
Workload Characterization in Web Caching Hierarchies

Guangwei Bai Carey Williamson
Department of Computer Science, University of Calgary

{bai,carey}@cpsc.ucalgary.ca

Abstract

This paper uses trace-driven simulation and synthetic
Web workloads to study the request arrival process at each
level of a simple Web proxy caching hierarchy. The simula-
tion results show that a Web cache reduces both the peak
and the mean request arrival rate for Web traffic work-
loads. However, the variability of the request arrival pro-
cess may either increase, decrease, or remain the same af-
ter the cache, depending on the input arrival process and
the configuration of the cache. If the input request arrival
process is self-similar, then the filtered request arrival pro-
cess remains self-similar, though with reduced mean. Fur-
thermore, the superposition of Web request streams from
multiple child caches results in a bursty aggregate request
stream. Finally, we find that a Gamma distribution provides
a flexible means of modeling the request arrival count dis-
tribution in hierarchical Web caching architectures.

1. Introduction

As the tremendous growth of the World Wide Web con-
tinues, multi-level Web proxy caching systems are being
used to improve the performance of the Internet [15, 16, 18,
23]. Web caching proxies help by reducing Web server load,
Internet bandwidth consumption, and the round-trip delays
associated with Web object retrieval. In many cases, users
perceive improved response times for document downloads.

The primary purpose of a proxy cache is to reduce the
number of client requests that traverse the Internet to the
origin Web server. Obviously, the presence of a Web proxy
cache changes the Web workload seen by a Web server,
since many requests are filtered (removed) from the Web
server request stream when they are satisfied at the proxy.
The same argument applies between the levels of caches in
a multi-level Web proxy caching hierarchy.

The “filtering” effect of the cache manifests itself in two
distinctly different ways. First, it removes many requests
for highly-popular Web objects, making the object pop-
ularity profile seen by a higher-level cache or the origin

server distinctly un-Zipf-like [23]. Second, it changes the
structural characteristics of the request arrival process, since
many of the requests during peak bursty periods are satis-
fied by the first level of cache. We refer to the changes in
the document popularity profile as frequency-domain cache
filter effects, and the changes in the request arrival pro-
cess as time-domain cache filter effects. The frequency-
domain effect has been fairly well-studied in the litera-
ture [10, 12, 14, 23], while the time-domain effect has re-
ceived little attention [5]. It is the latter (time-domain) effect
that is the focus of this paper.

The precise manifestation of the cache filter effect is
highly dependent upon the architecture of the Web proxy
caching system, the cache size used, and the cache re-
placement policy [5, 10, 23]. Since the goal in Web proxy
caching is to improve overall “system-level” performance,
it is important to design an appropriate caching system ar-
chitecture. For this purpose, knowledge of Web workloads
and a thorough understanding of cache filter effects are in-
dispensable. This knowledge will provide valuable insight
into caching system design and the mechanisms for efficient
cooperation between caches at different levels.

The research questions addressed in this paper are:
• How significantly are the mean and the variance of

the Web request arrival process transformed by the
presence of a proxy cache?

• How sensitive are the cache filter effects to the
characteristics of the input request workload?

• How can we model the aggregate Web request streams
in a multi-level Web proxy caching hierarchy?

We address these questions using trace-driven simula-
tions of a multi-level Web proxy caching hierarchy. The
simulation experiments quantify the filter effects of a Web
cache on the request arrival process, for synthetically-
generated aggregate Web client workloads. For simplicity,
we consider only a two-level Web proxy caching hierarchy,
as shown in Figure 1. Assuming that λ1 and λ2 represent
the Web request arrival processes (from clients) entering the
child-level caches, we are interested in the filtered arrival
processes λ′1 and λ′2 after these caches. We are also in-
terested in how they multiplex to form λ3, which itself is
transformed into λ′3 before entering the Internet.

λ3
’

λ1
’ λ2

’

λ3

λ1 λ2

Web Proxy Cache 3

Web Proxy Cache 1 Web Proxy Cache 2

Parent Level

Child Level

Figure 1. Example of Web caching hierarchy

The simulation experiments show the obvious result that
a Web cache reduces the mean request arrival rate for Web
traffic workloads. However, the variability (burstiness) of
the request arrival process may either increase, decrease,
or remain the same after the cache, depending on the in-
put arrival process and the configuration of the cache. The
study also demonstrates that the superposition of Web re-
quest streams from multiple child caches in a Web proxy
caching hierarchy does not result in a smoothing of traf-
fic. Rather, multiplexing bursty request streams tends to
produce a bursty aggregate stream. Finally, we find that a
Gamma distribution provides a flexible means of character-
izing Web workloads in Web caching hierarchies.

The remainder of this paper is organized as follows.
Section 2 discusses background information on Web proxy
caching and related work on Web workload characteriza-
tion and cache filter effects. Section 3 describes the exper-
imental methodology for our study, and the synthetic Web
proxy workloads used. Section 4 presents simulation re-
sults for Web cache filter effects on the request arrival pro-
cess. Section 5 focuses on the superposition of self-similar
Web workload streams in a multi-level caching hierarchy,
and the modeling of aggregate Web workload in the time-
domain. Finally, Section 6 concludes the paper and suggests
directions for future research.

2. Background and Related Work

2.1. Web Proxy Caching

Web proxy caching is a technique used for improving
Web performance on the Internet. Web proxy caches are
located between Web clients (browsers) and Web servers.
Proxies accept client requests and forward them to Web
servers only as necessary. When a requested document is
returned by a Web server, the proxy sends the document
to the client and stores a copy of the document in its local
cache, in the hope that the proxy can satisfy future client re-
quests for the same document without contacting the origin
server, thus reducing user-perceived response time.

Caching effectiveness is traditionally measured by two

quantities: the (document) hit ratio is the percentage of the
total requests that are satisfied directly by documents stored
in the cache; and the byte hit ratio is the percentage of the
total requested Web content bytes that are satisfied directly
by documents stored in the cache. Both metrics are required
since Web objects vary significantly in size. Other metrics
such as user-perceived response time are dependent upon
the hit ratio and the byte hit ratio, as well as network band-
width, round-trip delay, and server load.

To enhance the performance of Web caching, multi-level
Web caching hierarchies have recently received increasing
research attention [10, 15, 18, 23]. In a hierarchical config-
uration, proxies at or near the end-user constitute the lowest
level of the hierarchy, often with sibling-sibling relation-
ships with one another. The lowest level proxies may have
a child-parent relationship to a higher level proxy, usually a
(geographically) regional proxy [23]. A regional proxy can
in turn connect to a higher level proxy, such as a national
proxy [18]. A request that cannot be satisfied by one proxy
cache can be sent to a nearby sibling or to the parent us-
ing an Inter-Cache Protocol. Contacting the origin server to
obtain the document serves as the last resort [23].

2.2. Web Workload Characterization

Web workload characterization studies have focussed on
Web client [7], Web server [3], and Web proxy workload
characteristics [2, 5, 18]. Common workload characteris-
tics observed include a high degree of one-time referencing,
a Zipf-like document popularity distribution, heavy-tailed
file and transfer size distributions, and a temporal locality
property in the document referencing behaviour [3, 9, 18].
Among these characteristics, the slope of the Zipf-like
document popularity distribution is most relevant to Web
caching performance [9]. Zipf’s law expresses a power-law
relationship between the popularity P of an item (i.e., its
frequency of reference) and its rank r (i.e., relative rank
among the referenced items, based on frequency of refer-
ence). This relationship is of the form P = c/rβ , where c
is a constant, and β is often close to 1. When the slope is
steep, requests are highly concentrated on a small subset of
the Web content, and caching works well.

2.3. Web Proxy Cache Performance

Several recent research papers have explored the rela-
tionships between Web workload characteristics and Web
proxy caching performance, particularly in caching hier-
archies [10, 12, 14]. However, most of this research fo-
cuses on the frequency-domain aspect of the Web cache
filter effect. For example, Doyle et al. [14] refer to this
as the “trickle down” effect, and conduct a detailed sim-
ulation study to quantify its impact. Che et al. [12] pro-

pose a frequency-based caching hierarchy, where the lower-
level cache handles requests for high-frequency items, and
the higher-level cache handles requests for low-frequency
items. Busari and Williamson [10] propose a “heteroge-
neous” Web proxy caching hierarchy that uses different
caching policies at different levels of a caching hierarchy.

Few papers explicitly address the structural changes in
the request arrival process in multi-level Web caching hier-
archies. Our own previous work [5] studied time-domain
cache filter effects using an empirical Web proxy workload,
but only for a single-level Web proxy cache. This current
paper extends our work to caching hierarchies, and general-
izes our results to a broader set of (synthetically-generated)
Web workload characteristics.

3. Experimental Methodology

Our experimental methodology has two main steps.
First, we generate a set of synthetic Web proxy workloads
to use in our study. We validate these workloads to ensure
that they have the intended workload characteristics, and are
similar to empirical Web proxy workloads used in our ear-
lier studies [5, 9, 10, 18, 23]. Second, we conduct a set of
trace-driven simulation experiments, using an application-
level Web proxy caching simulator and the generated work-
loads. The output “miss” streams from the Web proxy cache
simulations are used to quantify the filter effect of the cache,
as a function of cache size and cache replacement policy.

The workload generation and cache simulation steps are
described in more detail in Section 3.1 and 3.2, respectively.

3.1. Workload Generation

There are two reasons for the use of synthetic Web proxy
workloads in our study, rather than empirical workloads.
First, synthetic workload generation offers greater control
over workload characteristics, and allows us to study the
sensitivity of our results to particular workload characteris-
tics. Second, it allows us to generate traces that are as long
or as short as needed for our study, without having to worry
about non-stationary behaviour, which can be significant in
empirical Web proxy workloads [5].

In the workload generation step, there are two workload
parameters of interest: Zipf slope, and request arrival pro-
cess. The Zipf slope refers to slope of the Zipf-like doc-
ument popularity profile in the input Web workload. This
slope affects the magnitude of the Web cache filtering effect,
since a steep Zipf slope tends to produce a high cache hit ra-
tio, while a flat Zipf slope does not. The request arrival pro-
cess refers to the timestamps generated for the Web client
requests. We consider three different arrival processes: an
(unrealistic) deterministic arrival process that is simple to
analyze; an (unrealistic) Poisson arrival process that is also

Table 1. Web workload characteristics
Item Trace 1 Trace 2

Total Requests 837,972 893,943
Total Documents 299,513 300,000
Unique Documents 35.74% 33.56%
One-timer Documents 209,504 209,693
One-timers 69.95% 69.90%

Zipf Slope -0.75 -0.80
Total Bytes of Docs (MB) 3,706 3,712
Smallest Doc Size (bytes) 0 32
Largest Doc Size (MB) 39.475 39.475
Mean Doc Size (bytes) 12,977 12,976

Total Transferred Bytes (MB) 9,304 8,960
Mean Transfer Size (bytes) 11,370 10,264

easy to analyze; and a self-similar arrival process that rep-
resents a realistic Web request arrival process.

In our work, the ProWGen (Proxy Workload Genera-
tion) [11] tool is used to synthesize Web proxy workloads.
ProWGen captures the salient characteristics of Web proxy
workloads: one-time referencing, Zipf-like document pop-
ularity, heavy-tailed file size distribution, and temporal lo-
cality. These characteristics affect Web proxy cache perfor-
mance [9, 11], and are easy to analyze using the WebTraff
tool [19]. By design, the two synthetic workloads differ in
the Zipf-like document popularity profile, which influences
the cache hit ratio [8, 9, 22]. Table 1 summarizes the char-
acteristics of the synthetic traces used.

For each of the synthetic traces shown in Table 1, three
arrival-time time series were generated, using determinis-
tic, Poisson and self-similar request arrival processes, re-
spectively. In fact, two instances of the self-similar case are
studied, so that we can generalize our traffic characteriza-
tion and modeling results. Note that the generation of the
traffic arrival process (i.e., the timestamps on the Web doc-
ument requests) is independent of the techniques used to
generate the Web document requests (i.e., ProWGen’s file
popularity and temporal locality models).

The resulting synthetic workloads are used to investigate
cache filter effects in a two-level Web caching hierarchy.

3.2. Web Proxy Cache Simulation

In the Web cache simulation step, two experimental fac-
tors are used: cache size, and cache replacement policy.
The cache size determines the maximum number of Web
content bytes that can be held in the cache at one time.
The cache replacement policy determines what objects to
remove from the cache when more space is needed to store
an incoming object. Five cache replacement policies are
considered: removing objects at random (RAND), remov-

ing objects in the order in which they arrived (First-In-
First-Out, FIFO), removing objects based on recency of use
(Least-Recently-Used, LRU), removing unpopular objects
(Least-Frequently-Used, LFU), and removing large objects
(Greedy-Dual-Size, GDS).

In our simulation experiments, the synthetic Web work-
load (a timestamped series of Web document requests) is
provided as input to the Web proxy cache simulator. The
network topology modeled is shown in Figure 1. The sim-
ulator generates as output the cache hit ratio for the experi-
ment, and a timestamped series indicating the requests that
result in cache misses. The latter output constitutes the fil-
tered request stream used for traffic analysis.

The experiments use cache hit ratio and byte hit ratio
as the primary performance metrics for cache performance,
and the mean and variance of the request arrival process as
the primary means of characterizing cache filter effects. The
caching simulation results follow in Section 4.

4. Simulation Results: Cache Filter Effects

This section focuses on analysis and understanding of
the cache filter effects in the time-domain. Section 4.1
makes general observations about cache filter effects, while
the effects of cache configuration parameters (Section 4.2)
and input workload characteristics (Section 4.3) follow.

4.1. General Observations

The first experiment is designed to provide an intuitive
understanding of the filter effect of a cache, and a qualita-
tive assessment of its impact. For this experiment, a single
workload (Trace 1) is provided as input to the Web proxy
cache simulator. For simplicity, we assume a deterministic
request arrival process, with an (arbitrary) average rate of
60 requests per second. This represents a trace duration of
about 4 hours for Trace 1.

Figure 2 illustrates the general impacts of a proxy cache
on the Web workload, using two time series plots. Fig-
ure 2(a) shows the request arrival count process for the orig-
inal and filtered request streams, with request counts cumu-
lated over 5 minute intervals. Figure 2(b) shows the corre-
sponding cache hit ratio results for this trace.

Figure 2(a) clearly shows that the presence of the Web
cache reduces both the peak and the mean rate of the re-
quest arrival process. The larger the cache size, the more
pronounced the filter effect. These results are as expected.

Figure 2(b) shows the average document hit ratio in the
cache for different cache sizes. These results are plotted
using the average cache hit ratio over each 5 minute inter-
val of the trace. The cache is initially empty at the start-
ing point of the trace, and proceeds to fill as the simulation
progresses, invoking the cache replacement policy when

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2000 4000 6000 8000 10000 12000 14000

C
ou

nt
 o

f A
rr

iv
al

/In
te

rv
al

Time (sec.)

Request Arrival of Synthetic Trace 1 (Time granularity: 5 min.)

Before cache
1 MB
4 MB

16 MB
64 MB

256 MB
1024 MB

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

12:3012:00 15:30 16:00

0

12000

20000

16000

C
ou

nt
 o

f
A

rr
iv

al
/I

nt
er

va
l

0 4000 12000 14000
Time (sec.)

2000 6000 8000 10000

2000

6000
8000

4000

18000

10000

14000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000

H
it

R
at

io

Time (sec.)

Request Arrival of Synthetic Trace 1 (Time granularity: 5 min.)

1 MB
4 MB

16 MB
64 MB

256 MB
1024 MB

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

12:00 12:30 15:30 16:00

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000 12000 14000
Time (sec.)

H
it

R
at

io

(a) Time Series (b) Hit Ratio

Figure 2. Illustration of cache filter effects

needed to manage the contents of the cache. As expected,
the cache hit ratio increases with cache size.

There are non-stationary behaviours evident in these two
graphs, particularly for large cache sizes. A brief warmup
period occurs initially before the cache hit ratio begins to
stabilize. Some “end effects” are also visible, wherein the
cache hit ratio increases at the end of the trace, since most of
the Web content (particularly the popular content) fits in the
cache when the cache size is large. The increasing hit ra-
tio produces a corresponding drop in the request rate of the
filtered request stream. For modest cache sizes, however,
the hit ratio and the filtered request arrival process appear
to be stationary for most of the trace (e.g., 3-hour portion
between the vertical lines). We focus only on the stationary
portion in our subsequent analyses.

4.2. Effect of Cache Configuration Parameters

The second experiment illustrates the effect of cache
configuration parameters on the cache filter effect. In par-
ticular, we focus on the impact of cache size and cache re-
placement policy. For simplicity, these experiments assume
a Poisson arrival process for Web requests.

The characteristics of the filtered arrival process are il-
lustrated in Figure 3. The primary impact of the cache is
to reduce the mean arrival rate, shifting the request arrival
count distribution to the left (see Figure 3(a)). In general,
the filter effect increases with cache size, as expected.

Figure 3(b) shows the impact of cache replacement pol-
icy on the workload characteristics. Examining the plot
shows that the filter effects of each policy are similar. We
thus use the LFU replacement policy as a canonical exam-
ple in most of the remaining experiments.

4.3. Effect of Input Arrival Process

The next set of experiments studies the influence of the
input request arrival process. We consider three cases,
namely deterministic, Poisson, and self-similar arrival pro-
cesses. In all three cases, we use 60 requests per second
as the (arbitrary) average request arrival rate, representing a

0

5

10

15

20

25

0 20 40 60 80 100 120

F
re

qu
en

cy
 (

pe
rc

en
ta

ge
)

Request Arrival

Probability Density Function (PDF)

0 MB
1 MB
4 MB

16 MB
64 MB

256 MB
1024 MB

0

5

10

15

20

25

0 20 40 60 80 100 120

F
re

qu
en

cy
 (

pe
rc

en
ta

ge
)

Request Arrival

Probability Density Function (PDF)

Before cache
LFU
LRU
GDS
FIFO

RAND

(a) Effect of Cache Size (LFU Policy) (b) Effect of Cache Replacement Policy (8 MB Cache)

Figure 3. Characteristics of the filtered arrival process as a function of cache size (Trace 1)

trace duration of about 4 hours. We characterize the filtered
request stream at the 1 second granularity.

Case 1: Deterministic Arrival Process

The first experiment deals with the simplest case: a deter-
ministic request arrival process. Exactly 60 requests arrive,
equally spaced, in each one second of the trace. This trivial
example simply provides a baseline for comparison.

Table 2 summarizes the statistical characteristics of the
filtered request arrival process. In these experiments, the
cache replacement policy is always LFU, while cache size
is varied from 1 MB to 1 GB. The corresponding cache hit
ratios are shown in the bottom row of Table 2.

Clearly, the presence of the cache reduces the mean ar-
rival rate in the filtered request stream. The larger the cache,
the greater this filtering effect. Note that in this (unrealistic)
case, the presence of the Web cache increases the variance
of the filtered request stream (since the input arrival pro-
cess is deterministic, while the output stream is not). The
variance of the filtered stream is similar at each cache size
considered, implying that the variance-to-mean ratio of the
filtered request stream increases with cache size.

Case 2: Poisson Arrival Process

The next experiment assumes that the input arrival process
is Poisson. That is, the inter-arrival times between requests
are exponentially distributed and independent. There is
some evidence that the Poisson arrival process character-
izes some aspects of Internet user behaviour [3, 21], though
it does not provide an adequate characterization of aggre-
gate Web traffic [3, 13].

Table 3 summarizes the statistical characteristics of the
filtered request arrival process, for an LFU replacement pol-
icy, and cache sizes ranging from 1 MB to 1 GB. The cache
hit ratios are also shown in Table 3. Note that the cache
hit ratios are the same here as they were in Table 2, since
only the relative ordering of requests (not their arrival time)
matters to the Web caching simulator.

Again, the presence of the cache reduces the mean arrival
rate in the filtered request stream. The larger the cache,
the greater this filtering effect. However, the impact of the
Web cache on the variance of the filtered request stream is
less pronounced. The variance-to-mean ratio of the filtered
request stream tends to increase with cache size, since the
mean rate drops significantly, while the variance decreases
slowly. For small cache sizes, the filtered request stream
is reasonably well-characterized as a Poisson process; for
large cache sizes it is not.

Case 3: Self-Similar Arrival Process

Recent research in network traffic measurement has chal-
lenged the Poisson assumptions in traditional network traf-
fic models [1, 13, 17, 21]. Leland et al. [17] showed that
Ethernet traffic is bursty across many time scales, and can be
described statistically as self-similar. The term self-similar
means that the statistical characterization of the traffic is es-
sentially invariant with time scale; the same statistical prop-
erties are observed at time scales of milliseconds, seconds,
minutes, hours, and more.

Our next experiment considers a self-similar request ar-
rival process. Several models for self-similar stochastic
processes exist, including Fractional Gaussian Noise and
Fractional-ARIMA processes. In our study, we use the syn-
Traff traffic modeling toolkit developed in prior work [6].
It uses a three-step modeling approach based on Fractional-
ARIMA processes to generate monofractal traffic. Using
this toolkit, we generate time series processes that are dis-
tributionally self-similar. The Hurst parameter is H = 0.70.

Table 4 summarizes the statistical characteristics of the
filtered request arrival process. As observed previously, the
mean arrival rate decreases as the cache size is increased.
The variance of the filtered request stream also decreases,
but not as quickly as the mean. More importantly, further
analysis shows that the output stream maintains its self-
similar properties (see Section 5.1 for fuller evidence of
this). As observed earlier, the variance-to-mean ratio of the
filtered request stream tends to increase with cache size.

Table 2. Simulation results for different cache sizes (Trace 1, Deterministic, LFU Policy)
Before Cache Size (MB)Statistics
Cache 1 4 16 64 256 1024

Mean 60.23 36.88 31.45 28.71 27.31 25.37 23.03
Std. deviation 0.43 4.84 4.60 4.01 4.00 4.31 4.78

Request hit ratio - 38.84% 47.84% 52.66% 55.47% 59.10% 62.70%

Table 3. Simulation results for different cache sizes (Trace 1, Poisson, LFU Policy)
Before Cache Size (MB)Statistics
Cache 1 4 16 64 256 1024

Mean 60.10 36.81 31.38 28.65 27.26 25.33 23.00
Std. deviation 7.82 6.77 6.07 5.43 5.31 5.39 5.62

Request hit ratio - 38.84% 47.84% 52.66% 55.47% 59.10% 62.70%

4.4. Summary of Results

This section focused on the time-domain analysis of
cache filter effects, demonstrating the relationships between
input workload characteristics, cache configuration param-
eters, and the characteristics of the output filtered request
stream. In general, increasing the cache size significantly
reduces the peak and mean arrival rate for the filtered re-
quest stream, but the impact on the variance is less pro-
nounced. In fact, the variance-to-mean ratio of the filtered
arrival process increases. If the input arrival process was
self-similar, then the output process remains self-similar.

We use the self-similar arrival model as the basis for
our study of traffic characteristics in a two-level Web proxy
caching hierarchy in the next section.

5. Simulation Results: Caching Hierarchy

This section addresses the larger challenge of character-
izing workloads throughout a Web proxy caching hierarchy.
We start by characterizing the input workloads λ1 and λ2

offered to the child-level caches in Figure 1, and proceed to
analyze the filter effects as the workload progresses to the
Internet as λ′3. Section 5.1 describes the input workloads
and the filter effects of the first-level caches. Section 5.2
studies the aggregation of the filtered request streams to
form λ3. Finally, Section 5.3 shows how to model the ag-
gregate stream λ3 with a Gamma distribution, using knowl-
edge of the input workloads and cache filter effects.

5.1. Workload Modeling and Analysis

As in Section 4, we use synthetically-generated Web
proxy workloads to represent the input workloads λ1 and
λ2 for our simulation. To demonstrate the generality of our
analysis, we consider “heterogeneous” input workloads, in

the sense that the workloads λ1 and λ2 differ in Zipf slope,
Hurst parameter, and mean arrival rate.

The characteristics of the synthetic Web proxy work-
loads with self-similar arrival processes are illustrated in
Figure 4. These workload traces are provided as input to
the Web cache simulator at the first level of the Web caching
hierarchy. In this case study, we use the GDS replacement
policy, with an 8 MB cache size for both caches at the first
level of the caching hierarchy. The filter effects of the child
caches produce workloads λ′1 and λ′2, which we call the fil-
tered workloads.

The time series of request arrival processes for the fil-
tered request streams λ′1 and λ′2 are depicted in Figure 5.
Other than the end effects evident in these plots, the filtered
request streams appear to be stationary. We restrict our at-
tention to the stationary portion of these traces.

Figure 6 is used to test for self-similarity in the filtered
request arrival process. We use the standard statistical anal-
ysis techniques, namely the autocorrelation function, the
variance-time plot, and the rescaled adjusted range statis-
tic (R/S) [17]. The hyperbolic decay of the autocorrela-
tion function in Figure 6(a) is indicative of self-similarity.
The variance-time plot in Figure 6(b) has a slope signif-
icantly flatter than -1 (the solid line in the graph). This
graph shows a slowly-decaying variance for the filtered time
series, another indication of self-similarity. Finally, Fig-
ure 6(c) shows an R/S pox plot for this data set. The slope
of this scatter plot can be used to estimate the Hurst parame-
ter H characterizing the degree of self-similarity in this data
set. The R/S plot provides a Hurst parameter estimate of
H ≈ 0.699 (very close to 0.70, the degree of self-similarity
of the input workload).

All these observations suggest that the arrival process of
the filtered workload λ′1 is self-similar. The same obser-
vations apply for filtered request stream λ′2. Its analysis is
omitted for space reasons.

Table 4. Simulation results for different cache sizes (Trace 1, Self-Similar, LFU Policy)
Before Cache Size (MB)Statistics
Cache 1 4 16 64 256 1024

Mean 62.87 38.50 32.79 29.88 28.27 26.05 23.49
Std. deviation 12.24 9.03 7.98 7.12 6.94 7.02 7.14

Request hit ratio - 38.84% 47.84% 52.66% 55.47% 59.10% 62.70%

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000

C
ou

nt
 o

f A
rr

iv
al

/In
te

rv
al

Time (sec.)

Time Series

Time granularity: 1 sec.

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000
C

ou
nt

 o
f A

rr
iv

al
/In

te
rv

al

Time (sec.)

Time Series

Time granularity: 1 sec.

(a) Trace 1: H=0.70, Zipf slope=0.75 (b) Trace 2: H=0.80, Zipf slope=0.80

Figure 4. Synthetic self-similar workload traces used in simulations

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000

C
ou

nt
 o

f A
rr

iv
al

/In
te

rv
al

Time Interval

Time Series

Time granularity: 1 sec.

65000
70000
75000
80000
85000
90000
95000

100000
105000
110000
115000

0 0.5 1 1.5 2 2.5 3 3.5 4

H
is

to
gr

am

hour

Hourly statistics about arrival of request

before Cache

0
10
20
30
40
50
60
70
80
90

0 2000 4000 6000 8000 10000 12000

C
ou

nt
 o

f A
rr

iv
al

/In
te

rv
al

Time Interval

Time Series

Time granularity: 1 sec.

50000

60000

70000

80000

90000

100000

110000

120000

0 0.5 1 1.5 2 2.5 3 3.5 4

H
is

to
gr

am

hour

Hourly statistics about arrival of request

before Cache

(a) λ′1: Interval Size=1 second (b) λ′1: Interval Size=1 hour (c) λ′2: Interval Size=1 second (d) λ′2: Interval Size=1 hour

Figure 5. Time series plots of request arrival processes for filtered workloads λ′1 and λ′2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

A
ut

oc
or

re
la

tio
n

Lag

Autocorrelation

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g1

0(
V

ar
ia

nc
e)

log10(Aggregation Level)

Variance Time Plot

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5

lo
g1

0(
R

/S
)

log10(Sample Size)

R/S Plot

(a) Autocorrelation Function (b) Variance-Time Plot (c) R/S Pox Plot

Figure 6. Evidence of self-similarity in filtered workload λ′1

5.2. Superposition of Web Workloads

Our investigations so far demonstrate that the first-level
cache changes the structural characteristics of the work-
load. However, it does not remove the self-similar property
of the workloads. This section focuses on the superposi-
tion of Web workload streams (with self-similar arrival) in
time-domain. Understanding the statistical multiplexing be-
haviour is important since many networks rely on it.

In this part of the study, the workload traces λ′1 and λ′2
are statistically multiplexed in the time-domain, resulting in
an aggregate workload λ3. Here we consider portions of
each trace that cover the identical time period in order to
get a stationary aggregate workload trace. We assume that
λ′1 and λ′2 are independent.

The characteristics of the aggregate workload are illus-
trated in Figure 7. Figure 7(a) shows the marginal distribu-
tion (i.e., frequency histogram, or probability density func-
tion, PDF) of the traffic arrival process from Figure 8(a). As
expected, the mean arrival rate for the aggregate arrival pro-
cess is equal to the sum of that of the two individual count
processes. Figure 7(b) shows the cumulative distribution
function for the arrival process, while Figure 7(c) shows a
log-log complementary distribution (LLCD) plot that illus-
trates the tail behaviour of the distribution.

Figure 8 presents the results from the examination of
self-similarity for the aggregate workload. Again, we use
the autocorrelation function, the variance-time plot, and the
rescaled adjusted range statistic (R/S). Figure 8(a), (b) and
(c) show the properties of self-similarity.

The R/S plot provides a Hurst parameter estimate of
H ≈ 0.76, suggesting that the aggregate arrival count
process is self-similar. These observations are in close
agreement with theoretical results [20]: the Hurst param-
eter of the aggregate stream should be the maximum of the
Hurst parameters of the two input streams. In addition, the
variance-to-mean ratio of the aggregate process should be
the weighted average of those from the input streams [20].

These analyses demonstrate that the superposition of
Web traffic streams does not smooth the traffic. Multiplex-
ing bursty data streams tends to produce a bursty aggregate
stream. The aggregate Web workload is then forwarded to
the next level of the Web proxy caching hierarchy.

5.3. Modeling of Aggregate Workload

This section discusses a parameterizable mathematical
model for characterizing the aggregate Web request arrival
count distribution. Our previous work has shown that the
Web request arrival count (before and after a proxy cache)
can be well characterized by a Gamma distribution [5]. The
issue at hand is whether it is suitable for modeling aggregate
Web workload in a Web caching hierarchy.

Following the approach in [5], we propose two Gamma
probability density functions f ′1(x) and f ′2(x) for the Web
request arrival count λ′1 and λ′2, namely

f ′1(x) =
(x−µ1

β1

)γ1−1e(−
x−µ1

β1
)

β1 Γ(γ1)
(1)

and

f ′2(x) =
(x−µ2

β2

)γ2−1e(−
x−µ2

β2
)

β2 Γ(γ2)
(2)

where x denotes the arrival count per interval and Γ is the
Gamma function

Γ(a) =

∞∫

0

ta−1e−tdt (3)

In our experiments, we assume that the location parame-
ter for the Gamma distribution is µ1 = µ2 = 0. Let M and
D denote the mean and standard deviation, respectively, of
the request arrival count process in a filtered workload (λ′1
or λ′2). According to the Maximum Likelihood Estimates,
we have the following estimates for the shape parameter γ
and the scale parameter β of the gamma distribution:

γ̂ = (
M

D
)2 (4)

and

β̂ =
D2

M
(5)

As an example, we consider an 8 MB cache size at each
child proxy, each using the GDS cache replacement pol-
icy. From the statistical analyses, we obtain M1 = 29.885,
D1 = 7.115 for λ′1 and M2 = 30.570, D2 = 8.928 for λ′2.

According to Equation 4 and Equation 5, the Gamma
parameters can be estimated as γ̂1 = 17.642361, β̂1 =
1.693934 and γ̂2 = 11.724181, β̂2 = 2.607432. So, the
Probability Density Functions (PDF) of λ′1 and λ′2 are plot-
ted in Figure 9.

Assuming that λ′1 and λ′2 are independent, the cumula-
tive request count in the ith time interval for their superpo-
sition is governed by:

Pλ3
{X = k} =

k∑
i=0

[Pλ′
1
{X = i} × Pλ′

2
{X = (k − i)}]

(6)
Figure 10 illustrates the characteristics of the request ar-

rival count distribution for the aggregate workload given by
the superposition of two request arrival processes. The sim-
ulation results are also shown for model validation. Fig-
ure 10 shows that the Gamma distribution provides a very
good visual fit of the distribution, for both the body and
the tail of the distribution. This result demonstrates that

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

F
re

qu
en

cy
 (

pe
rc

en
ta

ge
)

Request Arrival

Probability Density Function (PDF)

Time granularity: 1 sec.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

C
um

ul
at

iv
e

F
re

qu
en

cy
 (

pe
rc

en
ta

ge
)

Request Arrival

Cumulative Distribution Function (CDF)

Time granularity: 1 sec.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Lo
g1

0(
P

[X
>

x]
)

Log10(Request Arrival)

Log-Log Complementary Distribution (LLCD)

Time granularity: 1 sec.

(a) PDF (b) CDF (c) LLCD

Figure 7. Characteristics of aggregate request arrival process λ3

0

20

40

60

80

100

120

2000 4000 6000 8000 10000 12000

C
ou

nt
 o

f A
rr

iv
al

/In
te

rv
al

Time (sec.)

Time Series

Time granularity: 1 sec.

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100

A
ut

oc
or

re
la

tio
n

Lag

Autocorrelation

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g1

0(
V

ar
ia

nc
e)

log10(Aggregation Level)

Variance Time Plot

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 1.5 2 2.5 3 3.5 4 4.5

lo
g1

0(
R

/S
)

log10(Sample Size)

R/S Plot

(a) Time series (b) Autocorrelation Function (c) Variance-Time Plot (d) R/S Pox Plot

Figure 8. Evidence of self-similarity for aggregate request arrival process λ3: H ≈ 0.76

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n

Observation

PDFs of secondary workloads

Lambda1_p
Lambda2_p

Figure 9. PDF of filtered workloads λ′1 and λ′2

a Gamma distribution provides a simple, flexible, and rel-
atively robust means of characterizing the aggregate Web
request arrival count distribution. However, the parameters
for the Gamma distribution, e.g. the shape parameter γ, the
scale parameter β, depend upon the input Web workload
characteristics and the cache parameters used.

This model can be used to estimate traffic characteristics
in a Web caching hierarchy, if input workload characteris-
tics and cache configuration parameters are known.

6. Summary and Conclusions

This paper uses trace-driven simulation to study the re-
quest arrival process at each level of a multi-level Web
proxy caching hierarchy. The simulation experiments quan-
tify the filter effects of a Web cache on the request arrival
process, for synthetically-generated Web client workloads.

The simulation results show the obvious result that a
Web cache reduces the mean request arrival rate for Web
traffic workloads. However, the variability of the request
arrival process may either increase, decrease, or remain the
same after the cache, depending on the input arrival pro-
cess. For a self-similar request arrival process, the filtered
request arrival process remains self-similar, though with re-
duced mean. Furthermore, the superposition of Web request
streams from multiple child caches in a Web proxy caching
hierarchy remains bursty. Finally, we find the Gamma dis-
tribution is suitable for modeling the request arrival process
in a Web caching hierarchy.

References

[1] R. Addie, M. Zukerman and T. Neame, “Fractal Traf-
fic: Measurements, Modeling, and Performance Eval-
uation”, Proceedings of IEEE INFOCOM, Vol. 3,
pp. 977-984, April 1995.

[2] V. Almeida, M. Cesario, R. Fonseca, W. Meira Jr., and
C. Murta, “Analyzing the Behavior of a Proxy Server
in Light of Regional and Cultural Issues”, Proceedings
of the Third International WWW Caching Workshop,
Manchester, England, June 1998.

[3] M. Arlitt and C. Williamson, “Internet Web Servers:
Workload Characterization and Performance Impli-
cations”, IEEE/ACM Transactions on Networking,
Vol. 5, No. 5, pp. 631-645, October 1997.

0
1
2
3
4
5
6
7
8

0 20 40 60 80 100 120 140

D
en

si
ty

Arrival count/interval

Probability Density Function (PDF)

Simulation
Modeling

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n

Arrival count/interval

Cumulative Distribution Function (CDF)

Simulation
Modeling

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Lo
g1

0
(P

[X
>

x]
)

Log10 (Arrival count/interval)

Log-Log Complementary Distribution (LLCD)

Simulation
Modeling

(a) PDF (b) CDF (c) LLCD

Figure 10. Gamma distribution model of aggregate workload λ3

[4] M. Arlitt and C. Williamson, “Trace-Driven Simula-
tion of Document Caching Strategies for Internet Web
Servers”, Simulation Journal, Vol. 68, No. 1, pp. 23-
33, January 1997.

[5] G. Bai and C. Williamson, “Time-Domain Analy-
sis of Web Cache Filter Effects”, Proceedings of
SPECTS’02, San Diego, CA, pp. 195-205, July 2002.

[6] R. Balakrishnan and C. Williamson, “The synTraff
Suite of Traffic Modeling Toolkits”, IEEE MASCOTS,
San Francisco, CA, pp. 333-340, August 2000.

[7] P. Barford, A. Bestavros, A. Bradley, and M. Crov-
ella, “Changes in Web Client Access Patterns: Charac-
teristics and Caching Implications”, World Wide Web,
Vol. 2, No. 1, pp. 15-28, January 1999.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web Caching and Zipf-like Distributions: Evidence
and Implications”, Proceedings of IEEE INFOCOM,
New York, NY, pp. 126-134, March 1999.

[9] M. Busari and C. Williamson, “On the Sensitivity of
Web Proxy Cache Performance to Workload Charac-
teristics”, Proceedings of IEEE INFOCOM, pp. 1225-
1234, Anchorage, AL, April 2001.

[10] M. Busari and C. Williamson, “Simulation Evalua-
tion of a Heterogeneous Web Proxy Caching Hierar-
chy”, Proceedings of IEEE MASCOTS, pp. 379–388,
Cincinnati, OH, August 2001.

[11] M. Busari and C. Williamson, “ProWGen: A Syn-
thetic Workload Generation Tool for Simulation Eval-
uation of Web Proxy Caches”, Computer Networks,
Vol. 38, No. 6, pp. 779-794, June 2002.

[12] H. Che, Z. Wang, and Y. Tung, “Analysis and Design
of Hierarchical Web Caching Systems”, IEEE INFO-
COM, pp. 1416-1424, Anchorage, AL, April 2001.

[13] M. Crovella and A. Bestavros, “Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes”, IEEE/ACM Transactions on Networking,
Vol. 5, No. 6, pp. 835-846, December 1997.

[14] R. Doyle, J. Chase, S. Gadde, and A. Vahdat, “The
Trickle-Down Effect: Web Caching and Server Re-
quest Distribution”, Proceedings of the Web Caching
Workshop, Boston, MA, June 2001.

[15] L Fan, P. Cao, J. Almeida and A. Broder, “Sum-
mary Cache: A Scalable Wide-Area Web Cache Shar-
ing Protocol”, IEEE/ACM Transactions on Network-
ing Vol. 8, No. 3, pp. 281-293, June 2000.

[16] A. Feldmann, R. Cáceres, F. Douglis, G. Glass and
M. Rabinovich, “Performance of Web Proxy Caching
in Heterogeneous Bandwidth Environments”, IEEE
INFOCOM, pp. 107-116, April 1999.

[17] W. Leland, M. Taqqu, W. Willinger, and D. Wilson,
“On the Self-Similar Nature of Ethernet Traffic (Ex-
tended Version)”, IEEE/ACM Transactions on Net-
working, Vol. 2, No. 1, pp. 1-15, February 1994.

[18] A. Mahanti, C. Williamson and D. Eager, “Traffic
Analysis of a Web Proxy Caching Hierarchy”, IEEE
Network, Vol. 14, No. 3, pp. 16-23, May/June 2000.

[19] N. Markatchev and C. Williamson, “WebTraff: A GUI
for Web Proxy Cache Workload Modeling and Analy-
sis”, IEEE MASCOTS, Fort Worth, TX, October 2002.

[20] A. Patel and C. Williamson, “Effective Bandwidth of
Self-Similar Traffic Sources: Theoretical and Simu-
lation Results”, Proceedings of the IASTED Confer-
ence on Applied Modeling and Simulation, Banff, AB,
pp. 298-302, July 1997.

[21] V. Paxson and S. Floyd, “Wide Area Traffic: The Fail-
ure of Poisson Modeling”, IEEE/ACM Transactions
on Networking, Vol. 3, No. 3, pp. 226-244, 1995.

[22] C. Roadknight, I. Marshall, and D. Vearer, “File Pop-
ularity Characterization”, Proceedings of the Second
Workshop on Internet Server Performance (WISP’99),
Atlanta, GA, May 1999.

[23] C. Williamson, “On Filter Effects in Web Caching Hi-
erarchies”, ACM Transactions on Internet Technology,
Vol. 2, No. 1, pp. 47-77, February 2002.

