prediction error of PFTK for Reno throughput is 17%.

Bottleneck Buffer Size

The next experiment tests the sensitivity to the bottleneckbuffer size, which
affects the overall packet loss rate as well as the burstiness of packet losses. In
this experiment, we set the number of background flows to 100,with 50 FTP
flows and 50 HTTP flows. The bottleneck buffer is changed from 25 packets
to 150 packets in increments of 25. The other simulation parameters are kept
identical to the experiments in Section 4.0.

Figure 4.13 shows the throughput results along with model predictions for the
different buffer sizes. The NewReno model tracks the simulation throughput
reasonably well, with an average prediction error of 2.9%. The PFTK model
prediction for NewReno throughput is poor, with an average prediction error of
28%. The accuracy of our model stems from its careful consideration of the fast
recovery process for bursty losses. As in other cases with bursty packet losses,
the PFTK model overestimates the throughput, since it implicitly assumes that
all losses are recoverable within a simple fast recovery period that lasts only a
single RTT (assuming a timeout does not occur).

This experiment reinforces the generalized observations made in Section 4.0,
and shows that the proposed NewReno model provides more robust throughput
predictions than PFTK when congestion loss dominates.
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Figure 4.14. Testbed for Emulation Experiments

5. Emulation Experiments

We validated our TCP NewReno throughput model using a real TCP source
and a real TCP sink on an emulated wide area network in our laboratory. This
section describes the experimental testbed used for emulation, the emulated
network configuration, and the experimental results.

Testbed Configuration

The testbed consists of three physical machines on a 100 Mbpsprivate Eth-
ernet LAN, as shown in Figure 4.14. One machine serves as the TCP source
node, with another as the TCP destination node, and the thirdas the network
emulator.

The TCP source node was a 1.8 GHz Intel Pentium 4 machine with 512 MB
of RAM, running the FreeBSD 4.11 operating system. We verified that the
NewReno implementation in the FreeBSD kernel conformed to the TCP NewReno
description in RFC 3782. In addition, we instrumented the FreeBSD kernel to
collect statistics required for model validation such as the number of timeout
(TO) events, the number of fast recovery (FR) events, the total transfer du-
ration (in seconds), the total bytes successfully transferred (Bytes), and the
fine-grained RTT. The TCP destination node was a 2.8 GHz IntelXeon with
1 GB of RAM. This machine was running Linux 2.6.8 as the operating system.

We usediperf8 forgeneratingTCP bulkdata transfers. This software, freely
available from NLANR, is used for measuring TCP and UDP performance. In
our experiments, we raniperf in the TCP-mode to generate traffic representing
bulk data transfer.

We used the Internet Protocol and Traffic NetworkEmulator (IP-TNE) [SiBU00]
to emulate a wide area network. IP-TNE is a high-performanceinternetwork
emulation tool that uses a parallel discrete-event simulation kernel. In our
experiments, alliperf traffic between the TCP source and TCP destination
traverses the virtual (simulated) wide area network. IP-TNE transfers IP pack-
ets as needed between the real and the simulated network, andmodels packet
transmissions in the emulated wide area network. IP-TNE wasrunning on a
3.2 GHz Intel Xeon machine with 4 GB of RAM; the operating system on this
machine was Red Hat Enterprise Linux Academic Server Edition 4.
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Table 4.3. Summary of Emulation Experiments

Loss TO FR RTT (ms) Duration Bytes
Rate (sec.)

0.50% 5 556 55.56 500.54 169,942,625
1.00% 21 765 57.31 502.33 116,768,593
1.50% 38 841 58.48 502.62 89,441,537
2.00% 68 864 59.06 501.92 72,544,825
2.50% 113 775 59.65 502.11 55,202,129
3.00% 129 777 60.23 502.92 47,554,586

Emulated Network

The experiments reported here use a simple dumbbell networktopology.
There is a single bottleneck link of capacity 10 Mbps betweenthe TCP source
node and the TCP sink node. The TCP source and destination nodes are each
connected to the bottleneck link by a 100 Mbps access link. Inthe experiments,
the round-trip propagation delay of the emulated network is50 ms.

All routers in the emulated network use FIFO queueing, with DropTail queue
management. We installed a Bernoulli packet drop module on the access link
of the TCP destination node to drop packets at a predetermined rate. The
buffer at the bottleneck router was sufficiently provisioned such that there were
no congestion-induced packet losses. This setup is simple,but allows us to
compare the emulation results with those fromns-2simulations.

Results

In our emulation experiments, we varied the imposed packet loss rate from
0.5% to 3%, in steps of 0.5%. Table 4.3 summarizes statisticsobtained from the
emulation experiments. Note that summing the number of FR and TO events
represents the total number of loss events experienced by the TCP flow. The
segment size (orSegsize) for all transfers is 1448 byte excluding TCP and IP
headers. As in [PaFTK98], we use the expressionFR+TO

Bytes/Segsize to estimate the
loss event ratep. This computed loss event rate and the measured RTT are used
as inputs to our “Full” TCP NewReno throughput model. In our computation
of the model estimated throughputs, we used the approximation q = p.

In the absence of loss (p=0%), the NewReno flow fully utilizesthe 10 Mbps
bottleneck link. The achieved throughput is 9.59 Mbps excluding TCP/IP
header overhead, and 9.93 Mbps including TCP/IP overhead.

Figure 4.15 shows the (emulated) throughput attained by theTCP flow, along
with the throughput predicted by our model. All these throughput calculations
exclude the TCP/IP header overhead. At 1.5% imposed loss rate, the emulation
throughput is 1.42 Mbps and the model prediction is 1.46 Mbps, correspond-
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Figure 4.15. Model Accuracy in WAN Emulation

ingly the prediction error is 3.0%. The maximum estimation error observed is
21% (at an imposed packet loss rate of 3%), and the average prediction error is
11%.

In general, our model predicts the TCP NewReno throughput successfully
in the experiments considered.

6. Internet Experiments

As a final step for model validation, we conducted several experiments on the
Internet. With help from selected colleagues around the globe, we measured
the throughput achieved for 5 MB file transfers from our BSD Unix server
site in Calgary to 6 different client locations: USA, Canada, UK, Australia,
Bangladesh, and Japan. For space reasons, we only present results from the
latter experiment, which had the worst-case prediction error observed.

To validate our model predictions at different loss rates, we added controlled
levels of packet loss to our experiments using DummyNet [rizzo98]. We varied
the imposed packet loss rate (PLR) from 0.5% to 3%, leaving bandwidth and
delay unchanged. Actual losses always exceed the imposed PLR.

Table 4.4 shows the results from the Japan experiment. The (Full) NewReno
model predicts the observed throughputs reasonably well, with an average pre-
diction error of 12%. These model predictions use the assumption q = p. The
native network path (i.e., with zero imposed PLR) is lossy, experiencing a loss
event rate (LER) of 0.98%, and a PLR of 6.21%. The prediction error for this
case is high at 31%, because the average number of segment losses per loss
event (m = 6.21

0.98 = 6.4) is relatively large, and the assumptionq = p is vio-
lated. Usingq = m−1

W−1 in the model (denoted with ‘*’ in Table 4.4) reduces the
prediction error to 0.94%.
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Table 4.4. Experimental Results from Calgary to Japan

Imposed TO FR Actual RTT Duration Expt Model
PLR LER (ms) (sec) (Kbps) (Kbps)

0.00% 7 27 0.98% 229 106.34 379 497
382*

0.50% 5 39 1.27% 245 120.12 335 394
1.00% 9 58 1.93% 237 134.84 299 297
1.50% 24 87 3.19% 253 195.73 206 202
2.50% 59 100 4.57% 256 277.23 145 147
2.00% 26 76 2.93% 300 302.13 133 173
3.00% 59 119 5.12% 260 290.15 139 141

7. Conclusions

This chapter presented an analytic model for the bulk data transfer perfor-
mance of TCP NewReno. The model expresses steady-state throughput in terms
of RTT and loss rate.

The NewReno throughput model has three important features.First, we ex-
plicitly model the fast recovery algorithm of TCP NewReno, which is important
since a NewReno flow may spend a significant amount of time in the fast re-
covery phase. Second, we also consider the possibility of incurring a timeout
following an unsuccessful fast recovery phase. Third, our analytical model uses
a flexible two-parameter loss model that captures both the loss event rate, as
well as the burstiness of segment losses within a loss event,and thus is able to
better capture the dynamics of TCP loss events on the Internet.

We validated our model with extensivens-2simulation experiments. We
also validated our model using a real TCP NewReno implementation. Our
results show that the proposed model can predict steady-state TCP NewReno
throughput for a wide range of network conditions, unlike existing Reno models.
The results also illustrate the significant performance advantages of NewReno
over Reno in many scenarios because of NewReno’s improved fast recovery
algorithm.

Ourns-2simulationscripts are available fromhttp://www.cpsc.ucalgary.ca/~carey/software.html
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Notes
1. This window reduction strategy is referred to aspartial window deflation. In full window deflation,

cwnd is set tossthresh when partial ACKs are received. The current NewReno proposal in RFC 3782
recommends the partial window deflation option.

2. This approximation assumesq is small. All subsequent approximations also assume thatq is small.
3. This approximation introduces a small amount of error into our model.
4. This expression ignores the duration of an incomplete fast recovery phase, as well as any new segments

transmitted therein.
5. http://www.isi.edu/nsnam/ns.
6. While the difficulties of setting RED parameters are well-documented in the literature, our modeling

results are consistent for other reasonable settings of REDparameters.
7. In Figure 4.6, we used the loss event ratep to parameterize the PFTK model. Using the packet loss

ratemp makes the prediction error even worse.
8. http://dast.nlanr.net/Projects/Iperf/
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