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Abstract

This paper describes the analysis of low-level measure-
ments from a CDMA2000 1x cellular data network. The
network traces record detailed information about wireless
Internet packet data call activity on the network, includ-
ing mobile station identity, call initiation, burst behaviour,
supplementary channel usage, soft handoffs, and call termi-
nation. The analysis in this paper focuses on one continu-
ous week-long trace data set, representative of cellular data
network activity. The results from the analysis illustrate the
burstiness of the packet call arrival process and the diurnal
patterns of cellular data users. The results also characterize
the activity per cell site, activity per user, data burst activity,
user mobility, and the density of cellular network coverage.
Several observations reinforce known results about heavy-
tailed properties in wired Internet traffic, while others show
interesting differences in wireless versus wireline traffic.

1. Introduction

Many cellular network providers offer wireless Internet
data services to their subscribers. These services include
electronic mail, Web browsing, text messaging, camera
phones, gaming, and more. Emerging services include low-
bandwidth wireless video streaming, home security moni-
toring, and peer-to-peer file sharing.

New data services can have a dramatic impact on the us-
age of the cellular network, particularly as emerging appli-
cations grow in popularity and the user base expands. Un-
derstanding the current data traffic characteristics is impor-
tant to the capacity planning of future wireless/cellular data
networks [7, 8, 10].

There are few published measurement studies about cel-
lular data network traffic in the literature [1, 2, 9, 11, 14].
Adya et al. [1, 2] studied Web browsing behaviour, and
identified power-law relationships in object popularities.
Kunz et al. [11] discussed the differences between WAP
traffic and Web browsing traffic. Shankaranarayanan et

al. [14] presented measurements of cellular voice and data
users, and used this information to parameterize simulation
models for a capacity planning study. Sharp et al. [15]
study traffic patterns in public safety networks, while Vu-
jicic et al. [18] present a detailed statistical characterization
of voice traffic in a “push to talk” mobile radio system.

In this paper, we present a detailed analysis of the data
traffic characteristics observed on a CDMA2000 1x cellular
data network. The measurements were collected with the
cooperation of a cellular network provider, with help from
the vendors of the equipment used in the cellular network.

The network traces record low-level information about
the packet data call events occurring between the mobile
stations (i.e., cell phones), the base station (i.e., cell site),
and the base station controller. The events indicate mobile
station identifiers, as well as the start time, end time, cell
site, sector id, and carrier frequency used for each packet
data call. Within each packet data call, the trace also records
information about fundamental channel and supplementary
channel usage, including the data rate and duration for each
supplementary channel data burst in the forward and reverse
directions.

To the best of our knowledge, our study is the first to use
such fine-grain measurement data to characterize wireless
Internet packet data call traffic. The analysis in this paper
uses one continuous week-long trace of cellular data net-
work traffic, representing typical network usage. We use a
locally-written analysis program to process the traces and
summarize the statistical properties of the traffic observed.

There are three main observations from our traffic anal-
ysis. First, the packet call arrival process is very differ-
ent from the Poisson arrival process traditionally associated
with cellular voice traffic [7]. Second, the daily usage pat-
terns of cellular data network users have a diurnal structure,
but the peak usage tends to be in the evening hours. Finally,
our results identify heavy-tailed workload characteristics in
several aspects of cellular data network traffic, including the
activity per user and the burst activity on the supplementary
channel. These characteristics are consistent with prior re-
sults characterizing wired Internet traffic [1, 2, 4, 13].



Our results suggest that skewed distributions and power-
law characteristics are ubiquitous properties of Internet traf-
fic in both wired and wireless networks. These work-
load characteristics arise from the behaviours of the human
users, rather than from the specific network technologies be-
ing used. Modeling these characteristics is important for ca-
pacity planning of cellular networks, wireless LANs, wire-
less mesh networks, and any emerging hybrid wireless net-
work technologies.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes our data collection methodology and the
traces used in this paepr. Section 3 presents the results from
our network traffic analysis. Section 4 concludes the paper,
and discusses our ongoing work.

2. Methodology

The data sets analyzed in this paper were collected from
an operational CDMA2000 1x cellular data network in
March 2004. The measurements were collected by instru-
menting vendor equipment to report all cellular network
events involving mobile stations, the base station, and the
base station controller. Event timestamps are recorded with
20 ms granularity.

A total of 43 traces were collected from the cellular data
network. The traces were collected from several different
measurement points, over the time span of several weeks.
The individual traces range in duration from about 1 to 24
hours, depending on the location and the time of day.

The aggregate set of traces represents over 480,000
packet data calls from over 10,000 cellular network users.
The aggregate data set provides a large sample for the sta-
tistical analysis of network traffic characteristics.

In this paper, we restrict our attention to one continuous
week-long portion of the trace data from one measurement
location, as a representative example of the cellular data
network activity. We select this dataset because it has the
highest level of traffic activity observed among the traces
collected, and because it provides the longest duration of
continuous trace collection.

Table 1 summarizes the characteristics of the specific
traces used in this paper. These traces record aggregate traf-
fic from over 100 cell sites in the network.

An example of the trace format is shown in Figure 1.
This example shows one packet data call. The call origi-
nated from mobile station identifier (555) 249-0623 in re-
gion 7846 of the provider’s network, using frequency 824
MHz. The call was placed at 10:05pm (79,525 seconds after
midnight) on Tuesday March 9, 2004. The call lasted about
62 seconds. The intermediate reports (ACTIVE) show the
active set of cell ids (CID) and sector ids (SID) with which
the mobile station communicated during the call. Multiple

entries in this set indicate a soft handoff state between sites
or sectors during the call.

MSID 5552490623
ESN 0xe3ce7469ace
SITE 7846
FREQ 824
START 2004 03 09 79525.080
ACTIVE 2004 03 09 79525.760
CID 287
SID 3
ACTIVE 2004 03 09 79526.240
CID 287
SID 3
CID 602
SID 2

.

.

.
END 2004 03 09 79587.060

Figure 1. Example of Trace Format

We designed custom programs for analyzing this trace
format and summarizing the data packet call behaviour on
the cellular network. One C program (about 800 lines of
code) processes the trace file in ASCII form. The program
builds a state record for each packet call that includes user
id, cell id, sector id, call start time, call end time, call dura-
tion, supplementary channel burst activity, and soft handoff
events. As output, the program produces a file containing a
time-ordered sequence of call records. In addition, a custom
Java program (about 1500 lines of code) is used to produce
the summary statistics and extract the data for plots from the
traces. The statistics and plot data are produced per trace
and overall for call and cell activity, user mobility, and per
call characteristics. The results from our analysis follow in
the next section.

3. Results

3.1. Overview

Figure 2 provides a graphical overview of the cellular
data network traffic profile in our week-long data set. The
horizontal axis of the graph shows time; our trace spans
from 5:54am on Thursday March 25 to 4:21am on Thurs-
day April 1. The vertical axis shows the number of packet
data calls initiated in each consecutive (non-overlapping)
10-minute interval in the trace.

Several observations are evident from Figure 2. First,
the packet data call arrival process is bursty. The jagged-
ness of the plot, even at the 10-minute sampling granularity,



Table 1. Summary Information for Trace Data Sets
Trace Start Start Trace Total Average Pkt
Name Date Time Duration Pkt Calls Calls/sec

Trace 10 Thu Mar 25 5:54am 24.8 hr 27,232 0.30
Trace 11 Fri Mar 26 6:36am 11.7 hr 9,707 0.23
Trace 12 Fri Mar 26 6:13pm 11.3 hr 12,225 0.30
Trace 13 Sat Mar 27 4:55am 25.2 hr 17,376 0.19
Trace 14 Sun Mar 28 5:18am 23.9 hr 15,661 0.18
Trace 15 Mon Mar 29 5:03am 24.7 hr 30,777 0.35
Trace 16 Tue Mar 30 5:43am 24.6 hr 29,576 0.33
Trace 17 Wed Mar 31 5:59am 22.4 hr 29,847 0.37
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Figure 2. Packet Data Call Activity (1 Week)

shows pronounced fluctuations in the packet call data traf-
fic. Second, the traffic pattern is non-stationary. This fact is
obvious from Table 1, where the mean call arrival rates for
the day-long traces (e.g., Trace 14 and Trace 15) differ by
up to a factor of two. Furthermore, there is time-varying be-
haviour within each daily trace, as shown in Figure 2. There
is a distinct diurnal pattern to the traffic, with heavier traf-
fic on week days than on weekends, as observed by Kunz
et al. [11]. Third, the most dominant traffic peaks appear
in the late afternoon and evening hours. This behaviour is
quite different from most Internet traffic studies, where the
traffic pattern aligns more closely with the normal working
hours (9am to 6pm). We attribute this difference in part
to the pricing models offered by cellular network providers
(i.e., discounted rates for air time on evenings and week-
ends). Another reason is the popularity of cellular data ser-
vices with teenagers, who use their cell phones to browse
the Internet and stay in touch with their friends outside of
school hours.

Two implications follow from these observations. First,
it is not possible to model packet data call arrivals using a
single-rate Poisson process, as is traditionally used for voice
traffic modeling. Rather, a time-varying rate process is re-

quired, as suggested by Paxson and Floyd [13]. Second, the
“busy hour” for cellular data networks differs from wireline
or cellular voice networks (e.g., 10pm versus 2pm). The
latter observation is consistent with the results reported by
Varga et al. [17].

3.2. Activity per Cell Site

Figure 3 shows the distribution of packet call activity ob-
served at each cell site. In this week-long trace, there were
171,318 packet data calls observed from 139 different cell
sites, for an average of 1,232 calls per site.

Figure 3(a) shows the distribution of packet calls by cell
site. The horizontal axis shows the cell sites ranked accord-
ing to level of activity, and the vertical axis shows the num-
ber of packet calls initiated from each cell site.

The distribution observed is highly non-uniform. A few
cell sites have a high level of packet call activity, while
many cell sites have a relatively low level of activity. The
busiest cell site has 8,318 packet calls. We speculate that
the busier cell sites are in densely populated areas, or have
highly active users.

The skew to the distribution for per-cell activity is remi-
niscent of a Zipf-like distribution, suggesting power-law be-
haviour. However, more careful statistical analysis shows
that the distribution is not heavy-tailed. In fact, the distri-
bution, when discretized into bins, can be reasonably well
approximated with a geometric or exponential distribution.

Figure 3(b) shows an example of this fitting with an ex-
ponential distribution. An exponential distribution is fitted
to the number of calls per cell site, with a mean of 1,234.12.
The Chi-square test and the Kolmogorov-Smirnov (KS) test
produced p-values of 0.541 and 0.795 (two-tail), respec-
tively, which indicate a good fit. We conclude from this
that the distribution of call activity across cells for this data
set is skewed, but not heavy-tailed. The distribution can be
modeled well with a geometric or exponential distribution.



3.3. Activity per User

Figure 4 shows the distribution of packet call activity
observed on a per user basis. Users are identified based
on the mobile station identifier (MSID) in the trace. The
171,318 packet data calls in this trace came from 4,156 dis-
tinct users, for an average of 41 packet calls per user.

Figure 4 shows that the packet call activity per user is
highly skewed. Figure 4(a) shows the packet calls per user
on a linear scale. Users are ranked from highest to lowest
according to level of activity. The busiest user generated
3,614 packet calls during the week. There were 1,053 users
with only 1 packet call during the week.

Figure 4(b) shows the same distribution on a log-log
scale. The “hump” in the middle of this distribution, as
well as the piece-wise linear structure, suggests that there
are several different categories of users. In particular, the
top 40 users (less than 1% of the observed users) are heavy
users of the network, generating about 33% of all the ob-
served packet data calls. The next 140 busiest users (about
3.4% of all the users) account for about 25% of the packet
data calls. The remaining users (several thousand) each con-
tribute little to the overall packet data call activity on the
network.

This skewed distribution of packet call activity per user
exhibits heavy-tailed workload characteristics. A distribu-
tion is said to be heavy-tailed if the asymptotic shape of the
distribution is hyperbolic. In mathematical terms:

Prob[X > x] ≈ x
−α as x →∞ where 0 < α < 2

The parameter α, referred to as the tail index, determines the
heaviness of the tail of the distribution. Smaller values of α

represent heavier tails (i.e., more of the “mass” is present in
the tail of the distribution).

To illustrate the heavy-tailed property more clearly, Fig-
ure 5(a) presents an analysis using the aest tool developed
by Crovella et al. [3]. The aest tool estimates the tail
weight α for a heavy-tailed distribution. The graph shows
a log-log complementary distribution (LLCD) plot of the
calls per user, with probability on the vertical axis, and calls
per user on the horizontal axis (each with log scale, and ap-
propriately normalized [3]). The lowest curve in this plot
shows the results for the raw data, while the successively
higher curves show the results for the aggregated data, us-
ing a factor of 2 for each level of aggregation. The consis-
tent slope of the plot over 5-6 levels of aggregation suggests
the presence of a heavy-tailed distribution. The black dots
on the curves indicate the points used to estimate the slope,
which is α = 1.021 in this example. This α value indicates
a heavy-tailed distribution, since α < 2.

3.4. Burst-Level Behaviour

In a CDMA2000 cellular network, data can be transmit-
ted at the normal rate (1x) on the fundamental channel, or at
higher rates (2x, 4x, 8x, or 16x) as bursts on a supplemen-
tary channel. The higher burst rates provide a more effi-
cient means for transmitting large volumes of data. In most
implementations, the supplementary channel bursts are trig-
gered when the backlog of pending data exceeds a specified
threshold, though some vendor equipment limits each sup-
plementary channel burst to at most 5 seconds duration. The
event records within our trace indicate when supplementary
channel data bursts are used during a packet call. The trace
indicates the time of the burst, the burst data rate, and the
burst duration.

Figure 6 shows the results from burst-level analysis of
packet call activity in our traces. Figure 6(a) shows the
number of bursts generated per user, with the users sorted
from highest to lowest based on burst activity. Figure 6(b)
shows the same distribution on a log-log plot.

Figure 6 exhibits many of the same properties observed
previously for user-level and cell-level activity. That is, the
burst-level activity is highly skewed amongst the users, and
the burst distribution suggests power-law behaviour.

Figure 5(b) shows results confirming that the burst activ-
ity distribution is also heavy-tailed. This graph presents the
results from the aest tool for the burst activity LLCD plot.
There is a consistent slope to the plot over 4-5 levels of data
aggregation, and the slope estimate is α = 1.042. This α

value is indicative of a heavy-tailed distribution.

3.5. User Mobility

Our next analysis studies the mobility characteristics of
users. By analyzing the trace file, we can identify the
cell site at which each packet data call is originated. Ex-
tending this analysis on a per-user basis can identify user
mobility characteristics, including the number of cell sites
from which packet data calls are placed, and the dominant
“home” cell site for a given user, if any.

Figure 7(a) shows the results from our analysis of user
mobility for the top 500 users. The top line in the graph
shows the number of packet data calls made by each user,
with users sorted from the busiest user to the least busy user.
The bottom line in the graph shows the number of cell site
changes that occurred for that user during the trace (i.e.,
successive packet data calls were originated from different
cell sites).

Two main observations with respect to user mobility are
evident from Figure 7(a). First, the level of user mobility
is generally quite low. Many users tend to be relatively sta-
tionary in their usage of the network, originating most or
all of their successive calls from the same cell site, while
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other users move occasionally. Second, the mobility char-
acteristics (i.e., cell site changes) for a user are not strongly
correlated to the level of packet call activity for that user.
For example, the stationary users (i.e., those with 0 cell site
changes) are scattered across the full range of call-level ac-
tivity observed. The latter observation suggests that call ac-
tivity level and cell site changes can be modeled as separate
characteristics in a user mobility model.

Figure 7(b) provides a clearer representation of this in-
formation, by showing the relationship between the number
of packet calls and the number of cell site changes observed
on a per-user basis. Each point in the graph represents one
user. Least-squares linear regression on this data produces
a correlation coefficient of R2 = 0.55, implying only mod-
est correlation between call activity and cell site mobility.
Additional results regarding user mobility are presented in
a separate paper [5].

3.6. Soft Handoff Analysis

Our final analysis studies the richness of the coverage
for the cellular network. We focus on the “soft handoff”
states that are recorded in our traces. Recall that in a soft
handoff, a mobile station is in simultaneous communication
with multiple cell sites. We interpret this as an indication of
physical proximity between the cell sites (at least in terms
of wireless signal propagation), and use this information to
construct an “adjacency matrix” representation between cell
sites in the traces. We generate this “connectivity” informa-
tion using the first two entries in each soft handoff report
seen for each packet data call in the trace. This approach is
applied throughout the entire trace to determine the number
of “neighbours” observable by each cell site.

Our primary interest is in the “density” of the cellular
network coverage. For the wired Internet, there is a known
power-law structure to the topology [4]. Our goal is to see
if there is similar structure in the cellular network coverage.
Note that our approach to this analysis is not subject to the
sampling bias issue identified by Lakhina et al. [12], since
we are not doing random sampling of the topology. Rather,
we are inferring connectivity information from all the calls
and cell sites observed.

Figure 8 illustrates the density distribution results. Fig-
ure 8(a) shows the number of neighbouring cells observed
for each cell site. Several cell sites appear as isolated islands
of coverage, while some have as many as 18 neighbours.
The sparse areas likely represent remote areas of coverage
(or possibly cell sites with few mobile users). The denser
sites likely represent metropolitan areas.

Figure 8(b) shows an approximate fit for the empirical
data using a Poisson distribution. The Poisson distribution
captures reasonably well the symmetry of the distribution,
although it underestimates the tails as well as the overall

variance of the distribution. A Chi-square test is applied to
test the goodness of the fit. To verify the fit, the data are first
arranged into an equiprobable histogram with variable cell
sizes [6]. The Chi-square test statistic is then calculated at
8.168. The corresponding p-value is 0.417.

This model provides a first approximation for the empiri-
cal coverage density in an operational cellular data network.
This model can be used in subsequent simulation models of
the network topology.

4. Conclusions

This paper uses fine-grain measurements from an opera-
tional CDMA2000 cellular network to characterize wireless
Internet data traffic. Our study uses one week of trace data
from the network, representing 171,318 packet data calls
from 4,156 users at 139 cell sites.

Our results illustrate several characteristics that differ
from traditional Internet traffic assumptions. Our cellular
network data traffic exhibits a diurnal pattern, with peak us-
age occurring in evening hours rather than during the busi-
ness day. Statistical analysis of the results shows that the
packet call arrival process is non-stationary, and burstier
than a Poisson process.

Our results also identify power-law properties in sev-
eral traffic characteristics. These include the distribution
of packet call activity by user, as well as in the burst-level
behaviour. These results are consistent with prior work
demonstrating power-law characteristics in wired Internet
traffic. Our results also provide some insight regarding user
mobility characteristics. A novel analysis of soft handoff
activity reveals the inherent structure in the cellular network
coverage density.

Our ongoing work is pursuing two main directions. First,
we are refining our analysis of user mobility, and developing
user mobility models that are suitable for simulation stud-
ies [5]. Second, we are building application-layer traffic
models (e.g., Web, WAP, email, SMS, video) to use in our
capacity planning simulation studies. The knowledge and
insights that we have gleaned from our traffic measurement
study provide useful inputs to the traffic modeling process.
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