CPSC 641: Analytical Solution for Assignment 2

February 21, 2022

The Markov chain is reasonably straightforward, but too hard to draw in LaTeX. I have the diagram if you need to see it. The key insight is using $\lambda / 2$ as the rate on the two different transitions out of state 0 (empty), since choosing between the two barbers is done at random, in an equi-likely fashion (they are twins!).

In terms of notation, p_{i} represents the probability of having i customers in the system, with $p_{1 F}$ and $p_{1 G}$ used to keep track of whether a single customer is with either Faruz or Gemal. Let their respective service rates be μ_{F} (Faruz) and μ_{G} (Gemal).

The global flow balance equations (state view) are:

$$
\begin{gathered}
\lambda p_{0}=\mu_{F} p_{1 F}+\mu_{G} p_{1 G} \\
\left(\lambda+\mu_{F}\right) p_{1 F}=\frac{\lambda}{2} p_{0}+\mu_{G} p_{2} \\
\left(\lambda+\mu_{G}\right) p_{1 G}=\frac{\lambda}{2} p_{0}+\mu_{F} p_{2} \\
\left(\lambda+\mu_{F}+\mu_{G}\right) p_{2}=\lambda\left(p_{1 F}+p_{1 G}\right)+\left(\mu_{F}+\mu_{G}\right) p_{3} \\
\left(\lambda+\mu_{F}+\mu_{G}\right) p_{3}=\lambda p_{2}+\left(\mu_{F}+\mu_{G}\right) p_{4} \\
\left(\lambda+\mu_{F}+\mu_{G}\right) p_{4}=\lambda p_{3}+\left(\mu_{F}+\mu_{G}\right) p_{5} \\
\lambda p_{4}=\left(\mu_{F}+\mu_{G}\right) p_{5}
\end{gathered}
$$

The equations for the queue can of course be generalized for larger k.
It can also be shown that local flow balance (cut view) holds, in which case:

$$
\begin{gathered}
\frac{\lambda}{2} p_{0}=\mu_{F} p_{1 F} \\
\frac{\lambda}{2} p_{0}=\mu_{G} p_{1 G} \\
\lambda p_{1 F}=\mu_{G} p_{2} \\
\lambda p_{1 G}=\mu_{F} p_{2} \\
\lambda p_{2}=\left(\mu_{F}+\mu_{G}\right) p_{3} \\
\lambda p_{3}=\left(\mu_{F}+\mu_{G}\right) p_{4} \\
\lambda p_{4}=\left(\mu_{F}+\mu_{G}\right) p_{5}
\end{gathered}
$$

With a bit of algebra, one can show that:

$$
\begin{gathered}
p_{1 F}=\frac{\lambda}{2 \mu_{F}} p_{0} \\
p_{1 G}=\frac{\lambda}{2 \mu_{G}} p_{0} \\
p_{2}=\frac{\lambda^{2}}{2 \mu_{F} \mu_{G}} p_{0} \\
p_{3}=\frac{\lambda^{3}}{2 \mu_{F} \mu_{G}\left(\mu_{F}+\mu_{G}\right)} p_{0}=\rho p_{2} \\
p_{4}=\frac{\lambda^{4}}{2 \mu_{F} \mu_{G}\left(\mu_{F}+\mu_{G}\right)^{2}} p_{0}=\rho p_{3}=\rho^{2} p_{2} \\
p_{5}=\frac{\lambda^{5}}{2 \mu_{F} \mu_{G}\left(\mu_{F}+\mu_{G}\right)^{3}} p_{0}=\rho p_{4}=\rho^{3} p_{2}
\end{gathered}
$$

where $\rho=\frac{\lambda}{\mu_{F}+\mu_{G}}$ is the offered load.
After a LOT of algebraic manipulation (and some strong coffee!), one can show that:

$$
p_{0}=\frac{2 \mu_{F} \mu_{G}\left(\mu_{F}+\mu_{G}\right)^{3}}{\lambda^{5}+\lambda^{4}\left(\mu_{F}+\mu_{G}\right)+\lambda^{3}\left(\mu_{F}+\mu_{G}\right)^{2}+\lambda^{2}\left(\mu_{F}+\mu_{G}\right)^{3}+\lambda\left(\mu_{F}+\mu_{G}\right)^{4}+2 \mu_{F} \mu_{G}\left(\mu_{F}+\mu_{G}\right)^{3}}
$$

Note the beautiful structure of the equations, and the paired roles of μ_{F} and μ_{G}.
I wrote a simple C program with the foregoing equations. For $\lambda=6, \mu_{F}=5$, and $\mu_{G}=3$, my program indicates an average utilization of 0.83 , with Faruz's chair occupied 0.66 of the time, and Gemal's chair occupied 0.73 of the time. The average system occupancy is 2.03 customers, and the proportion of lost customers is 8.6%. This agrees very well with my simulation results.

