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Abstract
This paper uses trace-driven simulation to study the traf-
fic arrival process for Web workloads both before and after
a Web proxy cache. In particular, the simulation experi-
ments quantify the filter effects of a Web cache on the re-
quest arrival process. Both empirical and synthetic Web
proxy workloads are used in the study. The simulation re-
sults show that (as expected) a Web cache reduces both the
mean and the peak arrival rate for Web traffic workloads.
However, the presence of the cache has less effect on the
variability of the workload, and no impact on the degree
of self-similarity in a workload. Finally, we find that a
Gamma distribution provides a flexible and robust means
of characterizing the request arrival count distribution, both
before and after a Web cache, though the parameters for the
Gamma distribution depend upon the input Web workload
characteristics and the cache parameters used. This model
can be used to estimate traffic characteristics in distributed
or hierarchical Web caching architectures.

INTRODUCTION

The World Wide Web (WWW, or the Web) continues
to be the major driving force behind the growth in popu-
larity of the Internet. The Web has become the preferred
means for the timely dissemination of information in many
contexts, including research, education, news, marketing,
travel, business, and entertainment domains.

The explosive growth of the Web, with its correspond-
ing increase in Internet traffic volume, has led to user-
perceivable network performance problems. In some cases,
the performance bottlenecks are at the Web server, if the
server architecture cannot handle the client demand. In
other cases, the bottleneck is within the Internet itself; net-
work congestion leads to queuing delays and packet losses
that degrade Web performance. In yet other cases, exces-
sive delays are due to inefficiencies in the Internet proto-
col stack (e.g., the interactions between HTTP and TCP),
round trip delays across the Internet, or limited client ac-
cess bandwidth to the Internet.

Web document caching (Web caching) architectures and

content distribution networks (CDNs) are now widely used
to alleviate these performance problems. By storing copies
of popular Web documents close to the users requesting
them, Web caches can reduce Web server load and can re-
duce the volume of traffic traversing the core of the Inter-
net. In many cases, users perceive improved response times
for document downloads.

The presence of a cache has a filter effect on Web work-
loads. Because a percentage of the incoming client re-
quests are satisfied directly at the Web cache (i.e., cache
hits), a subset of the requests is removed (filtered) from the
request workload progressing upstream to the Internet, to
other caches, or to the origin servers. This filtering effect
is illustrated conceptually in Figure 1, where the original
aggregate client workload from an organization traverses
Link1 to the organization’s Web proxy cache, and the fil-
tered workload traverses Link2 en route to the Internet. The
filtering effect in turn changes the response traffic volume
traversing Link2 en route to the clients.

Internet

Web Server Web Server

Web Proxy Cache

Link 1

Link 2

 Web Clients

Figure 1. Illustration of Web Cache Filtering Effect

The cache filtering effect manifests itself in two orthog-
onal ways. First, the cache generally filters out requests
for the most popular Web documents (depending of course,
on the cache management policy). As a result, the number
of HTTP requests for certain Web documents is substan-
tially reduced by the presence of the cache [15]. Second,
the presence of the cache changes the structure of the re-
quest arrival process entering the Internet, compared to the
request arrival process presented to the cache itself.

The first of these two effects has been fairly well stud-
ied in the literature [9, 14, 15]. We refer to this work as
frequency-domain analysis of cache filter effects, since it
focuses largely on the frequency distribution of Web docu-



ment popularity. This document popularity profile typically
has a power-law structure before the cache, often character-
ized using a Zipf or a Zipf-like distribution [4, 5, 12]. After
the cache, the “high popularity” end of the Zipf distribution
is significantly flattened [9, 15].

To the best of our knowledge, relatively little research
work has focused on the second aspect of cache filter ef-
fects. Clearly, the presence of the cache reduces the aver-
age arrival rate of requests entering the Internet. Indeed,
this is the primary motivation for many organizations to in-
stall a proxy cache in the first place. In most cases, the
cache reduces the peak arrival rate as well, though not nec-
essarily in the same proportion as the mean. However, the
impact on the variability (burstiness) of the traffic and the
self-similar arrival process [8] is not clear.

The purpose of this paper is to study cache filter ef-
fects on the traffic arrival process. We refer to our work as
time-domain analysis of cache filter effects, to distinguish
it from the former frequency-domain effect. Our research
is carried out using trace-driven simulations, with empiri-
cal and synthetic Web proxy workloads, along with tools
for Web caching simulation and traffic characterization and
modeling.

The research questions addressed in this paper are:� What impact does the presence of a Web proxy cache
have on the structural characteristics (i.e., mean, peak,
variance, self-similarity) of a Web request workload?� How sensitive is the filter effect to the cache size and
the cache replacement policy used?� How sensitive is the filter effect to the characteristics
of the incoming Web workload (i.e., Zipf slope,
self-similarity)?� Can a closed-form mathematical model adequately
characterize the cache filter effect?

Our results show that a Web cache is effective in reduc-
ing both the mean and the peak arrival rate for Web traf-
fic workloads. The presence of the cache seems to have
no impact on the degree of self-similarity in a workload,
though in typical cases the filtering effect reduces the rela-
tive variance of the outbound request stream. Finally, we
find that a Gamma distribution provides a simple, flexi-
bile, and relatively robust means of characterizing the re-
quest arrival count process, both before and after a Web
cache. The parameters for fitting the Gamma distribution
can be estimated from empirical traffic traces, though the
fitted parameters for the filtered request stream are strongly
dependent on the cache size and the characteristics of the
input Web workload. The cache replacement policy has
relatively little impact on the traffic structure.

The remainder of this paper is organized as follows. The
next section discusses related work on Web workload char-
acterization and cache filter effects, while the section af-
ter that describes the empirical Web proxy workload used
for our study. The main section of the paper then focuses
on understanding Web cache filter effects on the request

arrival process, using empirical and synthetic Web traffic
workloads. A modeling section follows, in which we pro-
pose and validate a parameterizable model for character-
izing Web request streams, both before and after a cache.
Finally, the paper concludes with a summary of our obser-
vations and suggested directions for future research.

BACKGROUND AND RELATED WORK

Web Workload Characterization
Several Web workload characterization studies have ap-

peared in the literature. These studies have focussed on
Web client [3], Web server [2], and Web proxy workload
characteristics [1, 12].

From these empirical studies, several common work-
load characteristics emerge that are relevant to Web caching
performance. These characteristics include a high degree
of one-time referencing, a Zipf-like document popularity
distribution, heavy-tailed file and transfer size distribu-
tions, and a temporal locality property in the document ref-
erencing behaviour. These characteristics are quite well-
documented in the literature, and are thus not discussed at
length here.

Among these characteristics, the one that is most rele-
vant to Web caching performance is the slope of the Zipf-
like document popularity distribution [5]. Zipf’s law ex-
presses a power-law relationship between the popularity

�
of an item (i.e., its frequency of reference) and its rank �
(i.e., relative rank among the referenced items, based on
frequency of reference). This relationship is of the form������� ��	 , where

�
is a constant, and 
 is often close to 1.

For example, the frequency of usage for English words in
written prose typically follows this distribution.

In the Web context, a similar referencing behaviour is
observed [4, 12, 13]. Some researchers have found that
the value of the exponent 
 is close to 1 [1, 3], precisely
following Zipf’s law. Others [1, 4, 12] have found that the
value of 
 is less than 1, and that the distribution can be
described only as “Zipf-like”, with the value of 
 varying
from trace to trace. In general, the steeper the Zipf slope,
the higher the cache hit ratio achievable for a given Web
workload [4, 5, 13].

Cache Filter Effects
Several recent research papers have explored the rela-

tionships between Web workload characteristics and Web
proxy caching performance [4, 5, 6, 7, 9, 12]. Three of
these papers [6, 7, 9] have explicitly addressed the issue
of Web cache filter effects, wherein a higher-level cache
in a multi-cache system only handles requests that miss
in the lower-level cache(s). Similar cache design prob-
lems have been addressed previously in the context of CPU
cache hierarchies [14], databases [10], and client-server
systems [16].



Among the papers that focus on Web cache filter ef-
fects, most focus on the “frequency domain” aspect of the
Web cache filter effect. Doyle et al. [9] refer to this as
the “trickle down” effect, and conduct a detailed simula-
tion study to quantify its impact. Che et al. [7] propose
a frequency-based caching hierarchy, where the lower-
level cache handles requests for high-frequency items, and
the higher-level cache handles requests for low-frequency
items. Busari and Williamson [6] propose a “heteroge-
neous” Web proxy caching hierarchy that uses different
caching policies at different levels of a caching hierar-
chy. None of these papers explicitly address the structural
changes in the request arrival process due to the presence
of the Web cache.

WEB PROXY WORKLOAD ANALYSIS

This section describes the empirical Web proxy work-
load used in our study.

Overview of Empirical Web Proxy Workload
The Web proxy workload used in our study was col-

lected from a campus-wide Web proxy server at the Uni-
versity of Saskatchewan. In this paper, only a one-day ac-
cess log is used as a representative example of the proxy
server workload. This access log was collected on Octo-
ber 17, 2001. This is the same proxy server for which
long-duration (9-month) traces were analyzed in previous
research [12].

This empirical trace represents a typical one-day work-
load, from midnight of one day to midnight of the next. The
trace contains about 750,000 requests, with request times-
tamps recorded at a 0.001 second time granularity. Table 1
summarizes the characteristics of the workload.

Figure 2 shows two time series plots illustrating the
characteristics of this trace. The horizontal axis shows the
time of day, from midnight of one day to midnight of the
next. The vertical axis shows the count process for the
number of Web requests arriving in each sampling inter-
val (1 second intervals in Figure 2(a), and 1 hour intervals
in Figure 2(b)) throughout the day. Figure 2(a) shows that
the arrival process is quite bursty throughout the day.

Figure 2(a) shows significant non-stationarities in the
daily traffic, a behaviour that is even more evident in Fig-
ure 2(b). It is well known that Internet traffic exhibits a
daily cyclic pattern, based on the “working hours” for hu-
man users. Since this workload is from a university proxy
cache, most of the daily Web traffic (71%) occurs between
9am and 6pm.

Self-Similar Arrival Process
The remaining analyses in this paper focus on the three-

hour “busy period” of the trace from 11am to 2pm. This
period contains 217,159 requests, representing about 30%

Table 1. Characteristics of Empirical Web Proxy Workload
(University of Saskatchewan Proxy)

Item Value

Trace Duration 1 day
Trace Date Oct 17, 2001

Total Requests 755,505
Total Transferred Bytes (Mbytes) 1,087
Mean Transfer Size (bytes) 1,508
Median Transfer Size (bytes) 210

Total Documents 271,285
Unique Documents (% of requests) 35.9%
Total Bytes of Documents (Mbytes) 523
Smallest Document Size (bytes) 0
Largest Document Size (bytes) 86,399,329
Mean Document Size (bytes) 2,021
Median Document Size (bytes) 288

One-timer Documents 201,674
One-timers (% of unique documents) 74.3%

Zipf Slope -0.8
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Figure 2. Time Series Plot of Request Arrival Count Pro-
cess for Empirical Web Proxy Workload

of the daily Web request traffic. For this period, we hy-
pothesize that the arrival count process (for 1 second inter-
vals) is stationary (see Figure 3(a)). We use this portion
of the trace to characterize the request arrival process, and
to test for self-similarity [11] (i.e., long-range dependence)
in the arrival count process. We use the standard statistical
analysis techniques proposed by Leland et al. [11], namely
the autocorrelation function, the variance-time plot, and the
rescaled adjusted range statistic (R/S).

Figure 3 presents the results from the tests for network
traffic self-similarity. Figure 3(a) shows the time series
under consideration. Figure 3(b) shows the autocorrela-
tion function for this time series. The hyperbolic decay
is indicative of self-similarity, though the length of the
time series (10,800 data points) is somewhat short to be
definitively sure. Figure 3(c) shows a variance-time plot
for this time series. The points plotted in the graph show
a straight line behaviour with a slope significantly flatter
than -1 (the solid line in the graph). This graph suggests
a slowly-decaying variance for the aggregated time series,
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Figure 3. Evidence of Self-Similar Request Arrival Process for Empirical Web Proxy Workload
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Figure 4. Characteristics of the Request Arrival Process for Empirical Web Proxy Workload

another indication of self-similarity. Finally, Figure 3(d)
shows an R/S pox plot for this data set. The slope of this
scatter plot can be used to estimate the Hurst parameter
H characterizing the degree of self-similarity in this data
set. The R/S plot provides a Hurst parameter estimate of� ���������

, again suggesting that the arrival count process
is self-similar.

Further detail on the traffic arrival process is provided
in Figure 4. Figure 4(a) shows the marginal distribution
(i.e., frequency histogram, or probability density function,
PDF) of the traffic arrival process from Figure 3(a). The
average arrival rate is 20 requests per second, but there is
a significant skew to the distribution. Figure 4(b) shows
the cumulative distribution function for the arrival process,
while Figure 4(c) shows a log-log complementary distribu-
tion (LLCD) plot that illustrates the tail behaviour of the
distribution. Surprisingly, the downward curvature of Fig-
ure 4(c) suggests that the marginal distribution for the count
arrival process is not heavy-tailed, though the arrival pro-
cess does appear to be self-similar.

This workload serves as the input to a trace-driven sim-
ulation study of cache filter effects in the next section.

UNDERSTANDING FILTER EFFECTS

Experimental Methodology
We use a trace-driven simulation approach for our ex-

perimental methodology. The Web workload (a times-
tamped series of Web document requests) is provided as
input to a simple Web proxy cache simulator. The network
topology modeled is similar to that shown in Figure 1. The

simulator allows configuration of the Web proxy cache size
and the cache replacement policy (i.e., which document(s)
to remove when the cache is full). The simulator gener-
ates as output the cache hit ratio for the experiment, and
a timestamped series indicating the requests that produce
cache misses. The latter output is called the filtered request
stream, and is used in our subsequent traffic analyses.

Overview of Cache Filtering Effects
The first simulation experiment illustrates the general

impacts of the proxy cache on the Web workload. These
cache filter effects are shown in Figure 5.

Figure 5(a) shows the request arrival count time series
for the filtered and unfiltered request streams, as a function
of time of day. For clarity of presentation, this plot shows
the entire workload trace, with request counts sampled over
30 minute intervals. The graph clearly shows that the pres-
ence of the Web cache reduces both the peak and the mean
rate of the request arrival process. As expected, the larger
the cache size is, the more pronounced the filter effect is.

Figure 5(b) shows the same type of plot, but just for
the three-hour busy period of the trace (11am to 2pm). In
this plot, the request counts are computed over 5 minute
intervals. Again, there is a consistent reduction in the mean
and peak request rate as the cache size is increased.

Figure 5(c) shows the average document hit ratio in the
cache, as a function of time of day, for different cache sizes.
Other than the erratic behaviour in the early morning hours
(say, 2am to 7am) when few clients are using the cache,
the cache hit ratio is relatively stable throughout the day,
reflecting “steady state” cache performance for the work-
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Figure 5. Illustration of the Proxy Cache Filter Effects on the Empirical Web Proxy Workload

load considered. Note that these results are plotted using
the average cache hit ratio over each 30 minute interval of
the trace. The cache is initially empty at midnight, and
proceeds to fill throughout the day, invoking the cache re-
placement policy as needed to manage the contents of the
cache. Overall, the cache hit ratio tends to increase as the
cache size is increased (as expected).

Figure 5(d) shows the corresponding cache hit ratio re-
sults for the busy portion of the day from 11am to 2pm. In
this plot, the cache hit ratios are computed over 5 minute
intervals, with the cache initially empty at midnight. The
cache hit ratio clearly increases with the cache size, and is
relatively stable throughout the busy period. These obser-
vations suggest that the filtered request arrival process for
the busy period is likely a stationary process.

Self-Similarity
The purpose of this analysis is to see if the filtered re-

quest stream after the Web proxy cache still has the same
self-similar properties of the input request stream. As
an example, we consider the simple case with a Least-
Frequently-Used (LFU) cache replacement policy, with a
cache size of 16 MB. We use the same statistical analy-
sis techniques in Figure 3. The results in Figure 6 show
that the self-similar characteristics remain present in the fil-
tered request stream. The Hurst parameter is estimated as� � � � � �

. Our investigations suggest that the self-similar
property of the arrival count process is not altered by the
presence of the Web proxy cache.

Effect of Cache Size
The next experiment studies the arrival count process

for the filtered request stream, as a function of cache size.

As was done with the empirical workload trace, we focus
on the 11am-2pm busy period of the trace, using arrival
counts per one second interval.

Table 2 summarizes these simulation results. Clearly,
the presence of the cache reduces both the mean and the
standard deviation of the arrival count process after the
cache, though the impact on the mean is more pronounced.
The larger the cache, the greater this filtering effect. The
corresponding cache hit ratios for different cache sizes are
also shown in Table 2.

The characteristics of the filtered arrival process are
shown in Figure 7. Figure 7(a) shows the marginal distribu-
tion (i.e., PDF) of the filtered request streams, for different
cache sizes. For ease of reference, the unfiltered request
stream is shown using a cache size of 0 MB. The corre-
sponding cumulative distribution functions (CDF) for the
arrival count processes are shown in Figure 7(b), and the
LLCD plots in Figure 7(c). In general, the filter effect of
the cache increases with cache size.

In Figure 7(a), the filter effect of the cache manifests it-
self in several ways. First, the main “hump” of the marginal
distribution moves to the left, reflecting the decrease in
the mean arrival rate. Second, the height of the distribu-
tion at or near the origin tends to increase, since a large
cache produces many one-second intervals with few (or
even zero) arriving requests. Third, the distribution tends
to decay more quickly (i.e., it has a lighter tail), reflect-
ing the lower variance in the resulting arrival process. The
latter two effects together tend to produce a taller and nar-
rower marginal distribution, again reflecting lower variance
in the filtered arrival process.
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Figure 6. Evidence of Self-Similar Request Arrival Process for Filtered Web Proxy Workload

Table 2. Simulation Results for Different Cache Sizes (Empirical Workload, LFU Policy)

Arrival Count Before Cache Size (MB)
Statistics Cache 1 4 16 64 256 1024

Mean 20.27 14.02 11.78 9.38 7.75 6.88 6.88
StdDev 12.41 10.24 9.22 7.85 6.72 6.09 6.09

Hit Ratio - 33.5% 42.9% 52.5% 59.1% 63.0% 64.1%
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Figure 7. Characteristics of the Filtered Arrival Process as a Function of Cache Size (Empirical Workload, LFU Policy)

Table 3. Simulation Results for Different Cache Replacement Policies (Empirical Workload, 8 MB Cache)

Arrival Count Before Cache Replacement Policy
Statistics Cache RAND FIFO LRU LFU GDS

Mean 20.27 11.75 11.70 11.05 10.34 7.63
StdDev 12.41 8.82 9.13 8.85 8.39 6.33

Hit Ratio - 43.0% 43.8% 46.4% 48.6% 60.6%
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Figure 8. Characteristics of the Filtered Arrival Process as a Function of Cache Replacement Policy (Empirical Workload,
8 MB Cache)



Effect of Cache Replacement Policy
The next experiment looks at the sensitivity of the cache

filter effect to the cache replacement policy used. The
cache replacement policy determines which document(s)
to remove from the cache when more space is needed
to store an incoming document. Different cache replace-
ment criteria have been proposed in the literature, such as
recency-based, frequency-based, size-based, and so on. We
consider five example policies in our study, namely Ran-
dom replacement (RAND), First-In-First-Out (FIFO), LRU
(Least-Recently-Used), LFU (Least-Frequently-Used), and
GDS (Greedy-Dual Size). Further details on these policies
can be found in the literature [5, 6, 15].

Figure 8 shows the impact of the selected cache replace-
ment policies on the workload characteristics. Examining
the plots shows that the filter effects of the policies of LFU
and LRU are similar. The GDS policy, however, has the
most pronounced impact on the request arrival count pro-
cess. This difference is due to its higher cache hit ratio. The
GDS policy tries to keep small documents in the cache, by
associating a weight

� � �
� with each document, where �

is the size of the document in bytes.
Table 3 summarizes the statistical characteristics of the

filtered request arrival process. As expected, the document
hit ratio for the GDS policy (60.6%) is higher than for the
other policies. FIFO and RAND have less of a filtering
effect on the workload, since their “zero knowledge” ap-
proach produces a lower cache hit ratio.

Effect of Web Workload Characteristics
To increase the scope of our study, we supplement

the foregoing empirical trace with three synthetically-
generated Web proxy workload traces. Each trace is gener-
ated using the ProWGen (Proxy Workload Generation) tool
developed by Busari and Williamson [5].

Table 4 summarizes the statistical characteristics of
the synthetic traces used. Each trace has approximately
220,000 requests, similar to the busy period of the empir-
ical workload. By design, the three synthetic workloads
differ in the slope for the Zipf-like document popularity
distribution. Earlier work has shown that the Zipf slope
has a significant influence on the cache hit ratio [4, 5, 13].
Trace B has a Zipf slope of 0.8, which closely matches that
of the empirical trace used. Trace A has a significantly flat-
ter Zipf slope (0.6), which implies a lower cache hit ratio is
expected for this trace. Finally, Trace C has a steeper Zipf
slope, meaning that this trace will produce higher cache hit
ratios, and thus a more pronounced cache filtering effect.

For each of these three traces, three different traffic ar-
rival processes were generated: a short-range dependent
arrival process with

� � ��� �
, a self-similar process with� ���������

(similar to the empirical workload), and a self-
similar process with Hurst parameter

� � � � �
. Note that

the generation of the traffic arrival process (i.e., the times-
tamps on the Web document requests) is independent of
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Figure 10. Characteristics of Arrival Count Distribution
for Filtered Request Stream (Synthetic Workload,
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)

the techniques used to generate the Web document requests
(i.e., ProWGen’s file popularity and temporal locality mod-
els). Thus the three synthetic traces can be combined with
the three traffic arrival models to produce nine synthetic
traces with a wide range of workload characteristics. These
nine traces are used in the simulations to assess the robust-
ness of our observations about the filtered Web proxy work-
load characteristics.

Figure 9 provides a graphical validation of the synthetic
Web proxy workloads. Figure 9(a) shows that for a given
Hurst value H, the distribution of the arrival count process
is the same when the Web document popularity distribution
in the request stream is changed. Figure 9(b) shows that for
a given Zipf slope for the document popularity distribution,
the arrival count process varies for

� � ��� �
,
� � � � ���

,
and

� ��� � �
. The

� ����� �
workload represents a short-

range-dependent process. The
� � � � ���

workload with
a Zipf slope of 0.8 is similar in structure to the empirical
workload studied. The

� � ��� �
workload has the high-

est degree of self-similarity, and thus the longest tail to the
arrival count distribution.

Table 5 and Table 6 summarize the simulation results
for one representative example of the synthetic workloads
(
� � ��� �

, Zipf slope 0.8). Table 5 shows the character-
istics of the filtered request stream, as a function of cache
size, for an LFU replacement policy. Table 6 shows the
characteristics of the filtered request stream, as a function
of cache replacement policy, for a fixed-size 8 MB cache.
The characteristics of the filtered request stream are quali-
tatively similar to those for the empirical trace.

Figure 10 shows the graphical characteristics of the fil-



Table 4. Characteristics of Synthetic Web Proxy Workloads

Item Trace A Trace B Trace C

Trace Duration 3 hours 3 hours 3 hours

Total Requests 225,042 218,845 225,697
Total Transferred Bytes (Mbytes) 2,144 1,871 1,654
Mean Transfer Size (bytes) 9,991 8,967 7,683
Median Transfer Size (bytes) 3,552 3,474 3,285

Total Documents 70,254 70,870 70,951
Unique Documents (% of requests) 31.2% 32.4% 31.4%
Total Bytes of Documents (Mbytes) 793 798 799
Smallest Document Size (bytes) 34 34 34
Largest Document Size (bytes) 12,382,599 12,382,599 12,382,599
Mean Document Size (bytes) 11,830 11,808 11,806
Median Document Size (bytes) 3,817 3,816 3,815

One-timer Documents 48,942 49,558 49,638
One-timers (% of documents) 69.7% 69.9% 70.0%

Zipf Slope -0.6 -0.8 -1.0

Table 5. Simulation Results for Different Cache Sizes (Synthetic Workload,
� � � � �

, � � � � �
, LFU Policy)

Arrival Count Before Cache Size (MB)
Statistics Cache 1 4 16 64 256 1024

Mean 23.60 12.67 9.75 7.83 7.65 7.64 7.64
StdDev 16.80 9.01 8.14 8.28 8.32 8.32 8.32

Hit Ratio - 46.3% 58.7% 66.8% 67.6% 67.6% 67.6%

Table 6. Simulation Results for Different Replacement Policies (Synthetic Workload,
� � � � �

, � � � � �
, 8 MB Cache)

Arrival Count Before Cache Replacement Policy
Statistics Cache RAND FIFO LRU LFU GDS

Mean 23.60 9.62 9.35 8.84 8.48 8.03
StdDev 16.80 8.36 8.24 8.06 8.12 8.23

Hit Ratio - 59.2% 60.4% 62.5% 64.1% 66.0%



tered request arrival process. For space reasons, only the
results for

� � � � �
and a Zipf slope of 0.8 are shown.

The qualitative behaviour in Figure 10(a) and (b) is consis-
tent with that observed for the empirical Web proxy trace.
Larger cache sizes produce a leftward shift of the distribu-
tion, and an increase in its peak value at the origin. This
behaviour is consistent for all Hurst parameter values and
Zipf slope values considered in our experiments, though the
leftward shift of the distribution is (as expected) more pro-
nounced at smaller cache sizes as the Zipf slope increases.

MODELING CACHE FILTER EFFECTS

This section discusses a parameterizable mathematical
model for characterizing the request arrival count distribu-
tion both before and after a Web proxy cache. Prior experi-
ence with network traffic modeling provides intuition that a
Gamma distribution may be suitable for modeling the (fil-
tered or unfiltered) arrival count distribution for Web work-
loads, since the shape of the distributions in Figure 7 and
elsewhere are reminiscent of the Gamma distribution. The
next section provides some background on the Gamma dis-
tribution, while the section after that validates the Gamma
distribution model on the empirical workload.

Background
The general formula for the Gamma distribution proba-

bility density function (PDF) is:

� ����� � ������		 ��
 � � �� ���������
�� ����� ������� �"! 
$# � (1)

where
�

is the shape parameter,
�

is the location parameter,

 is the scale parameter, and � is the Gamma function

� �&%'� �)(*+-,/. � � � �10�2 , (2)

The case where
� � �

and 
 � �
is called the standard

Gamma distribution. The equation for the standard Gamma
distribution reduces to:

� �&�3� � �4
 � � � �3�� ����� ��� � �5� # � (3)

Figure 11 shows examples of the probability density
function for the standard Gamma distribution with different
choices of shape parameter

�
. As
�

decreases, the center of
gravity of the distribution moves to the left, the peak value
of the curve increases, and the tail of the curve decreases
more quickly. If

�76 �
, then the distribution is monotoni-

cally decreasing. These behaviours are similar to those for
the empirical and synthetic request arrival count processes
in our study, suggesting the suitability of the Gamma dis-
tribution for our traffic modeling purposes.
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Figure 11. Gamma Probability Density Function

Modeling the Arrival Count Distribution
Figure 12 illustrates the characteristics of the request

arrival count distribution for the empirical workload, along
with a Gamma model fit to the distribution. The parameters�

and 
 of the Gamma distribution (
� �98 � : �

, 
 � � � : �
)

were determined using maximum likelihood estimates. Fig-
ure 12 shows that the Gamma distribution provides a good
visual fit of the distribution, for both the body and the tail
of the distribution.

Figure 13 shows similar plots for the filtered request ar-
rival process after the cache. This particular plot illustrates
the results for a 4 MB LFU cache at the Web proxy. The
Gamma distribution with

� � � � :;
and 
 � � �<88

provides
a good visual fit to the traffic arrival distribution, in both the
body and the tail. Again, the parameters of the Gamma dis-
tribution were determined using maximum likelihood esti-
mates.

Table 7 summarizes the maximum likelihood estimates
(MLE) of the

�
and 
 parameters, for different cache sizes.

As the cache size (and thus the cache hit ratio) increases,
the MLE of the

�
(shape) parameter of the distribution de-

creases, reflecting the general leftward movement of the
body of the distribution illustrated in Figure 7. In all of our
experiments with empirical and synthetic traces, the MLE
of the

�
parameter is a monotonically-decreasing function

of cache size (since the cache hit ratio monotonically in-
creases).

Table 7 shows that the MLE of the 
 parameter also de-
creases with an increase in cache size, reflecting the taller
vertical height of the distribution as the cache hit ratio in-
creases. However, the decrease in 
 is not as pronounced
as the decrease in

�
. Furthermore, this monotonically de-

creasing behaviour for 
 was not observed for all workload
traces studied. Several of the synthetic Web proxy work-
loads had non-monotonic relationships for 
 . In particu-
lar, 
 tends to increase once

�=6 �
. Clearly, the

�
and 


parameters depend on the characteristics of the input Web
proxy workload, as well as the cache parameters (since
these together influence the cache hit ratio). We are cur-
rently trying to quantify and understand these mathemat-
ical relationships, since they are crucial to modeling Web
traffic in multi-level Web proxy caching architectures.
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 � � � 8 8

Table 7. Maximum Likelihood Estimates for Gamma Distribution Parameters (Empirical Workload, LFU Policy)

Estimated Before Cache Size (MB)
Parameters Cache 1 4 16 64 256 1024

��
2.67 1.87 1.63 1.43 1.33 1.28 1.28

�


 7.60 7.48 7.22 6.57 5.83 5.39 5.39



SUMMARY AND CONCLUSIONS

This paper used trace-driven simulation to study the
structural characteristics of Web workloads both before and
after a Web proxy cache. The paper focuses on time-
domain analysis of cache filter effects; that is, it focuses
on the statistical characteristics of the request arrival count
process as transformed by the cache.

Our simulation results demonstrate that the cache re-
duces both the mean arrival rate and the peak arrival rate,
but has relatively little impact on the variability and the
self-similarity of the request arrival process. We find
that the Gamma distribution provides a flexible and robust
model for characterizing the request arrival process, though
the parameters for the Gamma distribution are highly de-
pendent upon cache size and Web workload characteristics.

Our current work is proceeding along three fronts. First,
we are analyzing more (and longer) Web proxy access logs,
to determine the generality of our modeling results, and to
make a more rigourous assessment of network traffic self-
similarity. Second, we are attempting to derive the mathe-
matical relationships between cache size, Zipf slope, Web
workload characteristics, and the Gamma distribution pa-
rameters of our model. Better understanding of these re-
lationships will lead to insights about traffic aggregation
and superposition in multi-cache Web proxy caching archi-
tectures. Third, we are striving to apply our characteriza-
tion and modeling techniques to the downstream (response)
traffic direction as well, rather than just to the upstream re-
quest arrival process. This effort will allow us to quantify
the true benefits of Web proxy caching.
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