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Abstract

This paper uses trace-driven simulation to study the traffic arrival process for Web
workloads in a simple Web proxy caching hierarchy. Both empirical and synthetic
Web proxy workloads are used in the study.

The simulation results show that a Web cache reduces both the peak and the
mean request arrival rate for Web traffic workloads, while the variance-to-mean ra-
tio of the filtered traffic typically increases, depending on the input arrival process
and the configuration of the cache. If the input traffic is self-similar, then the fil-
tered request traffic remains self-similar, with the same Hurst parameter, though
with reduced mean. Finally, we find that a Gamma distribution provides a flexi-
ble and robust means of modeling aggregate workloads in hierarchical Web caching
architectures, for a broad range of workload characteristics and Web proxy cache
sizes. To demonstrate the generality and effectiveness of the modeling approach, we
present a detailed example of filter effects and traffic superposition in a two-level
Web caching hierarchy with heterogenous input workloads. The Gamma modeling
results match well with the results from trace-driven simulations.

Key words: Internet and WWW Technology, Web Proxy Caching, Web Traffic
Simulation, Workload and Traffic Characterization

1 Introduction

The World Wide Web (WWW, or the Web) continues to be a major driving
force behind the growth in popularity of the Internet. The Web has become
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the preferred means for the timely dissemination of information in research,
education, news, marketing, travel, business, and entertainment domains.

The explosive growth of the Web, with its corresponding increase in Internet
traffic volume, has led to user-perceivable network performance problems. In
some cases, the performance bottlenecks are at the Web server, if the server
architecture cannot handle the client demand. In other cases, the bottleneck
is within the Internet itself; network congestion leads to queueing delays and
packet losses that degrade Web performance. In yet other cases, excessive
delays are due to inefficiencies in the Internet protocol stack (e.g., the inter-
actions between HTTP and TCP), round trip delays across the Internet, or
limited client access bandwidth to the Internet.

Web document caching (Web caching) architectures and content distribution
networks (CDNs) are now widely used to alleviate these performance prob-
lems. By storing copies of popular Web documents close to the users requesting
them, Web caches can reduce Web server load and can reduce the volume of
traffic traversing the core of the Internet. In many cases, users perceive im-
proved response times for document downloads.

To enhance the performance of Web caching, multi-level Web caching hi-
erarchies have recently received increasing research attention [10,16,21,29].
An effectively-organized multi-level Web proxy caching hierarchy can improve
Web performance, for instance, by using different approaches to cache man-
agement at each level of the hierarchy [12,29].

The presence of a cache has a filter effect on Web workloads. Because some
of the incoming client requests are satisfied as hits at the Web proxy cache,
these requests are removed (filtered) from the request workload progressing
upstream to the Internet, to other caches, or to the origin servers. This filtering
effect is illustrated conceptually in Figure 1, where the original aggregate client
workload from an organization traverses Link1 to the organization’s Web proxy
cache, and the filtered workload traverses Link2 en route to the Internet. The
filtering effect in turn changes the response traffic volume traversing Link2 en
route to the clients.
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Fig. 1. Conceptual Illustration of Web Cache Filtering Effect

The cache filtering effect manifests itself in two orthogonal ways. First, the
cache generally filters out requests for the most popular Web documents (de-
pending of course, on the cache management policy). As a result, the number
of HTTP requests for certain Web documents is substantially reduced by the
presence of the cache [29]. Second, the presence of the cache changes the
structure of the request arrival process entering the Internet, compared to the
request arrival process presented to the cache itself.

The first of these two effects has been fairly well studied in the literature [15,28,29].
We refer to this work as frequency-domain analysis of cache filter effects, since
it focuses largely on the frequency distribution of Web document popularity.
This document popularity profile typically has a power-law structure before
the cache, often characterized using a Zipf or a Zipf-like distribution [8,9,21].
After the cache, the “high popularity” end of the Zipf distribution is signifi-
cantly flattened [15,29]. The precise manifestation of the cache filter effect is
highly dependent upon the architecture of the Web proxy caching system, the
cache size used, the cache replacement policy, and Web workload characteris-
tics [10,29].

Relatively little research work has focused on the second aspect of cache filter
effects: the impact on the request arrival process. Clearly, the presence of the
cache reduces the average arrival rate of requests entering the Internet. Indeed,
this is the primary motivation for many organizations to install a proxy cache
in the first place. In most cases, the cache reduces the peak arrival rate as
well, though not necessarily in the same proportion as the mean. However,
the impact on the variability (burstiness) and self-similarity [14] of the traffic
is not clear.

The purpose of this paper is to study cache filter effects on the traffic arrival
process. We refer to our work as time-domain analysis of cache filter effects, to
distinguish it from the former frequency-domain effect. Our research is carried
out using trace-driven simulations, with empirical and synthetic Web proxy
workloads, along with tools for Web caching simulation and traffic character-
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ization and modeling.

The research questions addressed in this paper are:

• What impact does a Web proxy cache have on the structural characteristics
(i.e., mean, peak, variance, self-similarity) of a Web request workload?

• How sensitive is the filter effect to the cache size and the cache replacement
policy used?

• How sensitive is the filter effect to the characteristics of the incoming Web
workload (i.e., Zipf slope, self-similarity)?

• Can a closed-form mathematical model adequately characterize the cache
filter effect?

• How can we model the aggregate Web request streams in a multi-level Web
proxy caching hierarchy?

We address these questions using trace-driven simulations of a multi-level
Web proxy caching hierarchy. The simulation experiments quantify the filter
effects of a Web cache on the request arrival process, for both empirical and
synthetically-generated aggregate Web client workloads. Our results show that
a Web cache reduces both the mean and the peak arrival rate for Web traffic
workloads. The presence of the cache seems to have no impact on the degree of
self-similarity in a workload, though in typical cases the filtering effect reduces
the variance of the outbound request stream. The study also demonstrates that
the superposition of Web request streams from multiple child caches in a Web
proxy caching hierarchy does not result in smooth traffic. Rather, multiplexing
bursty request streams tends to produce a bursty aggregate stream. Finally,
we find that a Gamma distribution provides a simple, flexibile, and relatively
robust means of characterizing the request arrival count process, both before
and after a Web cache. The parameters for fitting the Gamma distribution
can be estimated from empirical/synthetic traffic traces, though the fitted
parameters for describing the filtered request stream are strongly dependent
on the cache size and the characteristics of the input Web workload. The
choice of cache replacement policy has relatively little impact on the traffic
structure.

To demonstrate the generality and effectiveness of the Gamma modeling ap-
proach, we present a detailed example of filter effects and traffic superposition
in a two-level Web caching hierarchy. We consider heterogenous input work-
loads, and analyze the transformation of the workloads proceeding through the
caches. The Gamma modeling results for the output request streams agree
closely with the trace-driven simulation results for the same workloads. To
the best of our knowledge, these are the first modeling results characterizing
workloads throughout a Web caching hierarchy.

The remainder of this paper is organized as follows. Section 2 discusses related
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work on Web workload characterization and cache filter effects. Section 3
describes the experimental methodology for our study, as well as the empirical
and synthetic Web proxy workloads used. Section 4 presents simulation results
for Web cache filter effects on the request arrival process, using an empirical
Web workload. Section 5 presents additional simulation results for synthetic
Web workloads. Section 6 proposes and validates a parameterizable model for
characterizing Web request streams, both before and after a cache. Section 7
focuses on the superposition of self-similar Web workload streams in a multi-
level caching hierarchy, and the modeling of aggregate Web workload in the
time-domain. Finally, Section 8 concludes the paper.

2 Background and Related Work

2.1 Web Proxy Caching

Web proxy caching is a technique used for improving Web performance on the
Internet. Web proxy caches are located between Web clients (browsers) and
Web servers. Proxies accept client requests and forward them to Web servers
only as necessary. When a requested document is returned by a Web server,
the proxy sends the document to the client and stores a copy of the document
in its local cache, in the hope that the proxy can satisfy future client requests
for the same document without contacting the origin server, thus reducing
user-perceived response time.

Caching effectiveness is traditionally measured by two quantities: the (docu-
ment) hit ratio is the percentage of the total requests that are satisfied directly
by documents stored in the cache; and the byte hit ratio is the percentage of
the total requested Web content bytes that are satisfied directly by docu-
ments stored in the cache. Both metrics are required since Web objects vary
significantly in size. Other metrics such as user-perceived response time are
dependent upon the hit ratio and the byte hit ratio, as well as other factors
such as the network bandwidth, the round-trip delay, server load, and network
congestion [23].

Multi-level Web proxy caching systems are used to improve the performance
and scalability of the Internet. In a hierarchical configuration, proxies at or
near the end-user constitute the lowest level of the hierarchy, often with sibling-
sibling relationships with one another. The lowest level proxies may have a
child-parent relationship to a higher level proxy, usually a (geographically)
regional proxy [29]. A regional proxy can in turn connect to a higher level
proxy, such as a national proxy [21]. A request that cannot be satisfied by
one proxy cache can be sent to a nearby sibling or to the parent using an
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Inter-Cache Protocol. Contacting the origin server to obtain the document is
the last resort [29].

2.2 Web Workload Characterization

Several Web workload characterization studies have appeared in the literature.
These studies have focussed on Web client [7], Web server [3], and Web proxy
workload characteristics [2,21].

These empirical studies identify several common workload characteristics that
are relevant to Web caching performance. These characteristics include a high
degree of one-time referencing, a Zipf-like document popularity distribution,
heavy-tailed file and transfer size distributions, and a temporal locality property

in the document referencing behaviour [2,3,7,21]. These characteristics are
quite well-documented in the literature, and are thus not discussed at length
here.

Among these characteristics, the one that is most relevant to Web caching
performance is the slope of the Zipf-like document popularity distribution [9].
Zipf’s law expresses a power-law relationship between the popularity P of an
item (i.e., its frequency of reference) and its rank r (i.e., relative rank among
the referenced items, based on frequency of reference). This relationship is
of the form P = c/rβ, where c is a constant, and β is often close to 1. For
example, the frequency of usage for English words in written prose typically
follows this distribution.

In the Web context, a similar referencing behaviour is observed [8,21,27]. Some
researchers have found that the value of the exponent β is close to 1 [2,7],
precisely following Zipf’s law. Others [2,8,21] have found that the value of β is
less than 1, and that the distribution can be described only as “Zipf-like”, with
the value of β varying from trace to trace. In general, the steeper the Zipf slope,
the higher the cache hit ratio achievable for a given Web workload [8,9,27].

2.3 Web Traffic Self-Similarity

Recent research in network traffic measurement has challenged the Poisson as-
sumptions in traditional network traffic models [1,13,20,25]. Leland et al. [20]
showed that Ethernet traffic is bursty across many time scales, and can be de-
scribed statistically as self-similar. Crovella et al. [13] observe self-similarity in
Web traffic as well. The term self-similar means that the statistical characteri-
zation of the traffic is essentially invariant with time scale; the same statistical
properties are observed at time scales of milliseconds, seconds, minutes, hours,

6



and more. Self-similarity often arises from the presence of heavy-tailed distri-
butions, such as those for transfer sizes or the ON/OFF behaviours of network
users. Several models for self-similar stochastic processes exist, including Frac-
tional Gaussian Noise and Fractional-ARIMA processes.

2.4 Web Proxy Cache Performance

Several recent research papers have explored the relationships between Web
workload characteristics and Web proxy caching performance, particularly in
caching hierarchies [10,12,15]. However, most of this research focuses on the
frequency-domain aspect of the Web cache filter effect. For example, Doyle et

al. [15] describe the “trickle down” effect, and conduct a detailed simulation
study to quantify its impact. Fonseca et al. [18] study how the temporal lo-
cality structure is transformed at multiplexing and demultiplexing points in a
network. Che et al. [12] propose a frequency-based caching hierarchy, where
the lower-level cache handles high-frequency items, and the higher-level cache
handles low-frequency items. Busari and Williamson [10] propose a “hetero-
geneous” Web proxy caching hierarchy that uses different caching policies at
each level of a caching hierarchy.

Few papers explicitly address the structural changes in the request arrival
process in multi-level Web caching hierarchies. Our work studies the time-
domain cache filter effects using empirical and synthetic Web proxy workloads,
for both a single-level Web proxy cache [4] and for multi-level Web caching
hierarchies [5].

3 Experimental Methodology

In our study, we use a trace-driven simulation approach, with both empirical
and synthetic Web proxy workloads. Our experimental methodology has two
main steps:

• First, we start with a Web workload trace. One of our traces is an em-
pirical workload collected from a real Web proxy server; this trace reflects
user behaviour in a realistic network. We supplement this trace with sev-
eral synthetically-generated workload traces. Synthetic workload generation
offers greater control over workload characteristics, and allows us to study
the sensitivity of our results to particular workload characteristics. It also
allows us to generate traces that are as long or as short as needed for our
study, without having to worry about non-stationary behaviour, which can
be significant in empirical Web proxy workloads. After we generate a set
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Table 1
Characteristics of Empirical Web Proxy Workload (U of S Proxy)

Item Value

Trace Duration 1 day

Trace Date Oct 17, 2001

Total Requests 755,505

Total Transferred Bytes (Mbytes) 1,087

Mean Transfer Size (bytes) 1,508

Median Transfer Size (bytes) 210

Total Documents 271,285

Unique Documents (% of requests) 35.9%

Total Bytes of Documents (Mbytes) 523

Smallest Document Size (bytes) 0

Largest Document Size (bytes) 86,399,329

Mean Document Size (bytes) 2,021

Median Document Size (bytes) 288

One-timer Documents 201,674

One-timers (% of unique documents) 74.3%

Zipf Slope -0.8

of synthetic Web proxy workloads to use in our study, we verify that these
workloads have the intended workload characteristics, and are representa-
tive of empirical Web proxy workloads.

• Second, we conduct a set of trace-driven simulation experiments, using an
application-level Web proxy caching simulator and the workload traces. The
output “miss” streams from the Web proxy cache simulations are used to
quantify the filter effect of the cache, as a function of cache size and cache
replacement policy.

3.1 Empirical Web Proxy Workload

This section describes the empirical Web proxy workload used in our study.
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Fig. 2. Request Arrival Count Time Series for Empirical Web Proxy Workload

3.1.1 Overview

The empirical Web proxy workload used in our study was collected from a
campus-wide Web proxy server at the University of Saskatchewan. In this
paper, only a one-day access log is used as a representative example of the
proxy server workload. This access log was collected on Wednesday October
17, 2001. This is the same proxy server for which long-duration (9-month)
traces were analyzed in previous research [21].

This empirical trace represents a typical one-day workload, from midnight of
one day to midnight of the next. The trace contains about 750,000 requests,
with request timestamps recorded at millisecond time granularity. Table 1
summarizes the characteristics of the workload.

Figure 2 shows two time series plots illustrating the characteristics of this
trace. The horizontal axis shows the time of day, from midnight of one day to
midnight of the next. The vertical axis shows the count process for the number
of Web requests arriving in each sampling interval (1 second intervals in Fig-
ure 2(a), and 1 hour intervals in Figure 2(b)) throughout the day. Figure 2(a)
shows that the arrival process is quite bursty throughout the day.

Figure 2(a) shows significant non-stationarities in the daily traffic, a behaviour
that is even more evident in Figure 2(b). It is well known that Internet traffic
exhibits a daily cyclic pattern, based on the “working hours” for human users.
Since this workload is from a university proxy cache, most of the daily Web
traffic (71%) occurs between 9am and 6pm.

3.1.2 Self-Similar Arrival Process

The next analysis focuses on the three-hour “busy period” of the empirical
workload trace from 11am to 2pm. This period contains 217,159 requests,
representing about 30% of the daily Web request traffic. For this period, we
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Fig. 3. Evidence of Self-Similarity for Empirical Web Proxy Workload

hypothesize that the arrival count process (for 1 second intervals) is stationary
(see Figure 3(a)). We use this portion of the trace to characterize the request
arrival process, and to test for long-range dependence and self-similarity [20]
in the arrival count process. We use the standard statistical analysis tech-
niques described by Leland et al. [20], namely the autocorrelation function,
the variance-time plot, and the rescaled adjusted range statistic (R/S).

Figure 3 presents the results from the tests for network traffic self-similarity.
Figure 3(a) shows the time series under consideration. Figure 3(b) shows the
autocorrelation function for this time series. The hyperbolic decay is indicative
of self-similarity, though the length of the time series (10,800 data points) is
somewhat short to be sure. Figure 3(c) shows a variance-time plot for this time
series. The points plotted in the graph show a straight line behaviour with a
slope significantly flatter than -1 (the solid line in the graph). This graph
suggests a slowly-decaying variance for the aggregated time series, another
indication of self-similarity. Finally, Figure 3(d) shows an R/S pox plot for
this data set. The slope of this scatter plot can be used to estimate the Hurst
parameter H characterizing the degree of self-similarity in this data set. The
R/S plot provides a Hurst parameter estimate of H = 0.74, again suggesting
that the arrival count process is self-similar.

Further detail on the traffic arrival process is provided in Figure 4. Figure 4(a)
shows the marginal distribution (i.e., frequency histogram, or probability den-
sity function, PDF) of the traffic arrival process from Figure 3(a). The average
arrival rate is 20 requests per second, but there is a significant skew to the
distribution. Figure 4(b) shows the cumulative distribution function for the
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Fig. 4. Request Arrival Count Process for Empirical Web Proxy Workload

arrival process, while Figure 4(c) shows a log-log complementary distribu-
tion (LLCD) plot that illustrates the tail behaviour of the distribution. The
downward curvature of Figure 4(c) suggests that the marginal distribution for
the count arrival process is not heavy-tailed, though the arrival process does
appear to be self-similar.

This workload serves as the input to a trace-driven simulation study of cache
filter effects in Section 4.

3.2 Synthetic Web Proxy Workloads

For synthetic Web workload generation, there are two workload parameters of
interest: Zipf slope, and request arrival process. The Zipf slope refers to the
slope of the Zipf-like document popularity profile in the input Web workload.
This slope affects the magnitude of the Web cache filtering effect, because
it determines the relative skew to the distribution of references amongst the
popular documents. In particular, a steep Zipf slope tends to produce a high
cache hit ratio, while a flat Zipf slope does not. The request arrival process
refers to the timestamps generated for the Web client requests. We consider a
self-similar arrival process that provides a realistic representation of the Web
request arrival process. These workload factors are summarized in Table 2.

Table 2
Experimental Factors and Levels for Studying Cache Filter Effects

Type Factor Levels

Workload Zipf Slope 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Workload Arrival Process Self-Similar

Experimental Cache Size (MB) 1, 4, 16 . . . 1024

Experimental Cache Replacement Policy RAND, FIFO, LRU, LFU, GDS

In our work, a Web proxy workload modeling tool called ProWGen (Proxy
Workload Generation) [11] is used to synthesize Web proxy workload traces.
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ProWGen captures the salient characteristics of Web proxy workloads: one-
time referencing, Zipf-like document popularity, heavy-tailed file size distribu-
tion, and temporal locality. These characteristics are deemed relevant to Web
proxy cache performance [9,11], and are easy to generate and analyze using
the WebTraff tool [22]. By design, the synthetic workloads differ in the slope
for the Zipf-like document popularity distribution, which has a significant in-
fluence on the cache hit ratio [8,9,27].

For each of the synthetic traces generated, multiple arrival-time time series
are used. Note that the generation of the traffic arrival process (i.e., the times-
tamps on the Web document requests) is independent of the techniques used
to generate the Web document requests (i.e., ProWGen’s file popularity and
temporal locality models).

The resulting synthetic workloads are used in the latter half of the paper to
investigate cache filter effects in a two-level Web proxy caching hierarchy.

3.3 Web Proxy Cache Simulation

In the Web cache simulation step, two experimental factors are used: cache
size, and cache replacement policy. The cache size determines the maximum
number of Web content bytes that can be held in the cache at one time. The
cache replacement policy determines what objects to remove from the cache
when more space is needed to store an incoming object. Five cache replace-
ment policies are considered: removing objects at random (RAND), removing
objects in the order in which they arrived (First-In-First-Out, FIFO), remov-
ing objects based on recency of use (Least-Recently-Used, LRU), removing
unpopular objects (Least-Frequently-Used, LFU), and removing large objects
(Greedy-Dual-Size, GDS). These experimental factors are also summarized in
Table 2.

In a set of simulation experiments in this work, the empirical and synthetic
Web workloads (timestamped series of Web document requests) are provided
as input to the Web proxy cache simulator. The network topology modeled
is similar to that shown in Figure 1. The simulator allows configuration of
the Web proxy cache size and the cache replacement policy (i.e., which docu-
ment(s) to remove when the cache is full). The simulator generates as output
the cache hit ratios for the experiment, and a timestamped series indicating
the requests that result in cache misses. The latter output is called the filtered

request stream, and is used in our subsequent traffic analyses.

The experiments use cache hit ratio and byte hit ratio as the primary per-
formance metrics for cache performance, and the mean and variance of the
filtered request arrival process to characterize cache filter effects.
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4 Simulation Results: Empirical Workload

4.1 Overview of Cache Filtering Effects

The first simulation experiment illustrates the general impacts of the proxy
cache on the Web workload. These cache filter effects are shown in Figure 5.

Figure 5(a) shows the request arrival count time series for the filtered and
unfiltered request streams, as a function of time of day. For clarity of presen-
tation, this plot shows the entire workload trace, with request counts sampled
over 30 minute intervals. The graph clearly shows that the presence of the Web
cache reduces both the peak and the mean rate of the request arrival process.
The larger the cache size, the more pronounced the filter effect. These results
are as expected.

Figure 5(b) shows the same type of plot, but just for the three-hour busy period
of the trace (11am to 2pm). In this plot, the request counts are computed over
5 minute intervals. Again, the plot shows a consistent reduction in the mean
and peak rate of requests, as the cache size is increased.

Figure 5(c) shows the average document hit ratio in the cache, as a function of
time of day, for different cache sizes. Other than the erratic behaviour in the
early morning hours (say, 2am to 7am) when few clients are using the cache,
the cache hit ratio is relatively stable throughout the day, reflecting “steady
state” cache performance for the workload considered. Note that these results
are plotted using the average cache hit ratio over each 30 minute interval of the
trace. The cache is initially empty at midnight, and proceeds to fill throughout
the day, invoking the cache replacement policy as needed to manage the con-
tents of the cache. Overall, the cache hit ratio tends to increase as the cache
size is increased (as expected).

Figure 5(d) shows the corresponding cache hit ratio results for the busy por-
tion of the day from 11am to 2pm. In this plot, the cache hit ratios are com-
puted over 5 minute intervals, with the cache initially empty at midnight.
The cache hit ratio clearly increases with the cache size, and is relatively sta-
ble throughout the busy period. These observations suggest that the filtered
request arrival process for the busy period is likely a stationary process.

4.2 Self-Similarity

The purpose of the next analysis is to see if the filtered request stream after the
Web proxy cache still has the same self-similar properties of the input request
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Fig. 5. Illustration of Cache Filter Effects on the Empirical Web Proxy Workload

stream. As an example, we consider the simple case with a Least-Frequently-
Used (LFU) cache replacement policy, with a cache size of 16 MB. We use
the same statistical analysis techniques in Figure 3. The results in Figure 6
show that the self-similar characteristics remain present in the filtered request
stream. The Hurst parameter is estimated as H = 0.71. Our investigations
suggest that the self-similar property of the arrival count process is not altered
by the presence of the Web proxy cache.

4.3 Effect of Cache Size

The next experiment studies the arrival count process for the filtered request
stream, as a function of cache size. We focus on the 11am-2pm busy period of
the trace, using arrival counts per one second interval.

Table 3 summarizes these simulation results. Clearly, the presence of the cache
reduces both the mean and the standard deviation of the arrival count process
after the cache, though the impact on the mean is more pronounced. The larger
the cache, the greater this filtering effect. The corresponding cache hit ratios
for different cache sizes are also shown in Table 3.

The characteristics of the filtered arrival process are shown in Figure 7. Fig-
ure 7(a) shows the marginal distribution (i.e., PDF) of the filtered request
streams, for different cache sizes. For ease of reference, the unfiltered request
stream is shown using a cache size of 0 MB. The corresponding cumulative
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Fig. 6. Evidence of Self-Similarity for Filtered Web Proxy Workload

distribution functions (CDF) for the arrival count processes are shown in Fig-
ure 7(b), and the LLCD plots in Figure 7(c). In general, the filter effect of the
cache increases with cache size.

Table 3
Simulation Results for Different Cache Sizes (Empirical Workload, LFU Policy)

Arrival Count Before Cache Size (MB)

Statistics Cache 1 4 16 64 256 1024

Mean 20.27 14.02 11.78 9.38 7.75 6.88 6.88

StdDev 12.41 10.24 9.22 7.85 6.72 6.09 6.09

Hit Ratio - 33.5% 42.9% 52.5% 59.1% 63.0% 64.1%
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In Figure 7(a), the filter effect of the cache manifests itself in several ways.
First, the main “hump” of the marginal distribution moves to the left, reflect-
ing the decrease in the mean arrival rate. Second, the height of the distribu-
tion at or near the origin tends to increase, since a large cache produces many
one-second intervals with few (or even zero) arriving requests. Third, the dis-
tribution tends to decay more quickly (i.e., it has a shorter tail), reflecting the
lower variance in the resulting arrival process. The latter two effects together
tend to produce a taller and narrower marginal distribution, again reflecting
lower variance in the filtered arrival process.

4.4 Effect of Cache Replacement Policy

The next experiment looks at the sensitivity of the cache filter effect to the
cache replacement policy used. The cache replacement policy determines which
document(s) to remove from the cache when more space is needed to store an
incoming document. Different cache replacement criteria have been proposed
in the literature, such as recency-based, frequency-based, size-based, and so
on. We consider five example policies in our study, namely RAND, FIFO,
LRU, LFU, and GDS. Further details on these policies can be found in the
literature [9,10,29].

Table 4 summarizes the statistical characteristics of the filtered request arrival
process for an 8 MB cache. As expected, the document hit ratio for the GDS
policy (60.6%) is higher than for the other policies. The GDS policy tries to
keep small documents (and therefore more of them) in the cache, by associating
a weight H = 1

s
with each document, where s is the size of the document in

bytes. FIFO and RAND have less of a filtering effect on the workload, since
their “zero knowledge” approach produces a lower cache hit ratio.

Figure 8 shows the impact of the selected cache replacement policies on the
workload characteristics. Examining the plots shows that the filter effects for
the LFU and LRU policies are similar. The GDS policy has the most pro-
nounced impact on the request arrival count process, because of its higher
cache hit ratio.

4.5 Summary of Results

This section focused on the time-domain analysis of cache filter effects for
an empirical Web workload trace. In general, increasing the cache size signifi-
cantly reduces the peak and the mean of the arrival rate for the filtered request
stream, but the impact on the variance is less pronounced. The variance-to-
mean ratio of the filtered request stream tends to increase. The next section
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Fig. 8. Effect of Cache Replacement Policy on Filtered Arrival Count Process (Em-
pirical Workload, 8 MB Cache)

Table 4
Simulation Results for Different Cache Replacement Policies (Empirical Workload,
8 MB Cache)

Arrival Count Before Cache Replacement Policy

Statistics Cache RAND FIFO LRU LFU GDS

Mean 20.27 11.75 11.70 11.05 10.34 7.63

StdDev 12.41 8.82 9.13 8.85 8.39 6.33

Hit Ratio - 43.0% 43.8% 46.4% 48.6% 60.6%

generalizes these observations to a broader set of synthetically-generated Web
workload traces.

5 Simulation Results: Synthetic Workloads

This section presents additional simulation results for synthetically generated
Web proxy cache workloads. Many of the foregoing observations about cache
filter effects for the empirical workload apply equally well for synthetic work-
loads. These observations (e.g., reduction in mean and variance for the filtered
request stream; preservation of self-similarity; leftward movement of the arrival
count distribution with larger cache sizes; and minimal dependence on cache
replacement policy) are not repeated here, since they are documented in prior
work [5]. Instead, we focus on the impact of Web workload characteristics,
such as the Zipf slope and the request arrival process.

5.1 Effect of Web Workload Characteristics

Our simulation experiments with synthetic workloads study the impact of
specific Web workload characteristics on cache filter effects. Three different
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Web proxy workload traces are generated for this particular set of experiments.

Table 5 summarizes the statistical characteristics of the synthetic traces used.
Each trace has approximately 220,000 requests, with an average arrival rate
of about 20 requests per second, similar to the 3-hour busy period of the
empirical workload in Section 4.

By design, the three synthetic workloads differ in the slope for the Zipf-like
document popularity distribution, which has a significant influence on the
cache hit ratio [8,9,27]. Trace B has a Zipf slope of 0.8, which closely matches
that of the empirical trace used. Trace A has a flatter Zipf slope (0.6), which
implies a lower cache hit ratio is expected for this trace. Trace C has a steeper
Zipf slope, meaning that this trace will produce higher cache hit ratios, and
thus a more pronounced cache filtering effect.

For each of these three traces, three different traffic arrival processes were gen-
erated: a short-range dependent arrival process with H = 0.5, a self-similar
process with H = 0.75 (similar to the empirical workload), and a self-similar
process with Hurst parameter H = 0.9. Recall that the generation of the traf-
fic arrival process is independent of the techniques used to generate the Web
document requests. Thus for a given Hurst value H, the distribution of the
arrival count process remains the same even when the Web document popular-
ity distribution is changed. For a given document popularity distribution, the
arrival count process varies for H = 0.5, H = 0.75, and H = 0.9. The H = 0.9
workload has the highest degree of self-similarity, and thus the longest tail to
the arrival count distribution.

The three synthetic traces combined with the three traffic arrival models pro-
duce nine synthetic traces with a wide range of workload characteristics. These
nine traces are used in the simulations to assess the robustness of our obser-
vations about the filtered Web proxy workload characteristics.

Table 6 and Table 7 summarize the simulation results for one representative
example of the synthetic workloads (H = 0.9, Zipf slope 0.8). Table 6 shows
the characteristics of the filtered request stream, as a function of cache size,
for an LFU replacement policy. Table 7 shows the characteristics of the filtered
request stream, as a function of cache replacement policy, for an 8 MB cache.
The characteristics of the filtered request stream are similar to those for the
empirical trace in Section 4.

Figure 9 shows the graphical characteristics of the filtered request arrival pro-
cess. For space reasons, only the results for H = 0.75 are shown. The results
are consistent for the other Hurst parameter values considered in our experi-
ments.

The qualitative behaviour in Figure 9 follows that observed for the empirical
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Table 5
Characteristics of Synthetic Web Proxy Workloads

Item Trace A Trace B Trace C

Trace Duration 3 hours 3 hours 3 hours

Total Requests 225,042 218,845 225,697

Total Transferred Bytes (Mbytes) 2,144 1,871 1,654

Mean Transfer Size (bytes) 9,991 8,967 7,683

Median Transfer Size (bytes) 3,552 3,474 3,285

Total Documents 70,254 70,870 70,951

Unique Documents (% of requests) 31.2% 32.4% 31.4%

Total Bytes of Documents (Mbytes) 793 798 799

Smallest Document Size (bytes) 34 34 34

Largest Document Size (bytes) 12,382,599 12,382,599 12,382,599

Mean Document Size (bytes) 11,830 11,808 11,806

Median Document Size (bytes) 3,817 3,816 3,815

One-timer Documents 48,942 49,558 49,638

One-timers (% of documents) 69.7% 69.9% 70.0%

Zipf Slope -0.6 -0.8 -1.0

Table 6
Simulation Results for Different Cache Sizes (Synthetic Workload, H = 0.9, Z = 0.8,
LFU Policy)

Arrival Count Before Cache Size (MB)

Statistics Cache 1 4 16 64 256 1024

Mean 23.60 12.67 9.75 7.83 7.65 7.64 7.64

StdDev 16.80 9.01 8.14 8.28 8.32 8.32 8.32

Hit Ratio - 46.3% 58.7% 66.8% 67.6% 67.6% 67.6%

Web proxy trace. Larger cache sizes produce a leftward shift of the arrival
count distribution for the filtered request stream, producing an increase in its
peak value at the origin.

The important observation is that the leftward shift of the distribution with
increasing cache size is very gradual in Figure 9(a) for Z = 0.6, and very
sudden in Figure 9(c) for Z = 1.0. In other words, the filter effect of the cache
is (as expected) more pronounced (particularly at smaller cache sizes) when
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Table 7
Simulation Results for Different Cache Replacement Policies (Synthetic Workload,
H = 0.9, Z = 0.8, 8 MB Cache)

Arrival Count Before Cache Replacement Policy

Statistics Cache RAND FIFO LRU LFU GDS

Mean 23.60 9.62 9.35 8.84 8.48 8.03

StdDev 16.80 8.36 8.24 8.06 8.12 8.23

Hit Ratio - 59.2% 60.4% 62.5% 64.1% 66.0%
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Fig. 9. Effect of Cache Size on Filtered Arrival Count Process (H = 0.75, LFU
Policy)

the Zipf slope is steep.

5.2 Summary of Results

This section studied cache filter effects for synthetic traces. The results demon-
strate the relationships between input workload characteristics and the char-
acteristics of the output filtered request stream for different Zipf slopes and
different request arrival processes.

6 Modeling Web Cache Filter Effects

This section discusses a parameterizable mathematical model for characteriz-
ing the request arrival count distribution both before and after a Web proxy
cache. Prior experience with network traffic modeling suggests that a Gamma
distribution may be suitable for modeling the (filtered or unfiltered) arrival
count distribution for Web workloads, since the shape of the distributions in
Figure 7 and elsewhere are reminiscent of the Gamma distribution. Section 6.1
provides some background on the Gamma distribution, while Section 6.2 val-
idates the Gamma distribution model on the empirical workload. Section 6.3
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extends these results to a broad set of synthetically generated workloads.

6.1 Background

The general formula for the Gamma distribution probability density function
(PDF) is:

f(x) =
(x−µ

β
)γ−1e(−x−µ

β
)

β Γ(γ)
x ≥ µ; γ, β > 0 (1)

where γ is the shape parameter, µ is the location parameter, β is the scale

parameter, and Γ is the Gamma function

Γ(a) =

∞∫

0

ta−1e−tdt (2)

The case where µ = 0 and β = 1 is called the standard Gamma distribution.
The equation for the standard Gamma distribution reduces to:

f(x) =
xγ−1e−x

Γ(γ)
x ≥ 0; γ > 0 (3)
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Fig. 10. Gamma Probability Density Function

Figure 10 shows examples of the probability density function for the standard
Gamma distribution with different choices of shape parameter γ. As γ de-
creases, the center of gravity of the distribution moves to the left, the peak
value of the curve increases, and the tail of the curve decreases more quickly.
If γ ≤ 1, then the distribution is monotonically decreasing. These behaviours
are similar to those for the empirical and synthetic request arrival count pro-
cesses in our study, suggesting the suitability of the Gamma distribution for
our traffic modeling purposes.
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Fig. 11. Gamma Distribution Model for Input Request Arrival Count Distribution
(Empirical Workload, γ = 2.67, β = 7.60)

6.2 Modeling the Empirical Request Arrival Count Distribution

Our modeling efforts start with the empirical Web proxy workload. In our
initial experiments, we assume that the location parameter for the Gamma
distribution is µ = 0. Let M and D denote the mean and standard deviation,
respectively, of the request arrival count process in the Web workload.

The shape parameter γ and the scale parameter β of the Gamma distribution
can be determined using Maximum Likelihood Estimates (MLE), namely:

γ̂ = (
M

D
)2 (4)

and

β̂ =
D2

M
(5)

Figure 11 illustrates the characteristics of the request arrival count distribution
for the empirical workload, along with a Gamma model fit to the distribution.
The parameters γ and β of the Gamma distribution (γ = 2.67, β = 7.60)
were determined using MLE. Figure 11 shows that the Gamma distribution
provides a good visual fit of the distribution, for both the body and the tail
of the distribution.

Figure 12 shows similar plots for the filtered request arrival process after the
cache. This particular plot illustrates the results for a 4 MB LFU cache at the
Web proxy. The Gamma distribution with γ = 1.63 and β = 7.22 provides
a good visual fit to the traffic arrival distribution, in both the body and the
tail. Again, the parameters of the Gamma distribution were determined using
MLE.
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Fig. 12. Gamma Distribution Model for Filtered Request Arrival Count Distribution
(Empirical Workload, γ = 1.63, β = 7.22)

6.3 Modeling the Synthetic Request Arrival Count Distribution

To generalize our Gamma distribution modeling results, we have conducted
many additional simulation experiments with synthetic workloads. These ex-
periments have varied the trace duration (from 250,000 to 1 million requests),
the request arrival rate (from 20 to 60 requests per second), the request arrival
process (from H = 0.5 to H = 0.9), the Zipf slope (from 0.5 to 1.0), and the
cache size (from 1 MB to 1 GB). Across the broad range of workloads studied,
we have found that Gamma location parameter µ = −1.5 provides the basis
for consistently good modeling results.

In all simulation scenarios studied, the Gamma distribution (with γ and β
parameters determined using the MLE technique) provides a good fit to the
request arrival count distribution for both the input and the filtered request
streams. We thus believe that the Gamma distribution provides a robust and
flexible means of characterizing the request count process for workloads in
Web caching performance studies.

One particular set of simulation experiments explored the relationship between
Zipf slope, cache size, and the γ and β parameters in the Gamma distribution.
We used least-squares linear regression to determine the relationship between
the Zipf slope and the mean arrival rate for the filtered request stream, for
different cache sizes. The impact of the Zipf slope on the mean arrival rate is
pronounced for small cache sizes, but negligible when the cache size is large.
A similar qualitative relationship is observed between the Zipf slope and the
standard deviation of the filtered request arrival count process, though the
regression coefficients differ.

Understanding these relationships helps build intuition as to how γ and β
change with the cache size. In general, as the cache size is increased, the γ
parameter decreases and the β parameter increases (for a given Zipf slope, and
a fixed value of the location parameter µ). This behaviour is consistent with
the leftward movement of the body of the distribution as the cache hit ratio
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Fig. 13. Gamma Distribution Models for Filtered Request Arrival Count Distribu-
tion (Synthetic Workload: 20 req/sec, H = 0.75, Z = 0.80, LFU Cache, Gamma
Model (γ, β, µ))

increases. In the scenarios studied, the changes in γ and β are monotonic with
cache size, asymptotically approaching a limit when the cache size is large.

Examples of these results are illustrated in Figure 13. These results are for a
self-similar request arrival process (20 requests per second, H = 0.75) for a
workload with a Zipf slope of 0.8, and the LFU cache replacement policy. The
rows of graphs in Figure 13 show the Gamma distribution modeling results
for cache sizes ranging from 1 MB (top row) to 1024 MB (bottom row). In
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all cases, the MLE estimates provide good Gamma distribution fits to the
simulation results. These results provide the basis for Web workload modeling
throughout a Web caching hierarchy, which we undertake in the next section.

7 Simulation Results: Aggregate Web Workload

This section addresses the larger challenge of characterizing workloads through-
out a Web proxy caching hierarchy. As mentioned in Section 2.1, multi-level
Web proxy caching systems have been used to improve the performance and
scalability of the Internet. This simulation experiment quantifies the filter ef-
fects of a Web cache on the request arrival process, for synthetically-generated
aggregate Web client workloads. For simplicity, we consider only a two-level
Web proxy caching hierarchy, as shown in Figure 14. Assuming that λ1 and λ2

represent the Web request arrival processes (from clients) entering the child-
level caches, we are interested in the filtered arrival processes λ′1 and λ′2 after
these caches. We are also interested in how they multiplex to form λ3, which
itself is transformed into λ′3 before entering the Internet.

λ3
’

λ1
’ λ2

’

λ3

λ1 λ2

Web Proxy Cache 3

Web Proxy Cache 1 Web Proxy Cache 2

Parent Level

Child Level

Fig. 14. Example of a Two-level Web Proxy Caching Hierarchy

We start by characterizing the input workloads λ1 and λ2 offered to the child-
level caches, and proceed to analyze the filter effects as the workload progresses
to the Internet as λ′3. Section 7.1 describes the input workloads and the fil-
ter effects of the first-level caches. Section 7.2 studies the aggregation of the
filtered request streams to form λ3. Finally, Section 7.3 shows how to model
the aggregate stream λ3 with a Gamma distribution, using knowledge of the
input workloads and cache filter effects.

7.1 Workload Modeling and Analysis

We use synthetically-generated Web proxy workloads to represent the input
workloads λ1 and λ2 for our simulation. To demonstrate the generality of our
analysis, we consider “heterogeneous” input workloads, in the sense that the
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workloads λ1 and λ2 differ in Zipf slope, Hurst parameter, and mean arrival
rate.

The characteristics of the synthetic Web proxy workloads with self-similar
arrival processes are illustrated in Figure 15.
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Fig. 15. Synthetic Self-Similar Workload Traces Used in Simulations

These workload traces are provided as input to the Web cache simulator at
the first level of the Web caching hierarchy. In this case study, we use the
GDS replacement policy, with an 8 MB cache size for both caches at the first
level of the caching hierarchy. The filter effects of the child caches produce
workloads λ′1 and λ′2, which we call the filtered workloads.

The time series of request arrival processes for the filtered request streams λ′1
and λ′2 are depicted in Figure 16. Other than the end effects evident in these
plots, the filtered request streams appear to be stationary. We restrict our
attention to the stationary portion of these traces.

Figure 17 shows the characteristics of the filtered workload trace λ′1. These
results show the initial impact of the Web cache.

Figure 18 is used to test for self-similarity in the filtered request arrival process.
The hyperbolic decay of the autocorrelation function in Figure 18(a) indicates
self-similarity. The variance-time plot in Figure 18(b) shows a slowly-decaying
variance for the filtered time series. Finally, the slope of the R/S plot in Fig-
ure 18(c) provides a Hurst parameter estimate of H ≈ 0.699 (very close to
0.70, the degree of self-similarity of the input workload).

All these observations suggest that the arrival process of the filtered workload
λ′1 is self-similar. The same observations apply for filtered request stream λ′2.
Its analysis is omitted for space reasons.
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Fig. 16. Time Series Plots of Request Arrival Count Processes for Filtered Workloads
λ′1 and λ′2
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Fig. 17. Characteristics of Filtered Workload λ′1
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Fig. 19. Characteristics of Aggregate Request Arrival Process λ3

7.2 Superposition of Web Workloads

Our investigations so far demonstrate that the first-level cache changes the
structural characteristics of the workload. However, it does not remove the
self-similar property of the workloads. This section focuses on the superpo-
sition of Web workload streams (with self-similar arrival) in time-domain.
Understanding the statistical multiplexing behaviour is important since many
networks rely on this principle.

In this part of the study, the workload traces λ′1 and λ′2 (that is, misses from the
lower level proxies) are statistically multiplexed in the time-domain, resulting
in an aggregate workload λ3. Here we consider portions of each trace that cover
the identical time period in order to get a stationary aggregate workload trace.
We assume that λ′1 and λ′2 are independent.

The characteristics of the aggregate workload are illustrated in Figure 19. Fig-
ure 19(a) shows the marginal distribution (i.e., frequency histogram, or prob-
ability density function, PDF) of the traffic arrival process from Figure 20(a).
As expected, the mean arrival rate for the aggregate arrival process is equal to
the sum of those from the two individual input processes. Figure 19(b) shows
the cumulative distribution function for the arrival process, while Figure 19(c)
shows a log-log complementary distribution (LLCD) plot that illustrates the
tail behaviour of the distribution.

Figure 20 presents the results from the examination of self-similarity for the
aggregate workload. Again, we use the autocorrelation function, the variance-
time plot, and the rescaled adjusted range statistic (R/S). Figure 20(a), (b)
and (c) demonstrate all of the important indicatives of self-similarity, i.e. the
hyperbolic decay of autocorrelation function; a slowly-decaying variance-time
plot, etc.

The R/S plot provides a Hurst parameter estimate of H ≈ 0.76, suggesting
that the aggregate arrival count process is self-similar. These observations
are in close agreement with theoretical results [26], which indicate that the

28



0

20

40

60

80

100

120

2000 4000 6000 8000 10000 12000

C
ou

nt
 o

f A
rr

iv
al

/In
te

rv
al

Time (sec.)

Time Series

Time granularity:   1 sec.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

A
ut

oc
or

re
la

tio
n

Lag

Autocorrelation

(a) Time Series (b) Autocorrelation Function

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g1

0(
V

ar
ia

nc
e)

log10(Aggregation Level)

Variance Time Plot

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5

lo
g1

0(
R

/S
)

log10(Sample Size)

R/S Plot

(c) Variance-Time Plot (d) R/S Pox Plot

Fig. 20. Evidence of Self-Similar Aggregate Request Arrival Process λ3: H ≈ 0.76

Hurst parameter of the aggregate stream should be the maximum of the Hurst
parameters of the input streams. In addition, the variance-to-mean ratio of
the aggregate process should be the weighted average of those from the input
streams [26].

These analyses demonstrate that the superposition of Web traffic streams does
not smooth the traffic. Multiplexing bursty data streams tends to produce a
bursty aggregate stream. The aggregate Web workload is then forwarded to
the next level of the Web proxy caching hierarchy.

7.3 Modeling of Aggregate Workload

Finally, we address the issue of modeling aggregate Web workload in a Web
caching hierarchy. Following the approach in Section 6, we propose two Gamma
probability density functions f ′1(x) and f ′2(x) for the Web request arrival count
λ′1 and λ′2, namely

f ′1(x) =
(x−µ1

β1

)γ1−1e
(−

x−µ1

β1
)

β1 Γ(γ1)
(6)
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and

f ′2(x) =
(x−µ2

β2

)γ2−1e
(−

x−µ2

β2
)

β2 Γ(γ2)
(7)

where x denotes the arrival count per interval and Γ is the Gamma function.

Let M1, M2, D1 and D2 denote the mean and standard deviation, respectively,
of the request arrival count process in a filtered workload (λ′1 or λ′2). As an
example, we consider an 8 MB cache size at each child proxy, each using
the GDS cache replacement policy. From the statistical analyses, we obtain
M1 = 29.885, D1 = 7.115 for λ′1 and M2 = 30.570, D2 = 8.928 for λ′2.

According to Equation 4 and Equation 5, the Gamma parameters can be
estimated as γ̂1 = 17.642, β̂1 = 1.694 and γ̂2 = 11.724, β̂2 = 2.607. The
Probability Density Functions (PDF) of λ′1 and λ′2 are plotted in Figure 21.

Assuming that λ′1 and λ′2 are independent, the cumulative request count in
the ith time interval for their superposition is governed by:

Pλ3
{X = k} =

k∑
i=0

[Pλ′
1
{X = i} × Pλ′

2
{X = (k − i)}] (8)

Figure 22 illustrates the characteristics of the request arrival count distribu-
tion for the aggregate workload given by the superposition of two request
arrival processes. The simulation results are also shown for model validation.
Figure 22 shows that the Gamma distribution provides a very good visual fit
of the distribution, for both the body and the tail of the distribution. This re-
sult demonstrates that a Gamma distribution provides a simple, flexible, and
relatively robust means of characterizing the aggregate Web request arrival
count distribution. However, the parameters for the Gamma distribution de-
pend upon the input Web workload characteristics and the cache parameters
used.
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Fig. 22. Modeling of Aggregate Workload λ3

This model can be used to estimate traffic characteristics in hierarchical Web
caching architectures, given the input workload characteristics, and the cache
configuration parameters.

8 Summary and Conclusions

This paper uses trace-driven simulation to study the structural character-
istics of Web workloads in Web proxy caching hierarchies. The simulation
experiments quantify the filter effects of a Web cache on the request arrival
process, for both empirical and synthetically-generated aggregate Web client
workloads. The paper focuses on time-domain analysis of cache filter effects.
That is, it focuses on the statistical characteristics of the request arrival count
process as transformed by the cache.

Our simulation results demonstrate that the Web proxy cache reduces both
the mean arrival rate and the peak arrival rate for Web traffic workloads,
but has relatively little impact on the variance. The variance-to-mean ratio
of the filtered request arrival process typically increases, depending on the
characteristics of the input arrival process and the cache configuration. For a
self-similar request arrival process, the results show that the filtered request
arrival process remains self-similar, with the same Hurst parameter, though
with reduced mean. The study also demonstrates that the superposition of
Web request streams from multiple child caches in a Web proxy caching hier-
archy remains bursty. Lastly, we find that the Gamma distribution provides a
flexible and robust model for characterizing the request arrival process in hier-
archical Web caching architectures. However, the parameters for the Gamma
distribution are highly dependent upon the cache size and the Web workload
characteristics.
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