
Performance Benchmarking of Dynamic Web Technologies

Lance Titchkosky Martin Arlitt Carey Williamson

Department of Computer Science
University of Calgary

2500 University Drive NW
Calgary, AB, Canada T2N 1N4

Email: {lancet,arlitt,carey}@cpsc.ucalgary.ca

May 8, 2003

Abstract

When the World-Wide Web was first created, the content on most Web sites was simply
a collection of static files. Today, many Web sites dynamically generate responses “on the
fly” when user requests are received. Dynamic creation of content provides a Web interface
to information stored in databases, enabling the personalization of pages according to in-
dividual user preferences, and delivering a much more interactive Web browsing experience
than is possible with static Web pages.

One disadvantage of dynamically generating Web content is the impact on Web server
performance. In this paper, we experimentally evaluate the impact of three different dy-
namic content technologies on Web server performance. We quantify achievable perfor-
mance first for static content serving, and then for dynamic content generation, considering
cases both with and without database access. The results show that the overheads of dy-
namic content generation typically reduce by one half the peak request rate supported by a
Web server. In general, our results show that Java server technologies typically outperform
both Perl and PHP for dynamic content generation, though performance under overload
conditions can be erratic for some implementations.

Keywords: Web Servers, Web Benchmarking, Web Performance, Dynamic Content Generation,
Performance Evaluation Methodology

1



1 Introduction

On the World-Wide Web today, many sites dynamically create responses to user requests. Dy-
namic “on-the-fly” creation of content provides Web site operators with numerous advantages
over content created entirely from static files. These advantages include access to information
stored in databases, the ability to personalize Web pages according to individual user preferences,
and the opportunity to deliver a much more interactive user experience than possible with static
Web pages alone.

Along with the advantages come several disadvantages. Dynamically generating Web content
can significantly impact Web server performance. This can dramatically reduce the scalability
of the Web site. Other disadvantages include security and availability concerns. Dynamically
generated content can create security vulnerabilities or denial-of-service (DOS) opportunities,
beyond those associated with static content Web sites.

In this paper, we examine the impact of three different dynamic Web content technologies on
Web server performance. The security and availability issues are beyond the scope of this paper
and are not discussed further. We examine three of the most popular dynamic Web technologies:
Perl, PHP, and Java.

Our results serve to quantify the impacts of dynamic content generation on Web server
performance. In particular, the overheads of database access and the processing required for
dynamic content generation each take their toll. Combined, these effects result in the halving (or
worse) of the peak request rate supported by a server. In general, our results indicate that Java
server technologies outperform both PHP and Perl, but there are many performance tradeoffs
among these technologies. In particular, we find that Web server performance under overload
can be quite erratic.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3
describes the test environment used in this study. Section 4 presents our methodology and
experimental design, while Section 5 presents the results of our study. Section 6 concludes the
paper with a summary of our work and a discussion of future directions.

2 Related Work

There have been numerous studies evaluating Web server performance. Many of these studies
focus on Web server performance in LAN environments [3, 4, 8]. Several more recent studies con-
sider Web server performance in WAN environments [1, 9, 13, 16]. To the best of our knowledge,
all of these studies only consider static Web content.

In 1995, Yeager and McGrath [17] studied the effects of dynamic content workloads on Web
server performance. His results indicated that the Common Gateway Interface (CGI), which
enables the dynamic generation of Web content, is much slower than directly retrieving a static
file of the same size. Since his study, Web server architectures have improved significantly, and
new technologies are now widely used for dynamic Web content generation. Thus our work can
be compared to McGrath’s to determine how the performance of dynamic Web page generation
has changed relative to static content serving in the past decade.

2



There have also been many commercial Web server benchmarking studies. For example, many
server companies use standard benchmarks such as SPECWeb to measure the performance of
their products relative to those of their competitors. The current version of the SPECWeb
benchmark, SPECWeb99 [14], measures the performance of a Web server using requests for both
static and dynamic content as part of the generated workload. The addition of dynamic content
into SPECWeb99 is an obvious indication of the growing use of dynamic content on Web sites,
and of the importance to understand the performance of Web servers serving dynamic content.

3 Experimental Environment

Our testbed consists of two clients submitting requests to a single Web server over a 1 Gbps full-
duplex switched Ethernet LAN. The remainder of this section provides a detailed description of
this test environment. Section 3.1 presents the hardware configuration of our test environment,
while Section 3.2 introduces the software we used.

3.1 Hardware Configuration

3.1.1 Client Configuration

The two client machines in our testbed are rack-mounted IBM x335 servers running RedHat
Linux 8.0. Each machine has a single Intel 2.4 GHz Intel Xeon processor, 1 GB of RAM, and
a 36 GB 15K U320 SCSI disk. Each client used 124 MB of RAM as a “RAMdisk” (a virtual
disk in memory [11]) for collecting statistics on the client’s behaviour during testing. Each client
machine has two 1 Gbps Ethernet NICs, although only one NIC on each machine is used in the
experiments.

Several changes were made to the Linux kernel configuration on the clients. First, the num-
ber of available file descriptors was increased from 1,024 to 32,768. Second, we enabled TCP
TIME WAIT recycling. Both of these changes were necessary to allow the client to generate and
sustain high request rates. Finally, all non-essential processes on the client machines were dis-
abled, to minimize the consumption of resources by processes unrelated to workload generation.

3.1.2 Server Configuration

The server machine in our test environment is a rack-mounted IBM x335 server running RedHat
Linux 7.3. The server hardware configuration is identical to that of the clients. This server also
uses 124 MB of memory as a RAMdisk for storing statistics collected during tests.

As with the client machines, all non-essential processes on the server were disabled prior to
conducting any tests. We also increased the number of available file descriptors to 32,768 and
enabled TCP TIME WAIT recycling.

3



3.1.3 Network Configuration

The client and server machines are connected to an HP Procurve 5300XL switch. This switch
is configured with 20 full-duplex 1 Gbps ports. No other machines were on this LAN during the
experiments.

3.2 Software Configuration

3.2.1 Client Workload Generation

For all of the tests in this study we use httperf, a tool for measuring HTTP performance [7].
We chose to use this tool for several reasons. First, we have used this tool in the past, so we are
familiar with its interface and its capabilities. Second, httperf supports a wide range of features
(e.g., persistent connections, pipelining, SSL) that are useful for testing Web server functionality.
Although we only use a subset of httperf’s features in this work, we intend to use more of these
capabilities in future work. Third, httperf is available1 in source code form, so that we can add
additional functionality if desired.

3.2.2 Server Software

We use several different Web servers, modules, and servlet containers in our work. In this section
we introduce each package and describe how we use it.

• Tux

Tux2 is a kernel-based, multi-threaded, high-performance Web server available for Linux
systems [15]. We use Tux version 2.1 to verify that our client workload generators are not
the bottleneck in any of our tests.

• Apache

Many of our experiments involve the Apache3 Web server. We use Apache server versions
1.3.27 and 2.0.45 in our work. Apache 1.3.27 is a process-based server that uses a separate
process to handle each outstanding request. Apache 2.0.45 uses a hybrid thread and process
model to improve the server’s performance. We include Apache in our tests because it is
the most popular Web server on the Internet, used by more than 60% of all Web sites [10].

• PHP

PHP (Hypertext Preprocessing)4 is a scripting language specifically designed for use on the
Web. It is the most popular dynamic Web content technology for use with Apache servers.
According to an ongoing, automated survey, PHP is used by half of all Web sites running
Apache [12]. PHP’s popularity is due to its low cost (free) and ease of use. Our tests use
PHP version 4.3.1 compiled as a module for both Apache 1.3.27 and Apache 2.0.45.

1ftp://ftp.hpl.hp.com/pub/httperf
2http://people.redhat.com/mingo/TUX-patches/
3http://httpd.apache.org/
4http://www.php.net/

4



• Perl

Perl5 is a popular general purpose scripting language developed by Larry Wall in 1987.
Perl was not designed to be a Web scripting language, but has been extended to include
functionality useful for Web development. Perl is available under the GNU General Public
License and an Artistic License, and thus is free to use. In early usage, the performance of
Perl for dynamic content creation was quite slow, since a new Perl interpreter was spawned
for each incoming Web request. To avoid this process creation overhead, an Apache module
(mod perl6) was created. This module embeds a persistent Perl interpreter into Apache
itself. mod perl is used by approximately 20% of all Web sites that run Apache servers [12].

Our Perl tests use Perl version 5.6.1 on Apache 1.3.27 with mod perl version 1.27. We could
not test Perl with Apache 2.0.45, since we were unable to install mod perl 2.0 successfully
on our server.

• Server-Side Java

Server-side Java is a relatively new technology that uses a pool of Java virtual machines
to respond to Web requests. It is a subset of Sun’s Java 2 Enterprise Edition (J2EE)7

technology. The servers, which run Java, are known as servlet containers or Java servers.
We examine three servlet containers in this paper: Tomcat, Jetty, and Resin. Sun’s Java
Development Kit version 1.41.1 02 was used for all three of the tested servlet containers. We
run the servlet containers in stand-alone mode, rather than integrating them into Apache.

– Tomcat

Tomcat8 is a servlet container that provides the official reference implementation for
both Java Servlets and Java Server Pages. For our work, we use Tomcat version 4.1.24.

– Jetty

Jetty9 is a Web server and Java servlet container written entirely in Java. It is an open
source project, but the majority of the development is done by Mort Bay Consulting.
Jetty is advertised as one of the fastest servlet servers [6], which is why we chose to
include it in our testing. For our work, we use Jetty version 4.2.9.

– Resin

Resin10 is a commercial Web server and Java servlet container that is freely available
to individuals for non-commercial use. The Resin Web site claims that Resin’s per-
formance matches or exceeds that of Apache for static files [2]. We use Resin version
3.0.0 beta in our tests.

5http://www.perl.com/
6http://perl.apache.org/
7http://java.sun.com/j2ee/
8http://jakarta.apache.org/tomcat/
9http://jetty.mortbay.org/jetty/

10http://www.caucho.com/

5



• MySQL

MySQL is open source11 database software, known for its high performance and reliability.
We use MySQL version 4.0.12 in the experiments with database access. The database
software is run on the same platform as the Web server.

We did attempt to tune each of the servers in order to provide as fair a comparison as
possible. On all of the servers, (per-request) logging was disabled (error logs were left on). In
addition, the following changes were made, after evaluating the effects of different configuration
parameters on the performance of each server. On Apache 1.3.27, the MaxClients parameter
was set to 256 and the MaxRequestsPerChild was set to 0. On Apache 2.0.45, MaxClients
was set to 250 (a multiple of the ThreadsPerChild parameter). With Tomcat, enableLookups
(DNS) was disabled, and maxProcessors was set to 100. No additional changes were made to
the configurations of the Tux, Jetty and Resin servers.

3.2.3 Monitoring Software

We use several sources of performance data to quantify the results of our experiments and to
help identify bottlenecks. We use the sar (system activity report) utility12 to monitor system
resource utilization (e.g., CPU usage, I/O transactions, network utilization). netstat provides
information on network-related errors such as the number of dropped TCP connections. The
output of httperf includes numerous statistics on TCP and HTTP-level behaviour, including
the average TCP connection rate, the HTTP request rate, and the HTTP reply rate. The
Web server error logs indicate when problems occur with the server application (e.g., too many
concurrent connections).

3.3 Controlling the Test Environment

In this paper, we define an experiment as a number of tests, each of which examines a different
level of a particular factor. All other factors are fixed throughout the experiment, although they
can vary between experiments.

Each experiment is controlled from one of the client machines. Each experiment is specified
as a shell script, which is then executed on the control machine. Controlling the experiments in
this way ensures that the tests are conducted in a consistent manner. Archiving the scripts aids
in repeating the results as well.

Prior to the start of each experiment, the control mechanism communicates (via ssh) with
each machine involved in the experiment. Before starting the initial test, information is collected
on the current state of each machine. The control machine then starts the monitoring software
on all systems. The control machine is also used to start each test, and to collect data after each
of the tests completes. At the completion of each experiment, all of the collected data is archived
to disk for off-line analysis.

11http://www.mysql.com/
12http://perso.wanadoo.fr/sebastien.godard/

6



Table 1: Experimental Factors and Levels
Type Factor Levels

Client Response Size 2 KB, 64 KB
Workload Request Rate 200-5,000/second (2 KB); 200-2,000/second (64 KB)

Parameters Response Type static, dynamic, dynamic/database

Server Software Perl, PHP, Tomcat, Jetty, Resin

4 Performance Evaluation Methodology

We examine four factors in our experiments, using a one-factor-at-a-time experimental design [5].
Table 1 summarizes the factors and levels used in our experiments.

The first three factors listed in Table 1 describe the client workload. Since few characterization
studies of dynamic Web workloads exist, we use a simple workload for our experiments. First, we
issue requests for either a small file (2 KB) or a large file (64 KB). Second, we vary the request
rate so that we can saturate the system and identify what the bottleneck is. The third factor is
the response type, for which we examine three cases. Initially, we test the system using requests
for static files. This “traditional” Web workload indicates the “best case” performance of the
system. For the second level, the Web server dynamically generates a response of the requested
size, using CPU resources but no I/O to the database. In the third case, the dynamic request
results in a database access. Each HTTP request causes an SQL INSERT command that writes
a small amount of data to the database. Then, 2 KB or 64 KB of text is outputted, which
contains data from an SQL SELECT command.

The final factor listed in Table 1 is the server software that is used. The servers and modules
used here were described in Section 3.2.2.

We run each of our tests for 120 seconds. We found that this was sufficiently long to assess
system stability, yet short enough to permit the large number of tests needed for our study.

4.1 Validation of the Test Environment

In this section, we provide a basic “sanity check” of our experimental environment, in order to
demonstrate its capacity. We conducted two experiments, one with a workload of 2 KB static
files, the other with a workload of 64 KB static files. In both experiments we used Tux as the
Web server.

Figure 1(a) shows the results for the experiment with 2 KB static files. This figure shows three
sets of data. First, the points (black squares) represent the average number of TCP connections
initiated by the clients during each two minute test. Second, the solid line (which overlaps the
points in this graph) shows the average rate at which HTTP requests were issued to the server.
Third, the dotted line (also overlaid on the points in this graph) shows the average number of
HTTP responses per second sent by the server in each two minute test. Graphs of this form are
used throughout the paper to illustrate the performance results.

The results in Figure 1(a) indicate that the two clients are able to generate and sustain a
combined workload of 5,000 requests per second for a static 2 KB file. The achieved request rate

7



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d
 R

a
te

 (
n
u
m

b
e
r 

p
e
r 

se
co

n
d
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

A
ch

ie
ve

d
 R

a
te

 (
n
u
m

b
e
r 

p
e
r 

se
co

n
d
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

100

200

300

400

500

600

700

800

900

1000

400 800 1200 1600 2000 2400 2800 3200 3600 4000

M
b
/s

Requests/second

(a) (b) (c)

Figure 1: Validation Tests Illustrating System Capacity: (a) 2 KB Static Files; (b) 64 KB Static
Files; (c) Server Network Utilization

matches the target request rate for all tests. This figure also indicates that with Tux, the server
platform and the network are also capable of supporting 5,000 requests per second for a static 2
KB file.

Figure 1(b) shows the results with 64 KB static requests on the Tux server. In this case, the
system is limited to about 1,700 requests per second. While TCP connections are still established
beyond that point, clients are unable to issue requests at a higher rate. The bottleneck in this
case is the network between the server and the switch. The server is transmitting on average
approximately 900 Mbps of data, with peaks near 1 Gbps (1,000 Mbps), as shown in Figure 1(c).
While we could have alleviated this bottleneck by enabling both network interfaces on the server,
we decided not to do this since the achieved request rate already exceeds the anticipated range
for any of the dynamic content servers. (The results in Section 5 bear out this observation.)

To summarize, our experimental infrastructure is capable of generating and sustaining request
rates of (at least) 5,000 requests per second for 2 KB static files, and 1,700 requests per second
for 64 KB static files. Achieved request rates lower than these in the main experiments indicate
a bottleneck related to the particular server software being used.

5 Experimental Results

In this section we present the results of our experiments.

5.1 Static Workloads

In this section, we examine the performance of the different Web servers for static Web content.
Section 5.1.1 presents the results for the 2 KB static files. Section 5.1.2 provides the results for
the 64 KB static files.

5.1.1 2 KB Static Workload

Figure 2 shows the results for the different Web servers in our experiments. In order to simplify
comparisons, all of the graphs in the figure use the same scales for the X and Y axes.

8



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(a) Tux (b) Apache 1.3.27 (c) Apache 2.0.45

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(d) Jetty (e) Resin (f) Tomcat

Figure 2: Experimental Results for 2 KB Static Responses

Figure 2(a) shows the results for the Tux Web server. As previously discussed, the Tux
server demonstrates the capability of our test environment. Figure 2(a) indicates that over 5,000
requests per second are possible for a static 2 KB file.

Figures 2(b) and (c) show the results for the Apache 1.3.27 and 2.0.45 servers, respectively.
Both servers perform similarly for this workload, supporting approximately 4,000 requests per
second. Suprisingly, the Apache 2.0.45 server appears to have worse behaviour under overload
(i.e., at request rates higher than the maximum supported rate). Its performance drops off more
quickly than that for the Apache 1.3.27 server.

Figures 2(d)-(f) show the results for the three Java-based Web servers. All three of these
servers have significantly lower peak request rates than the Apache servers. Among the Java-
based servers tested, Tomcat had the highest performance, peaking at 1,550 requests per second,
followed by Resin (1,400 requests per second) and Jetty (1,200 requests per second).

5.1.2 64 KB Static Workload

Figure 3 shows the results for the 64 KB static workload. As mentioned in Section 4.1, Tux
supports a maximum request rate of approximately 1,700 requests per second (Figure 3). Beyond
this limit, the network is the bottleneck.

Figures 3(b) and (c) show the performance results for the Apache servers. Apache 1.3.27
achieves a peak rate of 1,400 requests per second, then decreases slowly under overload. Apache
2.0.45 peaks near 1,300 requests per second. With this workload, Apache 2.0.45 behaves better
under overload than it did for smaller files.

The three Java-based servers again have much lower peak performance than the Apache

9



0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(a) Tux (b) Apache 1.3.27 (c) Apache 2.0.45

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(d) Jetty (e) Resin (f) Tomcat

Figure 3: Experimental Results for 64 KB Static Responses

servers. Jetty peaks near 700 requests per second, and degrades gracefully under overload. Resin
supports a higher request rate (800 per second) than Jetty, but performs quite poorly under
overload. For this workload, Tomcat has the poorest performance of all the servers evaluated,
supporting only 350 requests per second. Tomcat’s performance under overload is quite erratic
with this workload.

5.2 Dynamic Workloads (without database access)

In this section, we analyze the performance of different dynamic content generation technolo-
gies, under two different workloads. In both cases, the content generation process does not
involve database access. Section 5.2.1 provides the results for 2 KB dynamic responses, while
Section 5.2.2 presents the results for 64 KB dynamic responses.

5.2.1 2 KB Dynamic Workload (without database access)

Figure 4 shows the results for six different methods of dynamic content generation. Figure 4(a)
presents the results for PHP running on Apache 1.3.27. The peak performance for this combi-
nation is 1,450 requests per second. This rate is about 37% of the performance of the Apache
server for static content similar in size. PHP on Apache 2.0.45 (Figure 4(b)) has even poorer
performance, peaking at 950 requests per second. Both PHP server configurations are stable
under overload. Figure 4 shows that the performance of Perl mimics that of PHP on Apache
2.0.45.

When generating content dynamically, the three Java-based servers all perform reasonably

10



0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(a) PHP (Apache 1.3.27) (b) PHP (Apache 2.0.45) (c) Perl (Apache 1.3.27)

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

500

1000

1500

2000

0 500 1000 1500 2000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(d) Jetty (e) Resin (f) Tomcat

Figure 4: Experimental Results for 2 KB Dynamic Responses (No Database Access)

well compared to the PHP and Perl configured servers. Peak response rates of 1,200, 1,650 and
1,500 per second are achieved by Jetty, Resin, and Tomcat, respectively. These are comparable
to PHP on Apache 1.3.27, and significantly better than PHP on Apache 2.0.45 or Perl on Apache
1.3.27. Surprisingly, the performance of the Java-based servers when generating 2 KB dynamic
responses is almost identical to their performance when serving static files. Even more surprising
is the fact that Resin performed slightly better in this case than when serving static files. One
final observation is that the Java-based servers do not appear to work as well under overload
conditions as the PHP and Perl server configurations, for this particular workload.

5.2.2 64 KB Dynamic Workload (without database access)

The results of the experiments with 64 KB dynamic responses (without database access) are
shown in Figure 5. The PHP-enabled servers have the lowest performance, supporting only
200 and 250 requests per second, respectively. These rates are about 20% of the Apache server
performance results for static files of the same size. Perl does significantly better than PHP,
achieving a peak of 600 requests per second.

The Jetty and Tomcat servers both achieve 400 requests per second, which is significantly
lower than their performance when serving 64 KB static files. The Resin server again achieves
slightly better performance for dynamic content than for static content, reaching a peak of 650
requests per second. However, the Resin server’s behaviour under overload is quite different from
any of the other servers. At a target rate of 800 requests per second, the Resin server is sluggish
in responding to requests, while apparently shifting emphasis to accepting incoming connections.
The large divergence between the request rate and the reply rate is seen only for this server.

11



0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(a) PHP (Apache 1.3.27) (b) PHP (Apache 2.0.45) (c) Perl (Apache 1.3.27)

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(d) Jetty (e) Resin (f) Tomcat

Figure 5: Experimental Results fro 64 KB Dynamic Responses (No Database Access)

Resin is able to accept request rates as high as 900 per second. At request rates beyond this,
Resin’s performance degrades sharply.

5.3 Dynamic Workloads (with database access)

In this section, we analyze the performance of the different dynamic content generation strategies
for two different workloads. In these experiments, a single SQL INSERT and a single SQL SE-
LECT command are executed when generating the response. The results for the 2 KB workload
are given in Section 5.3.1. The results for the 64 KB workload appear in Section 5.3.2.

5.3.1 2 KB Dynamic Workload (with database access)

Figure 6 shows the results for the 2 KB dynamic responses requiring database access. Several
observations can be made from these graphs. First, the three Java-based servers all significantly
outperform the servers that are using PHP or Perl. Second, accessing the database significantly
reduces the performance of all servers. The peak performance of the servers in these experiments
ranges from 36% to 56% of the performance when no database access is required for dynamic
content generation.

Among the three Java-based servers, Resin has the highest peak performance at 927 requests
per second. However, Resin again behaves poorly under overload. Jetty and Tomcat peak near
750 requests per second. Both of these servers appear stable under overload conditions.

12



0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(a) PHP (Apache 1.3.27) (b) PHP (Apache 2.0.45) (c) Perl (Apache 1.3.27)

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(d) Jetty (e) Resin (f) Tomcat

Figure 6: Experimental Results for 2 KB Dynamic Responses (with Database Access)

5.3.2 64 KB Dynamic Workload (with database access)

The results of the experiments for 64 KB dynamic responses requiring database access are shown
in Figure 7. As was the case with 2 KB responses, the Java-based servers performed at least
as well as, and usually better than, the servers configured with PHP or Perl. As noted in
Section 5.2.2, Perl outperforms PHP for the 64 KB responses. Jetty and Tomcat have peak per-
formance around 300 requests per second, and behave well under overload. Resin again achieves
the highest peak performance (approximately 400 requests per second), but then sacrifices re-
sponse rate and focuses on accepting requests. As a result, Resin accomplishes little useful work
once in an overload condition.

6 Summary and Conclusions

This paper presents a benchmarking study of dynamic content generation techniques. The ex-
perimental study is conducted using clients and servers in a dedicated Gigabit Ethernet LAN
environment. To the best of our knowledge, this is the first study to evaluate such a broad
range of dynamic content technologies using a variety of Web server software. While our study
is far from comprehensive, we believe that it provides a state-of-the-art look at the performance
tradeoffs between different dynamic Web content generation technologies.

There are three main conclusions from this work. First, the ongoing trend toward personal-
ization of Web content comes at a price. There is often a dual impact on Web server performance,
from the overhead for database access, and from the processing required for dynamic content

13



0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(a) PHP (Apache 1.3.27) (b) PHP (Apache 2.0.45) (c) Perl (Apache 1.3.27)

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

0

200

400

600

800

1000

0 200 400 600 800 1000

A
ch

ie
ve

d 
R

at
e 

(n
um

be
r 

pe
r 

se
co

nd
)

Target Rate (number per second)

connection rate
request rate

reply rate

(d) Jetty (e) Resin (f) Tomcat

Figure 7: Experimental Results for 64 KB Dynamic Responses (with Database Access)

generation itself. Our experiments have quantified each of these effects. Combined, these effects
typically result in the halving (or worse) of the peak request rate supported by a server. Second,
today’s technologies for dynamic Web content generation offer several tradeoffs in terms of Web
server performance. PHP handles small dynamic content requests well, but struggles with large
dynamic content requests. Jetty, Resin, and Tomcat are ill-suited for serving static content,
but perform well for their intended purpose of dynamic content generation. In general, our re-
sults indicate that Java server technologies outperform both PHP and Perl. Finally, Web server
performance under overload can be quite unpredictable. Some dynamic content generation tech-
nologies are quite robust under overload (PHP, Perl, Jetty, Tomcat), and some are not (Resin).
This observation suggests that consideration of overload behaviour may be just as important
as the peak request rate supported when Web site administrators are choosing dynamic Web
content generation technologies.

Our future work is focusing on characterizing dynamic content usage in academic and com-
mercial Web sites, and on benchmarking Web server performance for more realistic dynamic
content workloads.

Acknowledgements

Financial support for this research was provided by iCORE (Informatics Circle of Research
Excellence), NSERC (Natural Sciences and Engineering Research Council), and CFI (Canada
Foundation for Innovation). The authors are grateful to Nayden Markatchev for his technical
support in the installation and configuration of machines in the ELISA lab for these experiments.

14



References

[1] P. Barford and M. Crovella, “Measuring Web Performance in the Wide Area”, ACM Per-
formance Evaluation Review, Vol. 27, No. 2, pp. 35-46, September 1999.

[2] Caucho Technology, “Resin Core page”, 2003, http://www.caucho.com/resin/.

[3] J. Hu, S. Mungee, and D. Schmidt, “Techniques for Developing and Measuring High-
Performance Web Servers over ATM Networks”, Proceedings of IEEE INFOCOM, San Fran-
cisco, CA, March/April 1998.

[4] Y. Hu, A. Nanda, and Q. Yang, “Measurement, Analysis, and Performance Improvement
of the Apache Web Server”, Technical Report No. 1097-0001, University of Rhode Island,
1997.

[5] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling, John Wiley & Sons, Inc., New York, NY,
1991.

[6] Mort Bay Consulting, “Jetty Product Page”, 2003, http://jetty.mortbay.org/jetty/.

[7] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web Server Performance”, ACM
Performance Evaluation Review, Vol. 26, No. 3, pp. 31-37, December 1998.

[8] E. Nahum, T. Barzilai, and D. Kandlur, “Performance Issues in WWW Servers”,
IEEE/ACM Transactions on Networking, Vol. 10, No. 1, pp. 2-11, February 2002.

[9] E. Nahum, M. Rosu, S. Seshan, and J. Almeida, “The Effects of Wide-Area Conditions on
WWW Server Performance”, Proceedings of ACM SIGMETRICS Conference, Cambridge,
MA, pp. 257-267, June 2001.

[10] Netcraft Web Server Survey, http://www.netcraft.com/survey.

[11] M. Nielsen, “How to use a RAMdisk for Linux”,
http://www.linuxfocus.org/English/November1999/article124.html

[12] SecuritySpace, “Apache Module Report”, April 2003,
http://www.securityspace.com/s survey/data/man.200304/apachemods.html.

[13] R. Simmonds, C. Williamson, R. Bradford, M. Arlitt, and
B. Unger, “Web Server Benchmarking Using Parallel WAN Em-
ulation”, http://www.cpsc.ucalgary.ca/~carey/papers/iptne.pdf

(A short 2-page abstract of this paper appears in ACM SIGMETRICS 2002).

[14] Standard Performance Evaluation Corporation, www.spec.org

[15] Red Hat, “Tux Web Server Manuals”, www.redhat.com/docs/manuals/tux

15



[16] C. Williamson, R. Simmonds, and M. Arlitt, “A Case Study of Web Server Benchmarking
Using Parallel WAN Emulation”, Performance Evaluation, Vol. 49, No. 1-4, pp. 111-127,
September 2002.

[17] N. Yeager and R. McGrath, Web Server Technology: The Advanced Guide for World Wide
Web Information Providers, Morgan-Kaufmann Publishers, Inc., San Francisco, CA, 1996.

16


