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Abstract
This paper investigates, through simulation, the
performance of five Connection Admission Control (CAC)
algorithms namely, PCR CAC, SCR CAC, AVG CAC,
GCAC, and Norros CAC, when presented with
synthetically generated homogeneous self-similar traffic
sources. Various traffic and system parameters have been
used. The simulation results show that statistical
multiplexing gains both within a source and across
sources should be exploited to improve network resource
utilization. Source granularity and variability have been
shown to have the most impact on the CAC performance.
The limited impact of the Hurst parameter shows that the
long-range correlation structure of the traffic sources can
be neglected in evaluating CAC performance, at least
when the buffer size is small. The CAC algorithms should
be more conservative when link capacity is low and more
aggressive when link capacity is high. While none of the
CAC algorithms performs satisfactorily in all scenarios,
the Norrors CAC and AVG CAC perform better than the
others.
Keywords: Connection-Admission-Control, ATM
Networks, Simulation, Performance-Evaluation.

1. Introduction

Connection Admission Control (CAC) is an important
traffic management mechanism used in high-speed
Asynchronous Transfer Mode (ATM) networks. A good
CAC algorithm tries to achieve high network utilization,
while meeting the QOS requirements of all accepted
connections. To increase network utilization, multiplexing
techniques are required. There are two types of
multiplexing gains. Multiplexing gains within a source
come from the bursty on-off nature of an individual traffic
source and the ability of the switching system to buffer
short-term bursts temporarily for later delivery.
Multiplexing gains across sources come from the fact that

most sources generate bursts independently (i.e., they are
not all “on” or “off” at the same time). As a result, the
bandwidth required for N aggregate traffic sources is less
than the sum of the bandwidths required for the individual
traffic sources.

The difficulty in applying statistical multiplexing
arises from the diverse characteristics of network traffic
and our limited knowledge of these characteristics. Leland
et al. [13] first demonstrated the self-similar fractal-like
behavior of Ethernet traffic in 1993. Since then, self-
similarity has been identified and studied in various types
of traffic sources, such as VBR video traffic [2][8],
TCP/IP WAN traffic [17], WWW traffic [3], and Frame
Relay traffic [7]. It shows that real traffic is bursty and
that the bursts exist over many time scales. Self-similarity
influences the queuing behavior of aggregate traffic and
has an impact on the design and analysis of many network
engineering problems. This paper investigates its impact
on the performance of Connection Admission Control
algorithms.

Many connection admission control algorithms have
been proposed in the past ten years [1][4][5][9][10][12].
They make different assumptions on traffic
characteristics, QOS requirements and target network
utilization. Most currently available CAC algorithms
assume short-range dependent (SRD) traffic and ignore
the existence of long-range correlations or heavy-tailed
burst size distributions. Hence they tend to underestimate
the impact of large sustained bursts on network
performance. This typically results in overly optimistic
performance predictions and inadequate network resource
allocation [6].

Different schemes also assume different traffic and
system parameters. Some algorithms depend exclusively
on the Usage Parameter Control (UPC) parameters
defined for ATM call signaling. This simplifies the
admission process. However, the decisions made can be
inaccurate due to poor, or even misleading, traffic
parameters. Some schemes assume bufferless
configuration [9] or additive bandwidth allocation [9][12].



These assumptions typically result in conservative CAC
performance and inefficient use of network resources.

Therefore, it is difficult to compare the performance of
different CAC algorithms based on the papers in which
they were proposed. It is even more difficult to predict
their performance when presented with self-similar
traffic.

Discrete-event simulation is used in the experiments.
The five CAC algorithms are PCR CAC, SCR CAC,
AVG CAC, GCAC and Norros CAC. The simulations are
conducted using the ATM-TN (ATM Traffic and
Network) simulator, a cell-level simulator developed in
the TeleSim project (http://www.wnet.ca/telesim).

The rest of the paper is organized as follows: Section 2
provides some background information on self-similar
traffic and the CAC algorithms. Section 3 describes the
experimental methodology. Section 4 presents the
simulation results. Section 5 concludes the paper.

2. Background

2.1 Self-Similar Traffic

Intuitively, self-similarity refers to the presence of
visually similar “burstiness” in network traffic across
many time scales. This fractal-like behavior of aggregate
traffic contradicts the general assumption of “Poisson-
like” aggregate traffic, which becomes smoother as more
sources are added.

Formally, a covariance-stationary process
}{ kxX = is self-similar if its autocorrelation function

decays hyperbolically, i.e.,

)(kxγ  ∼ β−
k , as ∞→k , where 10 << β .     (1)

Traditional traffic processes have autocorrelation
functions that decay exponentially, if not faster, i.e.,

)(kxγ  ∼
k

α , as ∞→k , 10 << α .    (2)

Self-similarity manifests itself in different ways [6]. It
has positive correlations across many time scales,
resulting in a non-summable autocorrelation function. The
variance of an aggregated self-similar process decreases
more slowly than the reciprocal of the sample size used to
compute the variance. The spectral density of a self-
similar traffic source increases without limit as frequency
goes to zero.

Hurst parameter, which is derived by 21 β−=H

where β is the hyperbolic decay parameter in Equation
(1), has been used to characterize these phenomena in
self-similar traffic [13]. It expresses the degree of self-
similarity in a given traffic source. Short-range dependent
(SRD) processes have 5.0=H . Long-range dependent
(LRD) processes have 15.0 << H . Most traditional

traffic models do not capture the LRD property of real
traffic [13].

2.2 CAC Algorithms

Connection admission control algorithms can be
classified as either deterministic or statistical schemes
[18]. Deterministic schemes typically need simple traffic
parameters, such as the Peak Cell Rate (PCR) or the
Sustained Cell Rate (SCR). Statistical schemes, on the
other hand, usually require more traffic parameters and an
explicit traffic model. Multiplexing gains, either within or
across sources or both, are often considered in statistical
schemes. This makes them attractive for bursty traffic.

PCR CAC is a deterministic scheme [18]. It requires a
bandwidth equivalent to the Peak Cell Rate (PCR) of the
call to be reserved at the time of call arrival. No cell
losses will occur, assuming that the stated PCR correctly
reflects the maximum cell generation rate of the traffic
source. However, the bandwidth is significantly
underutilized, especially when the difference between the
PCR and the SCR is large. The low bandwidth utilization
makes PCR CAC impractical. Nevertheless, it provides an
upper bound on the bandwidth required for the traffic in
the network.

SCR CAC is another deterministic scheme. The call is
accepted if the available bandwidth of the network is no
less than the SCR of the incoming call, otherwise the call
is rejected. In the long run, SCR allocation is adequate
under the infinite buffering assumption, since (by
definition) the network can eventually "catch up" with
any bursts. However, delay can be significant when buffer
size is too large, and the buffers cannot be infinitely large
in practice. Therefore, SCR CAC is just an "ideal"
scheme, which cannot be employed by any real system. It
provides a lower bound on the bandwidth allocation
required in the call admission process.

AVG CAC requires a bandwidth equivalent to the
average of the PCR and the SCR of the call to be reserved
at the time of call arrival. The call is accepted only when
the available bandwidth is greater than the average value.
The difference between the allocated bandwidth and the
SCR value is the extra bandwidth allocated to handle the
burstiness in the traffic.

GCAC (Generic CAC) is an algorithm described in the
PNNI specification [1]. It is used in the path selection
process by the edge nodes in the network to determine
links that will likely have enough bandwidth for the
incoming connection.

GCAC requires three generic parameters to be
advertised by the switches. As shown in Figure 1, ASR
(Aggregate Sustained Rate) is the sum of the SCRs of all
accepted connections. The Cell Rate Margin (CRM) is the
difference between the Actual Allocated Capacity (AAC)



and ASR. It represents the safety margin that the
switching system has allocated to accommodate the
existing traffic flows [1]. The Variance Factor (VF),
which is CRM normalized by VAR, is defined as VF =
CRM2 / VAR, where VAR = ∑ −

i iSCRiPCRiSCR )( .

VAR is an estimate of the variability of the traffic source,
and is different from the variance or the Norros variance
coefficient. The CRM is not pre-specified when the first
connection enters the network. Thus the aggressiveness or
conservatism of GCAC hinges on the VF chosen for the
first call (i.e., CRM). Once specified, it is always
maintained as more connections are accepted into the
network. For the experiments described below, the CRM
of the first call is set to (PCR1-SCR1)/2.

ASR

CRM

AAC

ACR

MaxCR

Figure 1. Parameters Used in GCAC

Norros CAC is based on a compact and parsimonous
self-similar traffic model called Fractional Brownian
Motion (FBM) [15][16]. Traffic characteristics are
described in this model with three parameters: m, a, and
H. The mean rate, m, measures the volume or quantity of
the traffic. The other two parameters specify the
burstiness or quality of the traffic. The Norros variance
coefficient, a, measures the peakedness of the traffic (or
the magnitude of fluctuations about the mean rate). It is
defined as the ratio of the variance to the mean at the unit
time scale. The Hurst parameter, H, describes the degree
of self-similarity in the traffic (i.e., how sustained the
bursts and idle periods are when they occur). The
bandwidth required is approximated in [16] as

( )( ) ( ) ( ) ( )HH
H
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2
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ln2
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−+= εκ ,

where ( ) ( ) HH HHH −−= 11κ ,  b is the buffer size and ε
is the target CLR.

Weibull distribution is used to approximate the heavy
tail in the queue length distribution. The bandwidth
allocated to the first source is composed of the SCR and a
certain amount of extra capacity to tolerate bursts. The
extra capacity allocated is sensitive to the buffer size and
the target CLR, as well as the traffic parameters m, a, and
H. This starting value can be adjusted to tune the
aggressiveness of the CAC algorithm.

3. Experimental Methodology

This section describes the experimental methodology,
including the chosen experimental factors and levels, the

network topology, the simulation configurations and the
simulation validation.

3.1 Experimental Design

Source granularity, source variability and long-range
correlation structure, as characterized by the mean bit
rate, the Norros variance coefficient, and the Hurst
parameter, are used to examine the impact of traffic
characteristics on CAC performance. The capacity of
bottleneck link (C) is also changed to examine CAC
performance under different link capacity. The buffer size
is 1,000 cells. The target Cell Loss Ratio (ε) is 10-6. The
parameters used in the simulation are listed in Table 1.

Table 1. Factors and Levels Used in the Experiments
Factors Levels
CAC

Algorithms
PCR, SCR, AVG, GCAC,

Norros
Source

Granularity (m)
1 Mbps, 2 Mbps, 3 Mbps

Source
Variability (a)

150,000 bit-sec, 300,000 bit-
sec, 600,000 bit-sec

Long-Range
Dependence (H) 0.5, 0.8, 0.9
Buffer Size (b) 1,000 cells
Link Capacity

(C)
10 Mbps, 20 Mbps, 30 Mbps,

..., 290 Mbps, 300 Mbps
Target CLR (ε) 10-6

Note: the levels in bold are used in the baseline configuration.

A baseline configuration is chosen with traffic
characteristics matching empirical measurements of
Bellcore Ethernet LAN traffic [13]. The source
granularity is 2 Mbps. The Norros variance coefficient is
300,000 bit-sec. The Hurst parameter is 0.8. Simulations
of this configuration are conducted with the capacity of
the bottleneck link ranging from 10 Mbps to 300 Mbps.
The remaining simulations are conducted in such a way
that one parameter is changed at a time to examine its
effect on CAC performance. The performance metrics
used are:
• Call Acceptance. This metric reflects the number of

calls accepted by a CAC algorithm, at a given link
capacity. Each CAC algorithm is presented with an
initial list of candidate calls, in the same order. The
differences in the call acceptance metric reflect
different CAC behaviors.

• Link utilization. This metric reflects the carried load on
the bottleneck link. It is measured as the number of
cells delivered by the bottleneck link as a percentage of
the capacity of the link. It reveals how efficiently the
network resources are utilized, which is another major
concern of service providers.



• Cell loss ratio. This metric expresses the number of
cells lost due to buffer overflow compared to the
number of cells sent to the switch. A measured CLR
that is less than or equal to the target CLR is desirable.

3.2 Network Topology

A simple network topology with two switches, as
shown in Figure 2, has been used for the experiments.
One hundred sources are connected to switch A via 10
Mbps Ethernet links, and one hundred destinations are
similarly connected to switch B. Each traffic source (Src1
... Src100) generates bursts of data, which are segmented
into cells. The link between switch A and B is the
bottleneck ATM link with settable capacity. The five
CAC algorithms under investigation are implemented in
Switch A and B. In our experiments, CAC algorithms in
switch A keep track of the allocated bandwidth and the
available bandwidth of the bottleneck link. It determines
whether another traffic source can be accepted. Once the
admission decision is made, switch A will receive cells
from all accepted sources and forward them on the
bottleneck link, buffering as necessary. The capacity of
the bottleneck link determines how quickly the buffer in
switch A can be emptied. If the buffer is full when a cell
arrives, the cell is lost.

Dst 2

VarLink
Switch BSwitch A .

.

.

Dst 1

Dst 100

.

.

.

Src 100

Src 1

Src 2

Figure 2. Network Topology Used in Simulations

3.3 Traffic Source Models

Nine sets of traffic sources are generated for the
experiments. Their traffic parameters are calculated and
listed in Table 2.

The first three sets (i.e., m1, m2, and m3) are used to
investigate CAC performance with respect to source
granularity. The next three sets (i.e., a1, a2 and a3) are
used to investigate CAC performance with respect to
source variability.  The last three sets (i.e., H1, H2, and
H3) are used to examine CAC performance with respect
to the long-range correlation structure of the traffic
sources. The traffic sources in m2 are used in the baseline
configuration. Each group contains 100 traces generated
using the same Fractional Auto-Regressive Integrated
Moving Average (F-ARIMA) process and the same set of
mathematical transformations [20].

The traffic sources are considered homogeneous in
each set, since they are generated using exactly the same

model with the same parameters (through different
random number seeds). This does not mean that all 100
sources are identical. Indeed, there can be a wide range in
the individual source traffic characteristics generated, as
shown by the minimum and maximum values in Table 2.
However, all generated sources came from the same
statistical distribution, and thus have very similar m, a,
and H values.

The F-ARIMA based model used in our experiments
has been shown in [20] to accurately capture the LRD
feature of network traffic. Statistical tests have been used
to verify the self-similar property of the generated traffic
sources [19].

3.4 Simulation Issues

The warm-up phase of the experiments is 100
simulated seconds. This allows the switch buffer to be
filled with some amount of cells before the performance
data is collected. The simulations run for another 900
seconds after the startup phase and end when all the data
in the sources are sent.

Due to the size of the experimental design, all
simulations, except for the baseline configuration, have
one replication. Thus no confidence intervals are provided
on the graphs (e.g., CLR results). With 900-second
simulation, the maximum observed number of cells
transmitted by the bottleneck link when link capacity is
10 Mbps is 18,618,402 cells. The results of the CLR
performance are reasonably accurate to the magnitude of
10-6 (i.e., 10 to 20 cells are lost due to buffer overflow).
The maximum number of cells transmitted by the
bottleneck link when link capacity is 300 Mbps is
471,013,484 cells. The CLR values are accurate to the
magnitude of 10-8 when 4 to 5 cells are discarded.
Therefore, all the CLR values described in this paper are
considered accurate if they are larger than 10-6. The CLR
value of 0 in our experiments means that no cell is lost
during the 900-second simulation period. This should be
interpreted to mean that the CLR value is likely less than
10-6 for these scenarios.

For the baseline configuration, simulation replications
suggest that confidence intervals are reasonably tight. For
example, the baseline configuration has five replications
using different phasing parameters. The results in
different replications are similar. It shows the limited
impact of phasing effects within one data set.
Furthermore, experiments for traffic sets m2, a2, and H2,
which contain independently generated sets of traffic
sources with similar traffic parameters (shown in Table
2), yield very similar CAC performance. Thus we do
claim statistical significance for the relative performance
differences seen among CAC algorithms, though not for
the absolute CLR values reported.



Table 2. Characteristics of the Synthetically Generated Traffic Sources
m (Mbps) a (bit-sec)Traffic

Character-
istics

Source
Group

Number
of

Sources Min. Avg. Max. Min. Avg. Max.

H

m1 100 0.698 1.060 1.398 188,482 309,805 445,814 0.8
m2 100 1.592 2.026 2.519 154,466 309,615 430,495 0.8Source

Granularity m3 100 2.635 3.081 3.550 169,334 304,778 432,576 0.8
a1 100 2.519 2.088 1.817 76,498 152,179 232,588 0.8
a2 100 1.673 1.997 2.368 182,211 301,781 486,152 0.8Source

Variability a3 100 1.404 2.075 2.722 364,576 599,899 817,761 0.8
H1 100 1.634 2.019 2.428 157,559 299,036 449,334 0.5
H2 100 1.676 2.006 2.433 196,331 301,706 485,365 0.8Long-Range

Dependence H3 100 1.500 2.007 2.405 185,735 307,448 451,604 0.9

4. Simulation Results

The CAC performance in the baseline configuration is
described in Section 4.1. The effects of different traffic
parameters on the performance of CAC algorithms are
studied in the rest of this section. These effects include
that of the source granularity (Section 4.2), source
variability (Section 4.3) and long-range correlation
structure (Section 4.4).

4.1 Baseline Configuration

A typical traffic source in the baseline configuration
generates 4,944,760 cells in total. Over 85% of the bursts
are of size smaller than 100 cells. These bursts contain
46.92% of the total traffic. The maximum burst size is
1,795 cells. The minimum burst size is 1 cell. The peak-
to-mean ratio is 3.48.

As shown in Figure 4(a), the numbers of calls accepted
by all CAC algorithms increase with the increase in the
link capacity. SCR CAC and PCR CAC provide the upper
and lower bounds on the number of calls accepted. Within
these bounds, GCAC is most aggressive and AVG CAC is
most conservative. Norros CAC is in between.

Figure 4(b) shows the link utilization achieved by the
different CAC algorithms. The CAC algorithm that
accepts the most calls, i.e. SCR CAC, naturally has the
highest link utilization (around 90%). The CAC algorithm
that accepts the fewest calls, i.e. PCR CAC, has the
lowest link utilization (around 30%). The link utilization
of GCAC and Norros CAC increases as link capacity
increases, or as more calls are accepted into the network.
This is because both GCAC and Norros CAC consider
multiplexing gains in their admission decisions.
Multiplexing techniques play a key role in improving the
resource utilization of the network. GCAC has relatively
high link utilization (between 60% and 90%). The link
utilization achieved by Norros CAC is between 40% and
70%. Although GCAC and Norros CAC have different
link utilization, their utilization curves in Figure 4(b) are

almost parallel to each other. This means that Norros
CAC and GCAC exploit similar degrees of multiplexing
gains as link capacity increases. The actual difference in
the utilization of the two algorithms comes from their
bandwidth allocation for the first call. The link utilization
of AVG CAC does not change as link capacity increases
since AVG CAC does not consider multiplexing gains
across sources and all traffic sources are homogeneous.

Figure 4(c) shows the CLR performance of the CAC
algorithms. The actual CLR achieved by SCR CAC is in
the order of 10-2 and that achieved by GCAC is in the
order of 10-3, which is far from the target of 10-6. The
CLR performance of AVG CAC is the best among all the
CAC algorithms (besides PCR CAC). It fails to meet the
target CLR when the number of calls accepted is small
(less than 10). However, when the number of calls
accepted increases, the target CLR is satisfied. The CLR
performance of Norros CAC does not meet the target
CLR, although it improves as more calls are accepted into
the network. This shows that bursts in traffic sources have
more significant impact on network performance when
link capacity is small than when link capacity is large. For
example, Norros assigns a bandwidth of nearly 20 Mbps
for the first four connections whose individual PCR is
7.53 Mbps and whose aggregate SCR is 6.96 Mbps. This
bandwidth allocation is not enough to meet the target
CLR. The failures of both GCAC and Norros CAC in
meeting the target CLR come from the fact that neither
allocates sufficient safety margin for the first call.

An interesting observation for Norros CAC is that as
link capacity increases, more calls are accepted, link
utilization increases, and CLR performance improves. At
first, it seems counterintuitive that higher link utilization
is associated with better CLR performance. However, it
highlights the importance of exploiting multiplexing gains
across sources, especially when link capacity is large.
When link capacity is low, the multiplexing gains that can
be exploited are small since the number of calls accepted
is small. The high bandwidth demand of individual self-
similar traffic sources is obvious under such



circumstances. The impact of large and persistent bursts
on network performance can be observed from the poor
CLR performance of all CAC algorithms (except PCR
CAC) when link capacity is below 50 Mbps.
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Figure 4. CAC Performance in the Baseline

Configuration

An ideal CAC algorithm should have a bandwidth
allocation strategy whose aggressiveness increases as the
number of calls accepted increases. Therefore,
multiplexing gains can be exploited at different levels to
achieve maximum link utilization while meeting QOS
requirements. For example, for the baseline configuration,
a bandwidth allocation that is close to the PCR of the
traffic can be used when link capacity is below 50 Mbps.
When link capacity is between 50 Mbps and 100 Mbps,
the bandwidth allocation can become close to that of
AVG CAC. When link capacity is between 100 Mbps and
200 Mbps, the bandwidth allocation should be somewhere
between that of AVG CAC and that of Norros CAC.
When the link capacity is above 200 Mbps, bandwidth
allocation close to that of Norros CAC is appropriate.

4.2 Effect of Source Granularity

The impact of source granularity on CAC performance
is examined by changing the mean bit rate of the traffic
sources from 2 Mbps in the baseline configuration to 1
Mbps and 3 Mbps, respectively. The left column of
Figure 5 illustrates the CAC performance when the source
granularity is 1 Mbps. The right column of Figure 5
illustrates the CAC performance when the source
granularity is 3 Mbps. All other experimental factors
remain the same.
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Figure 5. CAC Performance with Respect to Source

Granularity
m = 1 Mbps:  (a) Call Acceptance Performance  (c) Link

Utilization  (e) CLR Performance
m = 3 Mbps:  (b) Call Acceptance Performance  (d) Link

Utilization  (f) CLR Performance

The numbers of calls accepted by all CAC algorithms
increase when the source granularity decreases, and
decrease when the source granularity increases.
Compared with the baseline configuration, the change in
source granularity influences Norros performance more
than GCAC performance. AVG CAC is least sensitive to
the changes in the source granularity. Although the
number of calls accepted by GCAC decreases with
increasing source granularity, the difference between the
number of calls accepted by SCR CAC and GCAC
decreases. This means that GCAC becomes more
aggressive as the source granularity increases. Compared
with that of PCR CAC, the call acceptance performance



of Norros CAC becomes more conservative as the source
granularity increases.

The link utilization of AVG CAC increases from 35%
to 43% and to 57% as the source granularity increases
from 1 Mbps to 2 Mbps and to 3 Mbps. This increase
largely reflects the different peak to mean ratios for these
sets of traffic sources. The CLR performance of AVG
CAC degrades slightly as the source granularity increases.
For link capacity above 100 Mbps, AVG CAC meets the
target CLR. It provides the best CLR performance with a
link utilization at around 50%.

Although GCAC accepts fewer calls as the source
granularity increases, the link utilization and CLR
performance of GCAC are insensitive to the change in the
source granularity. Its admission decision is too
aggressive, regardless of the source granularity.

4.3 Effect of Source Variability

The performance of CAC algorithms with respect to
the traffic source variability is discussed in this section.
The Norros variance coefficient (a) is 300,000 bit-sec in
the baseline configuration. Figure 6 shows the CAC
performance when a is changed to 150,000 bit-sec and
600,000 bit-sec, respectively. Everything else is kept the
same. The impact of the Norros variance coefficient on
CAC algorithm performance is similar to that of source
granularity. Interesting observations include:
• The number of calls accepted by all CAC algorithms

decreases as a increases.
• Changing a has little effect on the performance of

GCAC and AVG CAC.
• The number of calls accepted by Norros CAC is

between that of GCAC and that of AVG CAC.
GCAC is the most aggressive algorithm besides SCR

CAC. The CLR value achieved by GCAC decreases
slightly as a increases. It falls between 10-2 and 410− ,
which fails to meet the CLR requirement of 10-6. Link
utilization achieved by GCAC is quite high and decreases
only slightly as a increases. When link capacity is 10
Mbps, the link utilization achieved is 40%. It rises to 80%
quickly as link capacity increases. As link utilization
increases dramatically, the CLR performance of GCAC
degrades slightly. The difference is so small that it is
negligible. The performance of GCAC suggests that for
self-similar traffic, link utilization over 70% will likely
result in CLR performance worse than 10-4 assuming a
buffer size of 1,000 cells.

Other than PCR CAC, AVG CAC yields the most
conservative call acceptance performance, and therefore
the lowest link utilization. As a increases from 150,000
bit-sec to 300,000 bit-sec and to 600,000 bit-sec, the link
utilization of AVG CAC decreases from about 50% to
42% and to 35% and is insensitive to increasing link
capacity. The CLR performance of AVG CAC satisfies

the QOS requirement except when link capacity is below
50 Mbps.
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Figure 6. CAC Performance with Respect to Source

Variability
a = 150,000 bit-sec:  (a) Call Acceptance Performance  (c) Link

Utilization  (e) CLR Performance
a = 600,000 bit-sec:  (b) Call Acceptance Performance  (d) Link

Utilization  (f) CLR Performance

Norros CAC is not very sensitive to the change of a
from 150,000 bit-sec to 300,000 bit-sec, where the
number of calls accepted decreases by only 1 or 2 when
link capacity is low (below 150 Mbps) and by 4 to 5 when
link capacity is high (above 150 Mbps). However, the
number of calls accepted by Norros decreases by about
50% when a increases from 300,000 bit-sec to 600,000
bit-sec. Norros CAC becomes almost as conservative as
AVG CAC when a becomes 600,000 bit-sec. The CLR
performance of Norros is also more sensitive to the
change of a. When a is 150,000 bit-sec, the CLR
performance of Norros CAC decreases from 3×10-3 to
4×10-5 as link capacity increases from 10 Mbps to 290
Mbps. When a is 600,000 bit-sec, the CLR performance
of Norros is below 10-6.

The two statistical algorithms (i.e,, Norros CAC and
GCAC) have link utilization curves for a =150,000 bit-sec
and a = 300,000 bit-sec that are almost parallel to each
other. In other words, the multiplexing gains exploited by
Norros CAC and GCAC are at about the same level.
However, this parallel behavior disappears when a
increases to 600,000 bit-sec. The multiplexing gains
exploited by Norros CAC decrease considerably as a



value increases. Figure 6(b) and 6(d) illustrate that the call
acceptance performance and link utilization of Norros
CAC when a is 600,000 bit-sec is worse than those of
PCR CAC when link capacity is below 50 Mbps. They
are still worse than those of AVG CAC when link
capacity is between 50 Mbps and 200 Mbps. When link
capacity rises to over 200 Mbps, the call acceptance and
link utilization performance of Norros CAC becomes a
little bit better than that of AVG CAC. This shows the
problem of Norros CAC. While it realizes the necessity of
changing the degree of multiplexing gains as traffic or
system parameters change, its adjustment may not be
adequate. For example, the multiplexing gains exploited
by Norros CAC when a is 600,000 bit-sec is insufficient,
and its bandwidth allocation is too conservative.

Although the CLR performance of GCAC does not
meet the target CLR, it does not degrade as link capacity
increases and more multiplexing gains are exploited to
improve link utilization. This shows that the multiplexing
gains exploited by GCAC is appropriate even when a is
high (600,000 bit-sec).

4.4 Effect of Long-Range Dependence

The long-range correlation structure of the traffic
sources is characterized by the Hurst parameter, H. CAC
performance with H = 0.5 and H = 0.9 is given in the left
and right columns of Figure 7.

Figure 7(a) shows an abnormal phenomenon in the
performance of Norros CAC when H is 0.5. Its bandwidth
allocation is extremely high, even higher than that of PCR
CAC. With such a high bandwidth allocation, the CLR
performance of Norros CAC satisfies the QOS
requirement. The link utilization achieved is around 20%
and it does not increase as link capacity increases. Hurst
parameter has important influence on the performance of
Norros CAC for several reasons:

First, Hurst parameter determines the degree of
multiplexing gains across sources that can be exploited
by Norros CAC. When Hurst parameter is 0.5, no
multiplexing gains across sources are considered. As
Hurst parameter increases, more gains are exploited.
Therefore, when Hurst parameter becomes 0.8 or 0.9,
Norros algorithm accepts too many connections into the
network. Link utilization increases to around 75%, yet the
CLR performance fails to meet the target CLR.

Second, Hurst parameter also controls the degree of
multiplexing gains within a source exploited by Norros
CAC. When Hurst parameter is 0.5, the extra capacity
allocated by Norros CAC over the Sustained Cell Rate of
the traffic source increases linearly with the increase in m,
a, and ln(ε), and decreases linearly with the increase in b.
As H increases, this extra capacity allocation changes
more slowly with the changes in m, a, ln(ε), and b.

Third, for the experiments that we have conducted
with Norros CAC, traffic sources with lower H value have
been allocated higher bandwidth than traffic sources with
higher H value. This may contradicts the traditional
understanding of the self-similarity feature of the traffic
sources: higher Hurst parameter should imply more
persistent bursts in the traffic, which means that traffic
sources with higher Hurst parameter should have more
bandwidth allocated, if other parameters of the traffic
sources are kept the same.
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Figure 7. CAC Performance with Respect to Long-

Range Dependence
H = 0.5:  (a) Call Acceptance Performance  (c) Link Utilization

(e) CLR Performance
H = 0.9:  (b) Call Acceptance Performance  (d) Link Utilization

(f) CLR Performance

This cross-over effect has been described by
Neidhardt and Wang in [14]. It refers to the fact that the
queuing performance of the traffic streams can be divided
into three regions. The stream with high-H can have
better queuing performance in one region, while the
stream with low-H can have better queuing performance
in another region. The cross-over occurs in the region in
between where direct calculation is required to determine
the queuing performance of the process. High-Hurst
process can have better queuing performance since the
queuing performance of self-similar traffic depends on a
combination of various traffic and system parameters,
such as buffer size, link capacity, peakedness, and Hurst
parameter. It is true especially with high-speed networks,
such as the ATM networks. It has been argued that high-



H process is smoother at small time scales with smaller
variances and deviations, but at larger scales, the stronger
correlations of the high H process produce larger
fluctuations. If this is true, then Norros CAC is not
necessarily making wrong bandwidth predictions when it
allocates more bandwidth for H = 0.5 traffic. The only
problem is that the traffic sources used in [14] have not
only different Hurst parameter, but also different
variances and deviations. In our experiments, Hurst
parameter is the only parameter in which the traffic
sources differ. And the fact that the bandwidth allocation
of Norros CAC is higher than the peak cell rate of the
traffic sources shows its inadequacy when Hurst
parameter changes.

Buffer size is another factor that can cause this cross-
over effect. Small buffer size of 1,000 cells has been used
in the simulations. As buffer size increases, the extra
bandwidth allocated by Norros CAC over the aggregate
sustained cell rate of the traffic sources decreases
proportionally. When buffer size is 8,000 cells, this
reversed bandwidth allocation is still observed, but is
much less pronounced.

None of the other CAC algorithms considers the
correlation structure of the incoming traffic in their
admission decision.  Their performance is exactly the
same as the Hurst parameter changes. GCAC is still
aggressive, with CLR between 10-2 and 10-3 and link
utilization around 80%. AVG CAC has low link
utilization (around 45%). Its CLR performance improves
from 10-2 to 10-6 as link capacity increases from 10 Mbps
to 50 Mbps. The limited impact of the Hurst parameter
illustrates that long-range correlation has no significant
impact on network performance, at least when buffer size
is small (1,000 cells here). This observation further
supports the viewpoint expressed by Grossglauser and
Bolot in [11] that while the correlations on all time scales
have impact on network performance with infinite
queuing assumption, only the correlations up to the
implicit system time scale has an effect with finite
buffers.

5. Conclusions

This paper evaluates CAC (Connection Admission
Control) performance with respect to traffic and system
parameters when presented with homogeneous self-
similar traffic sources.

The simulation results show that for a target CLR of
10-6, link utilization up to 70% may be achievable with
link capacity over 150 Mbps. Source granularity and
variability have significant impact on the network
performance. Long-range correlation structure has very
limited impact on network performance, at least when
buffer size is small.

For aggregate self-similar traffic, both CLR
performance and link utilization improve as link capacity
increases. This illustrates the strong impact of bursts on
CAC performance when link capacity is small and the
importance of exploiting multiplexing gains to improve
network utilization. Multiplexing gains both within a
source and across sources should be exploited.

None of the CAC algorithms under investigation
provides satisfying overall performance in all the
scenarios. It is difficult for CAC algorithms to adjust
appropriately to the changing parameters and to balance
the trade-off between providing better QOS and reaching
higher network utilization. The major problem with
deterministic algorithms is that they are based only on one
or two simple traffic parameters. While this makes the
connection admission control decision simpler, it also
makes the decision inaccurate. AVG CAC provides good
CLR performance in the experiments conducted when
link capacity is above 100 Mbps. However, its link
utilization is relatively low, which means that bandwidth
utilization is not maximized. Norros CAC is another
promising schemes that considers the five key parameters
in its admission decision and tries to exploit multiplexing
gains. Simulation results in Section 4 show that while
Norros CAC tries to adjust its CAC decision with respect
to the different parameters, the magnitude of its
adjustment is not adequate. The performance of an ideal
CAC algorithm has been repeatedly shown to be
somewhere between the performance of AVG CAC and
Norros CAC. Both AVG CAC and Norros CAC should be
more conservative when link capacity is small and more
aggressive when link capacity is large.
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