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Abstract

This paper studies the performance of call dropping
policies for networks with stochastic capacity variation.
Call-level simulation is used to compare the call block-
ing performance of 9 call dropping policies under a wide
range of call workload and network capacity assump-
tions. Contrary to prior claims in the literature, our
results show significant performance differences among
dropping policies: the choice of an appropriate call
dropping policy can significantly reduce call blocking,
improving overall call-level performance in a stochastic
capacity network. The effect is even more pronounced
as the frequency and variance of capacity changes in-
crease relative to the call workload characteristics. We
propose an “equivalent capacity” model to capture the
dynamics of these interactions.

Keywords: Stochastic Capacity Networks, Simula-
tion, Call Blocking, Call Dropping, Wireless CDMA

1 Introduction

In many network environments, the available net-
work capacity varies unpredictably with time [2, 5, 14,
15, 23]. For example, in a reservation-based network
with multiple priority levels, high priority calls such
as video conferences or emergency services may take
precedence over ordinary traffic. The network capacity
available for low priority traffic thus varies with time
based on high priority traffic demands. In wireless net-
works, capacity variation arises from the mobility of
users (e.g., handoffs) and the time-varying character-
istics of the wireless propagation environment. The
patterns of wireless interference for the active connec-
tions may dynamically change the available capacity
for these connections [6, 8]. This phenomenon applies

to wireless LANs and CDMA systems.

The traditional approaches to the limited-capacity
problem are advance reservations, admission control,
and adaptive rate control. For example, Asynchronous
Transfer Mode (ATM) networks use Connection Ad-
mission Control (CAC) to determine which calls are
allowed into the network, based on their requested re-
source demands and the currently available network
capacity. To provide guaranteed Quality of Service
(QoS), high priority calls must reserve resources in
advance [3, 4, 19], or preempt resources at the time
they are needed. In wireless CDMA systems, dynamic
power control and rate adaptation are used to reduce
the aggregate data rate when capacity problems oc-
cur [13, 21]. This approach maintains all active calls,
but with degraded service quality.

In this paper, we study a different approach to
the stochastic capacity problem, namely call dropping.
This approach removes (drops) selected calls from the
network when the traffic demands exceed the available
capacity. In most networks, call dropping is viewed as
a last resort. That is, call blocking at the time of call
arrival is deemed preferable to call dropping in the mid-
dle of a call [16, 23]. Even if call dropping is permitted,
the belief is that the call dropping policy makes little
or no difference [7].

Our paper makes three main contributions. First,
we show via simulation that call dropping policies can
have an important impact on call-level performance in
a stochastic capacity network. These differences mani-
fest themselves at medium-to-high network load, with
call blocking rates of 1-3%. In this regime, a well-
chosen call dropping policy can reduce the overall call
blocking rate by 16%. Second, we show that the choice
of a call dropping policy is especially important in net-
works with high-frequency and high-variance capacity
changes, as is typical in wireless CDMA systems with
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mobile users. In general, policies that reclaim more
network resources can better tolerate high-frequency
capacity changes. Finally, we propose an equivalent
capacity model to reflect the interactions between the
call workload and the stochastic capacity variation.

The rest of the paper is organized as follows. Sec-
tion 2 briefly discusses prior related work. Section 3 de-
fines our stochastic capacity models and call dropping
policies. Section 4 describes the setup for our call-level
simulation study, while Section 5 presents our simu-
lation results. Section 6 discusses equivalent capacity
modeling. Section 7 concludes the paper.

2 Related Work

There are many papers in the literature discussing
CAC in variable-capacity networks [7, 9, 10, 11, 21, 22].
However, much of this work has restrictive assumptions
about the call workload or the capacity variation pro-
cess. Some CAC schemes assume a Poisson request
arrival process, which may not be representative of re-
alistic network traffic. Some approaches unrealistically
assume advance knowledge about the capacity changes,
or with only the timing of the changes considered as a
stochastic process [23]. Other work [17, 23] models
random capacity changes, but does not consider time
correlations in the capacity variation.

These assumptions are worrisome because they may
not be representative of capacity-varying networks. For
example, in wireless data networks, the connection ar-
rival process may not be Poisson [5, 12, 18], particularly
when handoffs occur. Furthermore, capacity changes
are not always known in advance, and there are many
possible correlations induced by the active traffic pat-
terns in the network [1, 13, 20].

Some papers in the literature state (or assume) that
call dropping policies have little or no impact on the
network performance [7]. Our work shows that this
assumption is not true. To the best of our knowledge,
our work is the first to explore this issue in detail.

One paper that does mention dropping policies is
the paper by Siwko and Rubin [23]. Their paper fo-
cuses on CAC strategies in stochastic capacity net-
works, assuming IFR (increasing failure rate) holding
time distributions. They consider a hybrid dropping
policy combining Last-Come-First-Drop and Random,
and then evaluate CAC strategies for network loads
ranging up to 500%. By contrast, our work considers
9 different dropping policies at moderate-to-high net-
work load, under the assumption of Greedy CAC.

Our work explores call-level performance in stochas-
tic capacity networks, for a very broad range of call
workload and network capacity assumptions. We ar-

gue that disrupting some calls is unavoidable in such
a network when capacity decreases occur. An appro-
priate dropping policy is important to maintain overall
system performance, particularly when the traffic de-
mands and the capacity variation have complex statis-
tical behaviours.

3 System Model

3.1 Call Workload

We model a generic call-level workload, suitable for
an arbitrary network carrying either voice or data ser-
vices. New calls arrive according to a specified arrival
process: we consider Poisson as well as burstier ar-
rival processes. Each call has a specified holding time,
drawn from a specified distribution (e.g., Exponential,
Pareto). Each call requires one unit of network capac-
ity for the duration of the call.

The network uses a simple Greedy CAC algorithm.
A call is admitted into the network if adequate capacity
exists for it at the time of call arrival. There is no future
lookahead in the CAC mechanism.

3.2 Network Capacity Model

We model a stochastic capacity network. The net-
work has an overall average capacity for carrying C

simultaneously active calls, but the capacity varies ran-
domly with time.

An example of our stochastic network capacity
model is shown in Figure 1. The horizontal axis rep-
resents time, while the solid line portrays the avail-
able network capacity at each instant in time. We
model capacity changes as events that occur at speci-
fied points in time. The network capacity always has
a non-negative integer value, but the capacity changes
can occur at arbitrary points in continuous time.

Our model specifies four characteristics of the
stochastic capacity process. One characteristic is the
frequency of capacity changes in the network. A second
characteristic is the distribution used for the elapsed
time between network capacity changes. We consider
Deterministic, Exponential, and Self-Similar models
for this timing structure. A third characteristic in the
model is the distribution used for the network capac-
ity itself. We focus primarily on the Normal distri-
bution, for which it is easy to control both the mean
and the variance of the network capacity. The mean
of this distribution matches the long-term average of C

calls, while the variance affects the magnitude of capac-
ity fluctuations that can occur. A final characteristic
is the correlation structure in the capacity time series
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process. We consider independent and identically dis-
tributed (iid) samples as well as self-similar processes.

3.3 Call Dropping Policies

Call dropping occurs in a stochastic capacity net-
work when the aggregate traffic demand in the net-
work temporarily exceeds the available network capac-
ity. This phenomenon happens if the network is full or
nearly full when a capacity decrease occurs. The net-
work must expunge one or more victim calls in order
to meet the new capacity constraints.

Two call dropping episodes are shown in Figure 1.
The dashed line shows the offered call workload. It is a
stochastic process, determined by call arrival and call
departure events. The dashed line represents the ideal
call occupancy in an infinite-capacity network, for this
example workload. At time 42, a capacity decrease
from C = 10 to C = 5 occurs, shortly after a sixth
active call was admitted to the network. One victim
call has to be dropped (removed) from the network at
this point. At time 74, another call dropping episode
occurs. This episode may require 2 additional calls to
be dropped, perhaps depending on how the first call
dropping episode was handled.

Choosing which call(s) to drop in a dropping episode
is determined by a call dropping policy. In this paper,
we consider 9 call dropping policies, in five categories:

• Randomized Policies: The first policy consid-
ered is the Random policy. It chooses uniformly
at random amongst the active calls in the network
whenever a victim call must be dropped. This
simple policy provides a baseline for comparison
of other policies. Policies that perform worse than
Random are undesirable.

• Arrival-based Policies: The arrival-based poli-
cies use call arrival time information to determine

the ‘age’ of each existing call. Two such policies
are considered. The NewestArrival policy removes
the youngest call from the network, enforcing a
Last-In-First-Out (LIFO) policy when call drop-
ping occurs. The OldestArrival policy removes the
oldest call from the network, enforcing a First-In-
First-Out (FIFO) policy. Both policies rely only
on the past history of call arrivals, and are easy to
implement in practice.

• Departure-based Policies: The departure-
based policies rely on call departure time infor-
mation. In a general network, these policies re-
quire omniscient future knowledge, and are not
practically implementable. In a reservation net-
work, the call departure time is determined from
the call arrival time and the reservation duration.
Two different policies are considered. The Earli-
estDeparture policy removes from the network the
active call that is scheduled to complete next. The
LatestDeparture policy drops the active call whose
departure time is furthest in the future.

• Duration-based Policies: These policies use
call duration information only. The ShortestDu-
ration policy removes from the network the call
with the shortest holding time specified at the time
of its arrival, regardless of its current state. The
LongestDuration policy drops the active call with
the longest original holding time, regardless of its
current state. In a general network, these policies
require future knowledge, or good heuristics for
estimating call duration.

• Completion-based Policies: The completion-
based policies use a combination of call arrival
time and call duration information. Calls are
ranked based on their relative closeness to com-
pletion, expressed as a percentage. The Least-
Completed policy removes from the network the
call that has completed the smallest proportion
of its originally-intended service. The MostCom-
pleted policy drops the call that has completed the
largest proportion of its planned service.

4 Experimental Methodology

In the rest of the paper, we use call-level simula-
tion to illustrate the performance differences among
call dropping policies. The simulation approach allows
us to study a wide range of call workload and network
capacity characteristics, generalizing our observations
to more realistic network assumptions. This section de-
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scribes the experimental setup for our simulation study,
while Section 5 presents the simulation results.

4.1 Simulation Model

Our work is carried out using call-level simulation.
We model admission control at an access node in a
network with time-varying capacity.

The two inputs provided to the simulation are a call
workload file and a network capacity file. The call
workload file is a time-ordered sequence of call arrival
events. Each call specifies its source node, destination
node, arrival time, and duration. Each call requires one
unit of network capacity. Workload files are generated
using the call workload models indicated in Table 1.
We use workload files with 100,000 calls. We consider
this trace length adequate to highlight performance dif-
ferences among the call dropping policies evaluated.

Table 1. Call-Level Workload Parameters

Parameter Levels

Stochastic Arrival Process Poisson, Self-Similar
Traffic Holding Time Exponential, Pareto

Call Arrival Rate (calls/sec) 0.1 . . . 1.0 . . . 6.0
Mean Call Holding Time (sec) 30

The network capacity file is a time-ordered sequence
of capacity change events. Capacity files are gener-
ated using the models and parameters indicated in Ta-
ble 2. We use capacity files with 10,000 capacity change
events. In some simulations, only the initial portion of
the capacity file is needed, depending on the frequency
of capacity changes.

The different call dropping policies are modeled
within the simulator. We provide each policy with
the same workload and capacity files, so that they
each handle the same traffic demands under the same
network conditions. Differences observed in the call-
level performance reflect differences in the call drop-
ping policies used. Only the Random policy has non-
deterministic (randomized) behaviour. For this policy,
we use 3 runs with different random number seeds.

4.2 Experimental Design

Table 3 shows the factors and levels used in our sim-
ulation experiments. We explore the impact of different
call dropping policies on the call-level performance, for
a broad range of network capacity variation.

The primary performance metrics are the call block-
ing probability and the call dropping probability.
These metrics characterize the user-perceived QoS.

5 Simulation Results

5.1 Overview

Figure 2 provides an overview of the simulation re-
sults, by plotting call-level performance as a function of
offered load. These results are from a single represen-
tative simulation run with 100,000 calls. Figure 2(a)
presents the call blocking results, showing the propor-
tion of offered calls rejected from the network at the
time of their arrival. Figure 2(b) presents the call drop-
ping results, showing the proportion of the accepted
calls that are subsequently dropped from the network
prior to their completion. In both plots, the horizon-
tal axis shows the offered load in Erlangs. The call
arrival process is Poisson, and the call holding times
are exponentially-distributed with a mean of 30 sec-
onds. The network capacity varies stochastically, with
a random capacity change every 10 seconds. The ca-
pacity (in calls) is drawn from a Normal distribution
with a mean of 40 and a standard deviation of 2. We
chose these parameter values as a model for a typical
commercial wireless CDMA system.

Figure 2 shows that the call blocking rate and the
call dropping rate both increase with offered load, as
expected. Call blocking and call dropping are negli-
gible at or below a load of 20 Erlangs. It is rare for
the network to approach saturation at this load level,
and rare for a capacity change to trigger call dropping.
When the offered load is 30 Erlangs (75% average load),
call blocking becomes noticeable (about 2%). A small
proportion of call dropping also occurs (about 0.4%).
Beyond a load of 40 Erlangs, the network is overloaded,
and the call blocking rate exceeds 10%. The call drop-
ping rate increases as well.

Three main observations are evident from Figure 2.
First, the simulation results are structurally similar
for both call blocking and call dropping, though the
call dropping rate is typically much lower than the call
blocking rate (note the different vertical scales on the
graphs). This property holds throughout our simula-
tion results. Second, performance differences between
the 9 dropping policies become apparent, especially at
higher loads. The best policies are LatestDeparture,
LongestDuration, and LeastCompleted, which tend to
reclaim a relatively large amount of (previously com-
mitted) network capacity when they disrupt a call. The
worst policies are EarliestDeparture, ShortestDuration,
and MostCompleted, which do not. The in-between
policies are Random, NewestArrival, and OldestAr-
rival. In fact, the simulation results show that arrival-
based policies (NewestArrival and OldestArrival) are
no more effective than Random call dropping. Third,
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Table 2. Network Capacity Parameter Settings in Call-Level Simulations

Parameter Levels

Mean Time between Capacity Changes (sec) 10, 15, 30, 60, 120
Stochastic Capacity Change Time Deterministic, Exponential, Self-Similar
Capacity Capacity Change Value Normal
Capacity Mean 40

Value (calls) Standard Deviation 2, 5

Table 3. Factors and Levels in Call-Level Simulations

Factor Levels

Call Random, NewestArrival, OldestArrival,
Dropping EarliestDeparture, LatestDeparture, ShortestDuration,

Policy LongestDuration, LeastCompleted, MostCompleted
Stochastic Capacity Change Time Deterministic, Exponential, Self-Similar
Capacity Capacity Change Value Normal
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the relative ordering of policies in Figure 2(a) is quite
consistent with that in Figure 2(b). In both graphs,
the key shows the relative ordering of policies at a load
of 60 Erlangs. Policies with a low call dropping rate
tend to have a low call blocking rate.

These observations motivate our detailed study of
call dropping policies in the following subsections. Un-
less stated otherwise, all remaining experiments use
an offered load of 30 Erlangs, so that the average call
blocking rate is about 1-3%. We consider this regime
more relevant than the heavy overload conditions stud-
ied by Siwko and Rubin [23].

5.2 Frequency of Capacity Changes

Next, we vary the frequency of capacity changes in
the network, to study the effect on call-level perfor-
mance. Figure 3 shows these simulation results, with
call blocking in Figure 3(a) and call dropping in Fig-
ure 3(b). In both plots, the horizontal axis represents
the time between random capacity changes in the net-
work. For these results, the mean network capacity
is drawn from a Normal distribution, with a mean of
40 calls and a standard deviation of 5. The capacity
changes exactly every T seconds, where T is indicated
along the axis. The left end of the scale represents
high frequency changes (every 10 seconds), while the
right end represents low frequency changes (every 120
seconds). The mean call holding time is 30 seconds.

Figure 3 illustrates six important observations.
First, the average call blocking rate (3.5%) is slightly
higher here than in Figure 2(a) for a load of 30 Er-
langs. This result occurs because of the higher stan-
dard deviation (5 versus 2) in the stochastic network
capacity model. Second, the number of calls dropped
depends on the frequency of capacity changes. As the
time between capacity changes increases, the call block-
ing rates for all policies asymptotically converge toward
the same value, and the call dropping rate asymptot-
ically approaches 0. This result is as expected, since
low-frequency changes approximate a static network,
for which the Erlang B blocking formula can be di-
rectly applied [24]. If capacity changes are infrequent,
few calls need to be disrupted. Third, the perfor-
mance differences between dropping policies are more
pronounced when there is a high frequency of capac-
ity changes in the network. This result makes sense
since high-frequency changes imply more call drop-
ping episodes, and thus greater opportunity for distinc-
tions among policies. Fourth, the differences among
policies manifest themselves more clearly in the call
blocking performance than in the call dropping perfor-
mance. The negligible differences in call dropping per-

formance indicate that all policies disrupt about the
same number of calls. The important observation is
that carefully choosing which calls are disrupted can
significantly benefit the call blocking performance. For
example, for high-frequency capacity changes, the call
blocking rate is 2.89% for the LatestDeparture policy
(16% lower than for the Random policy) and 4.70% for
the EarliestDeparture policy (37% higher than for the
Random policy). Fifth, the relative ordering of poli-
cies here is consistent with that in Figure 2. LatestDe-
parture, LongestDuration, and LeastCompleted provide
the best performance, while EarliestDeparture, Short-
estDuration, and MostCompleted provide the worst. Fi-
nally, the relationship between call blocking rate and
frequency of capacity changes in Figure 3(a) is not
strictly monotonic. For some policies, the call block-
ing rate decreases as capacity changes become less fre-
quent, while for other policies, including Random, the
behaviour is non-monotonic. This phenomenon is dis-
cussed further later in the paper.

5.3 Variability of Capacity Changes

Figure 4 shows the impact of network capacity vari-
ability on call-level performance. These graphs show
call blocking (Figure 4(a)) and call dropping (Fig-
ure 4(b)) results for three selected dropping policies,
namely EarliestDeparture (worst), Random, and Lat-
estDeparture (best). Results are shown for two different
stochastic capacity models. Each has capacity changes
every T seconds (10 ≤ T ≤ 120), with the capacity
value drawn from a Normal distribution with a mean
of 40 calls. However, one has a standard deviation of
2, and the other a standard deviation of 5. The ver-
tical error bars in Figure 4(a) show the minimum and
maximum call blocking rates observed from 10 simula-
tion runs. Error bars are omitted on other graphs to
improve readability.

Figure 4 shows that the higher-variability capacity
model has a higher call blocking rate and a higher
call dropping rate. These results are as expected, be-
cause more capacity variation occurs. The separation
between dropping policies is more pronounced with
higher capacity variability.

These results show that for networks with high-
frequency or high-variability capacity changes, the call
dropping policy can have a large impact on call block-
ing performance.

5.4 Timing of Capacity Changes

Figure 5 shows the impact of the capacity change
process on the call-level performance. We consider
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Figure 4. Effect of Capacity Variability on Call-Level Performance

three different models for the timing between capac-
ity change events: Deterministic, Exponential, and
Self-Similar. The Deterministic model has a capacity
change event every T seconds. The Exponential model
has capacity change events at random times, following
a Poisson process. The time between capacity change
events is exponentially distributed with a mean of T

seconds. The Self-Similar model assumes that capac-
ity change events occur in a bursty fashion, similar to a
self-similar (fractal) process. The mean time between
capacity change events is T seconds.

Figure 5 shows that the timing structure of the ca-
pacity change process has a small impact on the call
blocking performance (Figure 5(a)), but a larger im-
pact on the call dropping performance (Figure 5(b)).
These results are for a Normal(40,2) distribution of
the network capacity. Figure 5(a) shows a complex
relationship between the call blocking rate and the fre-
quency of capacity changes. These results are for two
dropping policies (LatestDeparture and Random), and
the three different capacity change models.

5.5 Correlation of Capacity Changes

Figure 6 studies the effect of correlations in the ca-
pacity values. These results consider capacity changes
every 30 seconds for two different capacity value mod-
els: Self-Similar and Random. In the Self-Similar
model, the capacity values constitute a self-similar pro-
cess, with short-range and long-range correlations. In
the Random model, the same capacity trace is shuf-
fled into a random order to remove short-range and
long-range correlations. In both models, the mean and
standard deviation of the capacity are the same.

Figure 6 shows that correlations in the capacity
change process are beneficial. The upper three lines
in each plot are for the Random (uncorrelated) model,

which can have large fluctuations in network capac-
ity at any time scale. The lower three lines are for
the Self-Similar model, which has both short-term and
long-term correlation present in the capacity value time
series. Correlated capacity values produce more grad-
ual changes in capacity, with less severe call blocking
and call dropping rates. In other words, the presence
of correlation in the capacity value time series changes
the “equivalent capacity” of the network.

6 Equivalent Capacity Modeling

This section discusses the concept of equivalent ca-
pacity, and the interplay between call workloads and
stochastic network capacity variation.

6.1 Motivation

The classic Erlang B formula expresses the relation-
ship between offered load (in Erlangs), link capacity,
and call blocking rate [24]. Given any two of these
values, the third can be calculated directly. An illus-
tration of this relationship appears in Figure 7(a).

There are two main assumptions in the derivation
of the Erlang B formula. The first assumption is that
the link capacity is fixed. This finite capacity bounds
the one-dimensional Markov chain used in the deriva-
tion, so that the loss rate can be determined. The sec-
ond assumption is that the call arrival process is Pois-
son, to facilitate Markov chain analysis. Some authors
further assume exponentially-distributed call holding
times, but this is not strictly required. Only the mean
holding time matters.

In stochastic capacity networks, the first assumption
is violated, so the Erlang B formula no longer applies.
Therefore, other solutions are required. The most obvi-
ous approach is a two-dimensional Markov chain, with
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the second dimension modeling the network capacity.
However, this requires an assumption that the capac-
ity variation process is Markovian, which restricts the
scope of the analysis.

Our ongoing work is exploring approaches for per-
formance modeling and analysis of stochastic capacity
networks. Analogous to the Equivalent Random Traffic
methods adapting non-Markovian traffic to the Erlang
B formula, we envision an Equivalent Capacity model
to account for stochastic capacity variation. Our cur-
rent simulation work makes preliminary contributions
toward this goal.

6.2 Modeling Framework

Figure 7(b) shows the conceptual framework for our
equivalent capacity modeling. We believe that three
different inputs are required compared to Figure 7(a).
The first of these new inputs is the stochastic capacity
variation process. The second is the call dropping pol-
icy. The third is CAC. We comment briefly on each of
these below.

As demonstrated by our simulation results, stochas-
tic capacity variation can have a dramatic impact on
call-level performance. The important factors are the
frequency and variance of the capacity changes, espe-
cially their behaviour relative to the call workload char-
acteristics. High frequency capacity changes, relative
to the call holding times, lead to a high call dropping
rate. High variability in the stochastic capacity pro-
cess, relative to the variability of the call workload,
strongly influences the call-level performance.

The call dropping policy and CAC also have an
important role to play. Across a wide range of of-
fered load, there are noticeable differences in the call-
level performance with different call dropping policies.
These differences manifest themselves at medium-to-
high load, with call blocking rates of 1-3%.

The main reason that call dropping policies mat-
ter is that they affect resource reclamation, and thus
the equivalent network capacity. They also affect the
relative time scales of the capacity variation process.
Dropping policies thus need to be part of the equiva-
lent capacity model.

We have made some progress on the mathematical
modeling of equivalent capacity, but the results are too
preliminary to include here. Instead, we close our dis-
cussion with an illustrative example of the influences
of call dropping policies and equivalent capacity on call
blocking performance.

Table 4. Call-Blocking Simulation Results for
Workload PE30 on Capacity DN(40,2)

Dropping Mean Time Between Capacity Changes
Policy 10 s 15 s 30 s 60 s 120 s

Random 1.814 1.740 1.685 1.777 1.773
NewestArr 1.819 1.746 1.679 1.774 1.774
OldestArr 1.829 1.752 1.682 1.774 1.773

EarliestDep 2.013 1.879 1.773 1.821 1.781
LatestDep 1.682 1.665 1.623 1.764 1.764

ShortestDur 1.939 1.826 1.744 1.805 1.776
LongestDur 1.707 1.685 1.635 1.767 1.769
LeastComp 1.758 1.701 1.655 1.767 1.771
MostComp 1.974 1.851 1.762 1.805 1.780

6.3 Numerical Example

There is a subtle but interesting phenomenon in our
simulation results, wherein the call blocking rate ex-
hibits non-monotonic behaviour with respect to the fre-
quency of capacity changes. Each call dropping policy
exhibits its own behaviour, often with the lowest call
blocking rate achieved at a different capacity change
frequency than other policies.

We investigated this phenomenon further, to under-
stand whether it is a statistical anomaly, or an in-
herent behaviour. We believe that this phenomenon
reflects the interactions between the stochastic traf-
fic workload and the stochastic network capacity. The
non-monotonic behaviour is related to the relative time
scales of the two stochastic processes.

Additional evidence of this phenomenon appears in
Table 4 and Table 5. These tables show the mean
call blocking rate from the simulations for two differ-
ent capacity change timing models: Deterministic in
Table 4, and Exponential in Table 5. Both assume a
Normal(40,2) distribution for the capacity values. Re-
sults are shown for all 9 call dropping policies, and 5
different time scales for capacity changes.

The lowest call blocking rate (highlighted in bold)
for each dropping policy is observed in the middle col-
umn of Table 4, where the mean time between capacity
changes (30 sec) matches the mean call holding time.
In separate experiments varying the mean call holding
time (not shown here), the lowest call blocking rate
tends to shift columns accordingly. That is, call block-
ing is lowest when there is an average of 1 capacity
change event per call duration.

Surprisingly, none of the policies achieve their lowest
blocking rate in the middle column of Table 5. The only
difference here is the random timing of the capacity
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Table 5. Call-Blocking Simulation Results for
Workload PE30 on Capacity EN(40,2)

Dropping Mean Time Between Capacity Changes
Policy 10 s 15 s 30 s 60 s 120 s

Random 1.794 1.729 1.789 1.758 1.756
NewestArr 1.808 1.735 1.792 1.757 1.758
OldestArr 1.800 1.724 1.790 1.755 1.754

EarliestDep 1.974 1.871 1.834 1.797 1.773

LatestDep 1.680 1.645 1.751 1.723 1.749
ShortestDur 1.922 1.825 1.821 1.789 1.767

LongestDur 1.711 1.660 1.761 1.729 1.750
LeastComp 1.740 1.687 1.777 1.736 1.750
MostComp 1.942 1.849 1.826 1.791 1.772

changes (Exponential instead of Deterministic). For
some policies, the lowest call blocking rate moves to
the left (i.e., higher frequency changes, at shorter time
scales), while for other policies, the lowest call blocking
rate moves to the right (i.e., lower frequency changes,
at longer time scales).

In general, policies that reclaim more network re-
sources (i.e., LatestDeparture, LongestDuration, and
LeastCompleted) can better tolerate high-frequency ca-
pacity changes. This phenomenon contributes to the
non-monotonicity observed. It also illustrates the non-
trivial interplay between dropping policies, call work-
load, and stochastic capacity variation.

7 Conclusions

This paper studies call dropping policies for net-
works with stochastic capacity variation. Call-level
simulation is used to study 9 different call dropping
policies with respect to their call blocking and call
dropping rates. The simulations are conducted for a
broad set of call workload and network capacity as-
sumptions.

The results show significant differences among drop-
ping policies, particularly for high-frequency and high-
variability capacity change models. The choice of an
appropriate call dropping policy can reduce the call
blocking rate significantly, improving overall call-level
performance in a stochastic capacity network.

Ongoing work is refining our mathematical analysis
of stochastic capacity networks using a semi-Markov
model. Future work will study CAC schemes for
stochastic capacity networks, as well as heuristics for
classifying flow durations. Stochastic capacity models
derived from wireless user mobility are also under de-
velopment.
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