
HTTP Review

Carey Williamson

Department of Computer Science

University of Calgary

Credit: Most of this content was provided by Erich Nahum (IBM Research)

2

Introduction to HTTP

▪ HTTP: HyperText Transfer Protocol

— Communication protocol between clients and servers

— Application layer protocol for WWW

▪ Client/Server model:

— Client: browser that requests, receives, displays object

— Server: receives requests and responds to them

▪ Protocol consists of various operations

— Few for HTTP 1.0 (RFC 1945, 1996)

— Many more in HTTP 1.1 (RFC 2616, 1999)

Laptop w/
Netscape

Server w/ Apache
Desktop w/
Explorer

http request http request

http response http response

3

HTTP Request Generation

▪ User clicks on something

▪ Uniform Resource Locator (URL):
— http://www.cnn.com

— http://www.cpsc.ucalgary.ca

— https://www.paymybills.com

— ftp://ftp.kernel.org

▪ Different URL schemes map to different services

▪ Hostname is converted from a name to a 32-bit IP address
(DNS lookup, if needed)

▪ Connection is established to server (TCP)

4

What Happens Next?

▪ Client downloads HTML document
— Sometimes called “container page”

— Typically in text format (ASCII)

— Contains instructions for rendering

(e.g., background color, frames)

— Links to other pages

▪ Many have embedded objects:
— Images: GIF, JPG (logos, banner ads)

— Usually automatically retrieved

▪ I.e., without user involvement

▪ can control sometimes

(e.g. browser options, junkbusters)

<html>

<head>

<meta

name=“Author”

content=“Erich Nahum”>

<title> Linux Web

Server Performance

</title>

</head>

<body text=“#00000”>

<img width=31

height=11

src=“ibmlogo.gif”>

<img

src=“images/new.gif>

<h1>Hi There!</h1>

Here’s lots of cool

linux stuff!

Click here

for more!

</body>

</html>

sample html file

5

Web Server Role

▪ Respond to client requests, typically a browser
— Can be a proxy, which aggregates client requests (e.g., AOL)

— Could be search engine spider or robot (e.g., Keynote)

▪ May have work to do on client’s behalf:
— Is the client’s cached copy still good?

— Is client authorized to get this document?

▪ Hundreds or thousands of simultaneous clients

▪ Hard to predict how many will show up on some day
(e.g., “flash crowds”, diurnal cycle, global presence)

▪ Many requests are in progress concurrently

6

HTTP Request Format

GET /images/penguin.gif HTTP/1.0

User-Agent: Mozilla/0.9.4 (Linux 2.2.19)

Host: www.kernel.org

Accept: text/html, image/gif, image/jpeg

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: B=xh203jfsf; Y=3sdkfjej

<cr><lf>

• Messages are in ASCII (human-readable)
• Carriage-return and line-feed indicate end of headers
• Headers may communicate private information

(browser, OS, cookie information, etc.)

7

HTTP Request Types

Called Methods:

▪ GET: retrieve a file (95% of requests)

▪ HEAD: just get meta-data (e.g., mod time)

▪ POST: submitting a form to a server

▪ PUT: store enclosed document as URI

▪ DELETE: removed named resource

▪ LINK/UNLINK: in 1.0, gone in 1.1

▪ TRACE: http “echo” for debugging (added in 1.1)

▪ CONNECT: used by proxies for tunneling (1.1)

▪ OPTIONS: request for server/proxy options (1.1)

8

Response Format

HTTP/1.0 200 OK

Server: Tux 2.0

Content-Type: image/gif

Content-Length: 43

Last-Modified: Fri, 15 Apr 1994 02:36:21 GMT

Expires: Wed, 20 Feb 2002 18:54:46 GMT

Date: Mon, 12 Nov 2001 14:29:48 GMT

Cache-Control: no-cache

Pragma: no-cache

Connection: close

Set-Cookie: PA=wefj2we0-jfjf

<cr><lf>

<data follows…>

• Similar format to requests (i.e., ASCII)

9

HTTP Response Types

▪ 1XX: Informational (def’d in 1.0, used in 1.1)
100 Continue, 101 Switching Protocols

▪ 2XX: Success
200 OK, 206 Partial Content

▪ 3XX: Redirection
301 Moved Permanently, 304 Not Modified

▪ 4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

▪ 5XX: Server error
500 Internal Server Error, 503 Service

Unavailable, 505 HTTP Version Not Supported

10

Outline of an HTTP Transaction

▪ This section describes the basics
of servicing an HTTP GET request
from user space

▪ Assume a single process running
in user space, similar to Apache
1.3

▪ We’ll mention relevant socket
operations along the way

initialize;

forever do {

get request;

process;

send response;

log request;

}

server in
a nutshell

11

Readying a Server

▪ First thing a server does is notify the OS it is interested in WWW server
requests; these are typically on TCP port 80. Other services use
different ports (e.g., SSL is on 443)

▪ Allocate a socket and bind()'s it to the address (port 80)

▪ Server calls listen() on the socket to indicate willingness to receive
requests

▪ Calls accept() to wait for a request to come in (and blocks)

▪ When the accept() returns, we have a new socket which represents a
new connection to a client

s = socket(); /* allocate listen socket */

bind(s, 80); /* bind to TCP port 80 */

listen(s); /* indicate willingness to accept */

while (1) {

newconn = accept(s); /* accept new connection */

12

Processing a Request (1 of 2)

▪ getsockname() called to get the remote host name
— for logging purposes (optional, but done by most)

▪ gethostbyname() called to get name of other end
— again for logging purposes

▪ gettimeofday() is called to get time of request
— both for Date header and for logging

▪ read() is called on new socket to retrieve request
▪ request is determined by parsing the data

— Example: “GET /images/jul4/flag.gif”

remoteIP = getsockname(newconn);

remoteHost = gethostbyname(remoteIP);

gettimeofday(currentTime);

read(newconn, reqBuffer, sizeof(reqBuffer));

reqInfo = serverParse(reqBuffer);

13

Processing a Request (2 of 2)

▪ stat() called to test file path
— to see if file exists/is accessible

— may not be there, may only be available to certain people

— "/microsoft/top-secret/plans-for-world-domination.html"

▪ stat() also used for file meta-data
— e.g., size of file, last modified time

— "Has file changed since last time I checked?“

▪ might have to stat() multiple files and directories

▪ assuming all is OK, open() called to open the file

fileName = parseOutFileName(requestBuffer);

fileAttr = stat(fileName);

serverCheckFileStuff(fileName, fileAttr);

open(fileName);

14

Responding to a Request

▪ read() called to read the file into user space

▪ write() is called to send HTTP headers on socket

(early servers called write() for each header!)

▪ write() is called to write the file on the socket

▪ close() is called to close the socket

▪ close() is called to close the open file descriptor

▪ write() is called on the log file

read(fileName, fileBuffer);

headerBuffer = serverFigureHeaders(fileName, reqInfo);

write(newSock, headerBuffer);

write(newSock, fileBuffer);

close(newSock);

close(fileName);

write(logFile, requestInfo);

