
A Hysteresis Model for Web/TCP Transfer Latency

Yujian Li Carey Williamson
Department of Computer Science, University of Calgary, 2500 University Drive N.W.

Calgary, AB, CANADA T2N 1N4

Abstract

This paper presents an accurate stochastic model for transfer
latency of short-lived Web-like TCP flows with random
packet losses. Our model characterizes a data transfer in
alternating cycles, with TCP state information carried over
from one cycle to the next. Simulation experiments show that
our model matches simulation results for short-lived flows
better than earlier TCP models, and fits long-lived TCP flows
as well. Our model is then extended to estimate transfer times
for CATNIP TCP, which is shown to be 5-42% faster than
TCP Reno, depending on transfer size and packet loss ratio.

1. Introduction
Response time is a primary concern for Web users. Users
are unlikely to wait for a Web page that takes a long time to
retrieve. However, continued growth in Internet traffic can
cause congestion problems, leading to delays in Web page
delivery due to packet loss. The Web, like many other
Internet applications, uses the Transmission Control
Protocol (TCP) as its transport layer protocol for reliable
data transfer. The dynamics of TCP greatly affect Web
performance (Claffy et al. 1998; Thompson et al. 1997), and
TCP transfer latency often dominates Web response time.

Modeling TCP via mathematical analysis provides a way
to characterize TCP performance quantitatively under
specific operating conditions. In this paper, we focus on
modeling short-lived TCP flows, which are representative of
Web traffic. Measurements (Cunha et al. 1995; Mah, 1997;
Thompson et al., 1997) show that the average size of TCP
flows is generally less than 10 Kbytes for non-persistent
connections, and 26-32 Kbytes with persistent connections.

Some TCP models for short-lived flows (e.g., Cardwell et
al., 1998, 2000) are directly extended from TCP steady-state
throughput analysis (e.g., Padhye et al. 1998). However the
underlying assumptions of these models may not hold for
short-lived transfers, since short-lived flows spend most of
their time in the slow start phase, rather than in the
congestion avoidance phase like long-lived flows.

More recent TCP models are derived explicitly for short-
lived flows (e.g., Cardwell, et al., 1998; Heidemann et al.
1997; Mahdavi, 1997; Partridge & Shepard, 1997).
However, some of these models (Heidemann et al., 1997;
Mahdavi, 1997; Partridge & Shepard, 1997) do not consider
packet losses, which can have a dramatic impact on TCP
performance. Measurement results (Balakrishnan et al.,
1998; Paxson, 1997) suggest that packet loss rates in the
Internet can be as high as 5%. The work in (Cardwell et al.,
1998) assumes that a packet loss always triggers a TCP
timeout, which is overly pessimistic. Short-lived TCP flows

could recover from losses using fast retransmit (Mathis et
al., 1997; Padhye et al., 2000) and fast recovery, depending
on which packet is lost and the congestion window size at
the time of the loss. In addition, most research in the
literature ignores subtle features of TCP, such as the timer-
based TCP delayed acknowledgement (ACK) mechanism to
reduce ACK packet overhead. Since delayed
acknowledgments complicate matters, most models ignore
its effects, or use a simple approximation. These
simplifications inevitably compromise the accuracy of the
models.

In this paper, we propose a stochastic model for short-
lived TCP flows with random packet losses. The distinctive
feature of our model is that we model a data transfer as
alternating cycles, with TCP state information (e.g.,
congestion window) carried over from one cycle to the next.
We believe that this “hysteresis” property is essential in
capturing TCP dynamics effectively. In addition, our model
includes delayed acknowledgment effects, time-outs, and
the fast retransmission mechanism. Our simulation
experiments show that our stochastic model matches the
simulation results for short-lived flows more accurately than
earlier models, and fits long-lived TCP flows as well.

The remainder of this paper is organized as follows.
Section 2 provides background on TCP and related work on
modeling TCP response time. Section 3 describes our
proposed TCP model for short-lived flows. Section 4
describes the simulation experiments and results. Section 5
extends our proposed model to CATNIP TCP. Section 6
concludes the paper.

2. Background and Related Work

TCP Overview
TCP is a connection-oriented transport layer protocol,
widely used on the Internet. It provides reliable data
delivery through positive acknowledgement with
retransmission, as well as flow control to prevent fast
senders from overloading slow receivers.

There are two parts in the TCP congestion control
algorithm, known as slow start and congestion avoidance.
Successful transmission results in the congestion window
size (cwnd) growing exponentially up to a threshold value
(ssthresh), and then linearly thereafter.

TCP uses packet loss as an implicit signal of network
congestion. When a packet loss happens, two possible
events might occur: one is a retransmission time-out (RTO)
at the sender; the other is the sender receiving duplicate
ACKs to trigger fast retransmission. For TCP Reno, it

retransmits the lost packet, and reduces cwnd by half. This
technique is called fast recovery.

Another technique widely adopted by TCP
implementations is delayed ACK. This allows the receiver
to delay the acknowledgement of a data packet for a short
period of time - the delayed ACK interval.

Related Work
Stochastic models of TCP for short-lived flows can be
classified into two types: models based on steady-state
analysis, and models explicitly for short-lived flows. Four
representative models are described here.

Padhye Model: Padhye et al. (1998) derived a model
for the steady-state throughput of a bulk data transfer.
This model later was used in (Cardwell et al., 1998) as
the estimate for the bandwidth achieved for short-lived
flows. By simply adding the cost of connection
establishment and the expected cost of delayed ACKs,
the TCP transfer latency for short-lived flows was
constructed (Cardwell et al., 1998).
Cardwell-00 Model: Cardwell et al. (2000) provided
another model for short-lived flows, based on the
steady-state results in (Padhye et al., 1998). The authors
decomposed the data transfer into four aspects: the
initial slow start phase, the resulting packet loss (if
any), the transfer of any remaining data, and the
additional expected delay from the delayed ACK timer.
The throughput of the flow after the first loss was
estimated using steady-state analysis.
Cardwell-98 Model: Cardwell et al. (1998) developed
a more detailed model of short-lived TCP flows. They
viewed a short-lived TCP flow as an initial connection
establishment handshake, followed by alternating
phases of slow start and successive RTOs. The progress
of a TCP connection is thus considered as a series of
phases where TCP is sending data, and each sending
phase is separated from the next by one or more RTOs.
Fast retransmission is ignored.
Sikdar Model: Sikdar, Kalyanaraman, & Vastola
(2001) presented a mathematical model for TCP flows
of arbitrary size. Their model decomposed the TCP
transfer latency into three cases: the no loss case, single
loss case, and multiple loss case. For the window
increase pattern in the slow start phase, the authors
introduced the expression

⎦−+−⎣= 222212)/(n)/(n packets(n) (1)
to approximate the number of packets in the nth round,
instead of the general exponential increase pattern
(Cardwell, et al., 2000)

n packets(n) 5.1= (2)
Simulation-based comparisons (Li, 2002) show that TCP

latency for short-lived flows is roughly logarithmic in the
size of the data. Among these four models, the Cardwell-00
model provides more accurate predictions than other
models. The Sikdar model performs well when the loss
probability is 1% to 5%. Work in (Li, 2002) also shows that
for long-lived TCP flows, TCP latency is approximately

linear with the transfer data size. The explanation is that the
flows are nearing steady state, where the transfer time is
well modeled as bandwidthdatat /≈ , for some steady-state
bandwidth estimate. Models extended from the steady-state
modeling work, such as the Cardwell-00 and the Padhye
models, provide reasonable prediction for these scenarios.

3. A Hysteresis-based Model

Assumptions
The proposed model is based on the TCP Reno release from
Berkeley (Stevens, 1994), which is still prevalent in the
Internet today (Mathis et al., 1996; Padhye & Floyd, 2001).
Since we are only concerned about modeling TCP
performance, we assume that the link speed is high, the
sender sends full-sized packets whenever the congestion
window allows, and that the receiver advertises a consistent
flow control window Wmax.

We model the dynamics of TCP in terms of “rounds” as
in (Cardwell et al., 2000; Padhye et al., 2000; Sikdar et al.,
2001). A round starts when the sender sends a window of
packets, and ends when one or more acknowledgements are
received for these packets. We assume that the packet loss
behavior follows the Bernoulli loss model, i.e., packet losses
in one round are independent of the losses in any other
round, and losses within a single round are independent. We
allow packet loss indications by either RTO or triple
duplicate ACKs.

We do not explicitly model the congestion avoidance
algorithm. Rather we assume that cwnd always increases by
one packet for each ACK (just as in slow start), to make the
mathematics tractable. As demonstrated by the simulation
results, this assumption has minimal effects on the accuracy
of our model. The main reasons are threefold. First, the
initial slow start threshold is typically set to 64 KB
(Tanenbaum, 1996). Short-lived flows commence in slow
start, and rarely reach large cwnd values, so they will spend
a majority of their time in slow start. Second, TCP enters
the congestion avoidance phase only when the congestion
window size is 2 or more (Stevens, 1994). Third, when the
window size is very small, the increase of the congestion
window under slow start is similar to that under congestion
avoidance.

The effect of delayed acknowledgement is also
considered. The most common delay occurs whenever TCP
suffers a packet loss and restarts with a cwnd of 1 packet.
The receiver waits for a second packet, until finally its
delayed ACK timer expires and it sends an ACK. In most
UNIX based systems this timer is set to 200 ms, which leads
to an expected delay of 100 ms before the ACK for the first
packet of the flow is sent.

Model Overview
We adopt the analysis of connection establishment from
(Cardwell et al., 2000) as the expected three-way-handshake
duration, as in (Sikdar et al., 2001). However, in model
validation, we focus on the data transfer part, and ignore the

three-way handshake latency. One reason is that the one-
way TCP implementation in the ns-2 network simulator
does not include the latency for the three-way handshake.
Simplifying our model makes direct comparison to
simulation results possible.

We model the data transfer part as alternating cycles.
Each cycle includes a slow start phase and a successive
packet loss phase, except that the last cycle has no packet
loss phase. Figure 1 shows the evolution over time of the
congestion window size in our model, where loss
indications are either by RTO or triple-duplicate ACKs. In
case of RTO, TCP re-enters slow start with cwnd set to 1
(e.g., the second loss in Figure 1). In case of triple duplicate
ACKs, it triggers fast retransmission (e.g., the first loss in
Figure 1). For this case, TCP reduces cwnd by half and then
re-enters slow start (exponential increase), rather than
congestion avoidance (linear increase).

Figure 1: Congestion window evolution for the proposed
model.

Let N represent the total packets to transfer initially, and d

the remaining data to transfer. Initially, d is equal to N. TCP
begins with the first cycle, where it sends data packets in
slow start, quickly increasing its congestion window, until it
detects a packet loss. The congestion window is reset to 1
(due to RTO) or reduced by half (due to triple duplicate
ACKs). Then the TCP flow enters the next cycle until all
data are transferred.

An important property of the proposed model is that it
carries over state information (i.e., cwnd and remaining data
to transfer) from one cycle to the next. This is different from
regenerative Markov models (Cardwell et al., 2000; Padhye
et al., 2000; Sikdar et al., 2001). The calculations for the
slow start phase and the packet loss phase within each cycle
are described in the following subsections.

The Slow Start Phase We follow the work in (Cardwell et
al., 2000) to determine the expected latency for the slow
start phase within each cycle. First, based on the Bernoulli
packet loss assumption, the expected number of data
packets sent in the slow start phase before a loss occurs,
E[dss], can be calculated as:

() () ()()()
p

pdp
ddp

d

k
pkkpssdE

−−−
=−+∑

−

=
−=

111
1

1

0
1][

(3)

With the exponential congestion window increase pattern
shown in Equation 2, the number of slow start rounds to
transfer E[dss] packets of data is:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅= 1

1

1
log E[dss]

w

γ-
γi (4)

where:
γ: congestion window increase factor, equal to 1.5;
w1: initial window size for the current cycle. It is

set to 1 for the first cycle.
E[Wss], the expected window size at the end of slow start

(ignoring Wmax) is calculated as:

γ

w
]ssE[d

γ

γ-
]ssE[W 11

+⋅= (5)

Finally, the time to send E[dss] packets of data in slow
start can be calculated as:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤+

−
⋅

>
−

−
−++⋅

=

max][1
1

)1]([
log

max][)]
1

1max][(
max

1
1)1/max([log

][
WssWE

w
ssdE

rRTT

WssWE
wW

ssdE
W

wWrRTT

ssTE
γ

γ

γ

 (6)
After the initial slow start phase, the remaining data to

transfer is d=N-E[dss].

The Packet Loss Phase We use an analysis similar to
(Cardwell et al., 2000) to determine the expected cost of
packet loss within each cycle. First, the probability that slow
start ends with a packet loss is:

 (7) ()dpssp −−= 11

The probability that TCP detects a packet loss with RTO
is adopted from (Padhye et al., 2000) as follows:

()
()

() ()()()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−⋅−+⋅

−−

−−
=

311311
11

311
,1min),(wppwp

p
wpQ

 (8)
It is a function of packet loss rate (p) and window size

(w). The expected cost of an RTO is derived in (Padhye et
al., 2000):

01

)(
][T

p

pfTOZE ⋅
−

= (9)

where T0 is the average duration of the first timeout in a
sequence of one or more successive timeouts, and f(p) is
given by:

6325164834221)(pppppppf ++++++= (10)
The expected duration of a fast recovery period is a single

round trip time (RTT) (Cardwell et al., 2000). The algorithm
to calculate the cost for the packet loss phase within each
cycle is as follows:

Generate a random number RAND
If (RAND<=Q(p,w))

 Tloss=pss*E[ZTO] // RTO
Else

 Tloss=pss *RTT // fast retransmit

We use the above algorithm, rather than a combination of
weighted loss by RTO and loss by triple duplicate ACKs
(Cardwell et al., 2000), to model the cost of the packet loss
phase within each cycle. The reason is based on the choice
of the initial window size for the next cycle, and
consideration of the effect of delayed acknowledgements.
The congestion window is set to 1 packet in the beginning.
For each cycle, if packet loss triggers a RTO, cwnd is reset
to 1 for the next cycle to resume slow start. If the packet
loss is detected with triple duplicate ACKs, the initial
window for the next cycle is reduced to half of the previous
congestion window size:

]ssE[Ww ⋅=
2

1
1 (11)

The expected cost for delayed acknowledgment, Tdelack, is
added to the latency for the current cycle if slow start
commences from a window size of 1 for the current cycle.
This is different from previous work (Cardwell et al., 1998,
2000; Sikdar, et al., 2001), which simply adds Tdelack as a
one-time cost in the overall TCP latency.

Total Latency Combining the results of the previous
subsections, the transfer latency for a flow of N packets is
the sum of the latencies for all of the alternating cycles:

()i
lossTi

ssTE
lastCycle

i
T +

=
∑=][

1 (12)
Note that Equation 12 is a prediction of latency

experienced by a “typical” flow given the input parameters.
Because the packet loss case within each cycle is randomly
determined, Equation 12 does not necessarily yield a closed
form unique answer. Using the algorithm to sample
“typical” transfer latencies is necessary to get the expected
time for a data transfer given the particular parameters.

4. Simulation Experiments

Methodology
We use the ns-2 network simulator for the simulation
experiments. Figure 2 shows the simple network topology
used in our experiments. Since there is no competing cross-
traffic, we attached a packet error model to the router R1 to
create random packet losses. For CATNIP TCP validation,
we created our own CATNIP Error Model since ns-2 does
not have a CATNIP loss model built-in. This model drops
packets of low priority with probability p, and packets of
high priority with probability . The Bernoulli loss model
is a special case of the CATNIP error model when

'p
pp =' .

We use FTP as the application model for sending a specified
number of packets over a 10 Mbps link. However, we set
the number of packets in each flow to be representative of
HTTP Web transfer sizes.

Each experiment consists of 1000 trials with different
seeds for the random packet loss generation process. This
number is adequate to provide a good estimate of the TCP
latency distribution, and thus the expected latency. In each
trial, a Reno TCP agent on the server opens a connection

and immediately begins sending the required amount of
data. Once the last data packet is acknowledged, the data
transfer is finished.

Figure 2: Simulated network topology

The primary performance metric is the data transfer time,

by which we mean the time from when the sender sends the
first packet until the time when the sender receives the
acknowledgement of the last data packet. The time for
three-way handshake establishment and teardown are not
simulated in the Reno TCP agent. Hence, our experiments
focus only on the data transfer time.

There are two main factors in our simulation experiments:
transfer size, and packet loss probability. A one-factor-at-a-
time experiment is conducted using these factors. A
summary of the experimental design appears in Table 1.
Only a subset of the simulation results are presented here.

Table 1: Experimental factors and levels

Factor Levels
Transfer Size (KB) 1, 4, 8, 16, 32, 50, 64, 90,

110, 128, 160, 180, 200

Packet Loss Probability 1%, 3%, 5%, 8%, 10%

Transfer sizes are divided into short-lived TCP flows

from 1 KB to 50 KB (1 – 36 data packets), and long-lived
flows from 50 KB to 200 KB (36 – 143 data packets). For
clarity, we present the results for short-lived and long-lived
TCP flows separately. The default parameters for
simulations are based on values that are representative of
Internet Web traffic: MSS=1433 bytes, 200 ms RTT,
Wmax=24. The minimum RTO timer is set to 1 second.
When any successive retransmission timer is set, its timeout
is set using TCP’s exponential back-off algorithm (Stevens,
1994).

Comparison with Previous TCP Models
Figure 3 compares TCP latencies between our model and
the Cardwell-00 and Sikdar models for short-lived TCP

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

Data Transfer Size (Packets)

Tr
an

sf
er

 T
im

e
(s

ec
)

Simulated

Proposed
Sikdar

Cardwell-00

(a) p=1%

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

Data Transfer Size (Packets)

Tr
an

sf
er

 T
im

e
(s

ec
)

Simulated

Proposed

Sikdar

Cardw ell-00

(b) p=10%

Figure 3: Simulated and modeled TCP transfer latencies for small transfer sizes.

flows transferring between 1 KB and 50 KB, when packet
loss probability is 1% and 10%, respectively. Our model fits
the simulation results closely for these loss probabilities.
Our model’s prediction values match the simulated values
better than those obtained by the other models. We further
compare the relative error (variance) estimation (Law &
Kelton, 2000) for a given loss probability:

()
transfersofNumber

transfers psimulatedTppredictedT
pV

∑ −
=

2)()(
)((13)

where Tpredicted is the predicted value and Tsimulated is the
simulated value. A smaller error (or variance) implies a
better model accuracy. Table 2 provides the relative error
estimation for short-lived flows. It shows that in all cases
the relative error is less than 10% for our hysteresis model,
while it often exceeds 10% for the Cardwell-00 model and
15% for the Sikdar model.

While our model and the Cardwell-00 model both have an
initial slow start and packet loss phase, our model improves
significantly upon the Cardwell-00 model. To estimate the
time to send any data remaining after the first loss, the
Cardwell-00 model applies the steady-state throughput
result from long-lived TCP flows (Padhye et al., 1998). This
is not a good approximation due to different behavior for
short-lived TCP flows (Sikdar et al., 2001), and it introduces
several errors (Cardwell et al., 2000). Our proposed model
does not use the results from the steady-state model (Padhye
et al., 1998) for the remaining data. Instead, we apply the
same mathematics used for the first cycle (including the
initial slow start and the first packet loss) to the remaining
data. This is similar to the situation that a typical TCP flow
suffers with random losses, i.e., the flow periodically
experiences slow start and successive packet loss. The
success of our model comes from TCP state information
carried over from one cycle to the next.

Another source of improvement for our model over the
Cardwell-00 model and other models (Cardwell et al., 1998;
Sikdar et al., 2001) is the consideration of delayed
acknowledgements. The Cardwell-00 model simply adds the
expected cost of delayed ACK, Tdelack, once as one
component of TCP latency. In our model, Tdelack is naturally

integrated into the packet loss phase whenever a packet loss
triggered by RTO resets cwnd to 1 packet.

Table 2: Relative error comparison of the hysteresis model

with existing models for short-lived flows.

Model p=1% p=3% p=8% p=10%
Sikdar 0.15 0.41 0.51 1.06
Cardwell-00 0.17 0.44 0.10 0.15
Hysteresis 0.03 0.05 0.05 0.08

Compared with the Sikdar model (Sikdar et al., 2001), our

model includes not only the effect of round trip time and
loss probability as given in the Sikdar model, but also the
factors such as Tdelack, and loss detection by RTOs and triple
duplicate ACKs. Hence, the proposed model captures the
dependence of TCP latency on delayed acknowledgements,
and the cost of loss events triggered by either RTO or triple
duplicate ACKs.

We further conducted experiments for long-lived flows as
shown in Figure 4, with statistical comparison given in
Table 3. Surprisingly, the results from our model match
very closely with simulation results, and are a significant
improvement over the Cardwell-00 and Sikdar models.

Table 3: Relative error comparison of the hysteresis model

with existing models for long-lived flows.

Model p=1% p=3% p=8% p=10%
Sikdar 0.78 1.82 4.75 16.12
Cardwell-00 0.22 0.47 4.20 22.24
Hysteresis 0.02 0.09 2.20 8.66

When the loss probability is 10%, our proposed model

overestimates the transfer latency for long-lived flows, as
does the Cardwell-00 model. The main reason comes from
Equation 8, i.e., the probability that a sender detects a
packet loss with RTO, which we adapted from the steady-
state TCP model analysis in (Padhye et al., 2000). We
observe that this function is sensitive to the packet loss
probability. For example, with the packet loss probability of
10%, about 10 packets are expected to be sent before a
packet is lost. Assume the congestion window size is 10

1

3

5

7

9

11

13

15

30 50 70 90 110 130 150

Data Transfer Size (Packets)

Tr
an

sf
er

 T
im

e
(s

ec
)

Simulated

Proposed

Sikdar

Cardw ell-00

(a) p=1%

1

6

11

16

21

26

31

30 50 70 90 110 130 150

Data Transfer Size (Packets)

Tr
an

sf
er

 T
im

e
(s

ec
)

Simulated

Proposed

Sikdar

Cardw ell-00

(b) p=10%

Figure 4: Simulated and modeled TCP transfer latencies for large transfer sizes

data packets. When the packet loss probability increases
from 3% to 10%, the probability that a packet loss is
detected via RTO increases from 0.39 to 0.57. The smaller
the congestion window size is, the higher is the probability
that a packet loss requires an RTO. Thus, for a transfer of 92
data packets when the packet loss probability is 10% (the
expected number of losses is 9.2), all the losses are expected
to be detected via RTO. This adds a lot of time to the data
transfer time in the model, but is not the case for
simulations.

5. Extension to CATNIP TCP
In this section, we demonstrate the generality of our TCP
model by extending it to model CATNIP TCP. Recently,
Wu and Williamson (2002) proposed CATNIP TCP, a
Context-Aware Transport/Network Internet Protocol for the
Web. CATNIP TCP classifies packets in a transfer into two
categories (high priority and low priority) based on their
potential impact on TCP response time when lost. CATNIP
TCP allows network routers to use this priority information
to make smarter packet-discard decisions when congested,
rather than using (for example) Drop-Tail (Padhye et al.,
2000) or Random Early Detection (RED) (Mah, 1997) as a
queue management strategy.

Extending the Model to Partial CATNIP TCP
Due to the difficulty of modeling the TCP congestion
window dynamics for a target packet loss probability, we
approximate CATNIP TCP by considering only the first 3
and last 3 packets as high priority packets. That is, we
ignore the high priority marking of any intermediate packets
sent when . With this pessimistic assumption, our
stochastic model is easily extended to CATNIP TCP.
Assume that there are N packets to transfer. The packet loss
probability for any of the high priority packets is , and
the loss probability of any other packets is , where

. Considering that each packet loss is independent of

sender behavior, the modeling work can be decomposed into
three steps:

3≤cwnd

'p
p

pp ≤'

1. Transfer the first 3 packets.
2. Transfer the N-6 packets assuming there are N-3

packets to transfer.
3. Transfer the last 3 packets.

Note that for step 2, we count the time to transfer N-6
packets with the total number of packets to transfer as N-3,
rather than N-6. Otherwise, Equation 3 in the model
generates fewer data packets than expected to be sent in the
slow start phase before a loss occurs for each cycle. This
forces more cycles to complete a data transfer, and thus
overestimates the transfer latency. Also for step 3, the initial
congestion window size, w1, can be calculated based on the
value of E[Wss] at the end of last round when transferring
the N-6 packets, as . If we consider the
limitation of the maximum congestion window size, there
are restrictions on w

γ⋅=][1 ssWEw

1 as follows:
if , . max1 Ww ≥ max1 Ww =

if , . 0.21 <w 0.21 =w

By applying the new model to each step and summing the
latencies, we obtain the expected transfer latency for the
entire transfer. The above approach to model CATNIP TCP
is referred to as the Partial CATNIP TCP model, because it
does not consider any intermediate high priority packets
sent when 3≤cwnd . The differences between Partial
CATNIP TCP and CATNIP TCP are compared in
simulation experiments.

Comparison between CATNIP TCP and Partial
CATNIP TCP
Figure 5 compares the frequency distribution and
cumulative distribution of transfer times between CATNIP
TCP and Partial CATNIP TCP for a short-lived flow
transferring 32 KB when the packet loss probability is 5%.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Transfer Time (sec)

Fr
eq

ue
nc

y
(%

)

Partial CATNIP

CATNIP

(a) p=5% (PDF)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Transfer Time (sec)

C
um

ul
at

iv
e

Fr
ac

tio
n

Partial CATNIP

CATNIP

(b) p=5% (CDF)

Figure 5: Comparison between CATNIP & Partial CATNIP for 32 KB data transfers

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

Data Transfer Size (Packets)

Tr
an

sf
er

 T
im

e
(s

ec
)

TCP Reno (Simulated)
Partial CATNIP (Simulated)

Partial CATNIP (Analytical)

(a) p=1%

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

Data Transfer Size (Packets)

Tr
an

sf
er

 T
im

e
(s

ec
)

TCP Reno (Simulated)

Partial CATNIP (Simulated)

Partial CATNIP (Analytical)

(b) p=10%

Figure 6: Simulated and modeled transfer latencies of short-lived flows for Partial CATNIP

The transfer time distributions of CATNIP TCP and
Partial CATNIP TCP are almost the same. This is because
the expected number of losses (congestion window decrease
events) is about 1, and thus the number of packets sent when

 (except the first 3 and last 3 packets) is small. So
the difference between CATNIP TCP and Partial CATNIP
TCP is not apparent.

3≤cwnd

Performance Evaluation for Partial CATNIP TCP
Figures 6 shows the simulated transfer latencies for short-
lived flows when the loss probability p for low priority
packets is 1% and 10%, and the loss probability for high
priority packets is 0%. This is the best possible case for
Partial CATNIP TCP. Obviously, Partial CATNIP TCP
improves the TCP latencies compared to TCP Reno. When
the data transfer size increases from 6 to 36 data packets, the
ratio of the number of high priority packets over the total
number of packets in a transfer decreases from 100% to

17%. Correspondingly, the transfer time of Partial CATNIP
TCP is less than that of TCP Reno when p is set at 1% and
10%, and the difference ranges by 5-32% and 20-42%,
respectively. Thus, we can conclude that Partial CATNIP
TCP is 5-42% faster than TCP Reno, depending on the
transfer size and the packet loss ratio.

'p

To evaluate the Partial CATNIP TCP model, the
predicted transfer latencies are also plotted in Figure 6.
Regardless of the loss probability p, the Partial CATNIP
TCP model fits the simulation closely. Partial CATNIP TCP
model provides relative error less than 22%.

6. Summary
In this paper, we propose an accurate TCP latency model for
short-lived TCP flows with random packet loss, which
reflect current TCP transfers carrying Web traffic. We
model a data transfer as alternating cycles, with TCP state
information (i.e., congestion window size and remaining

data to transfer) carried over from one cycle to the next.
This is different from previous Markov regenerative models.
Simulation results using the ns-2 simulator show that our
model fits the simulated values closely for a wide range of
packet loss probabilities, performing better than previous
models. Simulation results also show close agreement for
long-lived TCP transfers.

We also extended our model to Partial CATNIP TCP.
Partial CATNIP TCP is different from CATNIP TCP in that
it does not consider as high-priority intermediate packets of
the flow sent when . Simulation experiments and
statistical analysis indicate that the transfer times of Partial
CATNIP TCP are within 15% of those of CATNIP TCP.
The validation experiments demonstrate that the Partial
CATNIP TCP model fits the simulation closely.

3≤cwnd

In addition, performance comparisons between Partial
CATNIP TCP and TCP Reno demonstrate that for short-
lived flows, Partial CATNIP TCP is 5-42% faster than TCP
Reno when packet loss probability is less than 10%. This
shows that CATNIP TCP is a suitable approach to improve
TCP performance. The results provide further insight into
CATNIP TCP performance.

References
Balakrishnan, H., Padmanabhan, V., Seshan, S., Katz, R., &

Stemm, M. (1998, April). TCP behaviour of a busy
Internet server: analysis and improvements. Proc. of IEEE
INFOCOM, San Francisco, CA.

Cardwell, N., Savage, S., & Anderson, T. (1998, October).
Modeling the performance of short TCP connections.
Retrieved May 1, 2003, from
http://www.cs.washington.edu/homes/cardwell/
quals/quals-paper.ps

Cardwell, N., Savage, S., & Anderson, T. (2000, March).
Modeling TCP Latency. Proc. of IEEE INFOCOM, Tel
Aviv, Israel.

Claffy, K., Miller, G., & Thompson, K. (1998, July). The
nature of the beast: recent traffic measurements from an
Internet backbone. Proc. of INET.

Cunha, C., Bestavros, A., & Crovella, M. (1995, July).
Characteristics of WWW client based traces (Tech. Rep.
BU-CS-95-010). Boston University.

Heidemann, J., Obraczka, K., & Touch, J. (1997, October).
Modeling the performance of HTTP over several
transport protocols. IEEE/ACM Transactions on
Networking, 5(5), 616-630.

Law, A., & Kelton, W. (2000). Simulation Modeling and
Analysis (3rd ed.). New York: McGraw-Hill.

Li, Y. (2004). Modeling Web/TCP Transfer Latency. Master
of Science Thesis, Department of Computer Science,
University of Calgary, Calgary, AB.

Mah, B. (1997, April). An empirical model of HTTP
network traffic. Proc. of IEEE INFOCOM, Kobe, Japan.

Mahdavi, J. (1997, April). TCP performance tuning.
Retrieved May 1, 2003, from
http://www.psc.edu/netowrking/tcptune/slides

Mathis, M., Semke, J., Mahdavi, J., & Ott, T. (1997, July).
The macroscopic behaviour of the TCP congestion

avoidance algorithm. ACM Computer Communication
Review, 27(3), 67-82.

Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A. (1996,
October). TCP Selective Acknowledgement Options.
RFC 2018, IETF.

Padhye, J., Firoiu, V., & Towsley, D, & Kurose, J. (1998,
September). Modeling TCP Throughput: a simple model
and its empirical validation. Proc. of ACM SIGCOMM,
Vancouver, BC.

Padhye, J., & Floyd, S. (2001, August). On inferring TCP
behaviour. Proc. of ACM SIGCOMM, San Diego, CA.

Padhye, J., Firoiu, V., & Towsley, D. (2000, April).
Modeling TCP Reno performance: a simple model and its
empirical validation. IEEE/ACM Transactions on
Networking, 8(2), 303-314.

Partridge, C., & Shepard, T. (1997, September). TCP/IP
performance over satellite links. IEEE Network, 11(5),
44-49.

Paxson, V. (1997, September). End-to-end Internet packet
dynamics. Proc. of ACM SIGCOMM, Cannes, France.

Sikdar, B., Kalyanaraman, S., & Vastola, K. (2001a). An
integrated model for the latency and steady-state
throughput of TCP connections. Performance Evaluation,
46(2), 139-154.

Stevens, W. (1994). TCP/IP Illustrated, Vol. 1, Addison
Wesley.

Tanenbaum, A. (1996). Computer Networks (3rd ed.).
Englewood Cliffs, NJ: Prentice-Hall.

Thompson, K., Miller, G., & Wilder, R. (1997, November).
Wide-area Internet traffic patters and characteristics.
IEEE Network, 6(11), 10-23.

Wu, Q., & Williamson, C. (2002, March). Context-aware
TCP/IP. ACM Performance Evaluation Review, 29(4), 11-
23.

	1. Introduction
	2. Background and Related Work
	TCP Overview
	Related Work

	3. A Hysteresis-based Model
	Assumptions
	Model Overview
	The Slow Start Phase We follow the work in (Cardwell et al.,
	The Packet Loss Phase We use an analysis similar to (Cardwel
	Generate a random number RAND

	Total Latency Combining the results of the previous subsecti

	4. Simulation Experiments
	Methodology
	Comparison with Previous TCP Models

	5. Extension to CATNIP TCP
	Extending the Model to Partial CATNIP TCP
	Comparison between CATNIP TCP and Partial CATNIP TCP
	Performance Evaluation for Partial CATNIP TCP

	6. Summary
	References

