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Abstract— This paper studies locality of reference proper-
ties of Web streams using a recently proposed Aggregation-
Disaggregation-Filtering framework. Two primary research ques-
tions are addressed: 1) What impact does locality of reference
have on caching performance? and 2) What are the locality
characteristics of streams that result from aggregation of filtered
streams? Trace-driven simulations are used to answer these
questions. The simulation results show which caching policies
are adept at exploiting locality characteristics. The results also
illustrate the locality properties of the resulting filtered streams.

I. INTRODUCTION

Since its inception in the early 1990s, the Web has experi-
enced phenomenal growth in the number of users, the number
of Web servers, and the volume of Internet traffic generated.
This growth has resulted in significant structural changes to
the Web, aimed at improving its performance and scalability.

Web caching proxies have been widely deployed as a means
to reduce network traffic and improve response times for Web
accesses. Proxies act as intermediaries between clients and
servers, forwarding requests that the proxy is unable to satisfy
locally. A proxy is able to satisfy a request locally if the
requested document is already present in its cache, resulting
in a cache hit. Otherwise, a cache miss occurs and the proxy
forwards the request to an appropriate server that returns
the document to the proxy. The proxy, in turn, forwards the
document to the client and also stores a copy in its cache.
Over the years, Web caching has transformed into a multi-
level system of interconnected caches, with caches organized
either in a mesh or a tree-like hierarchical configuration [7],
[10], [25], [31], [35].

Web workload characterization has received considerable
attention (e.g., see [4], [13], [21], [25] and the references
therein) as such studies offer useful insights into the design
and performance of the Web. For example, insight gained from
these studies has resulted in the development of better caching
policies [9], [19], [29], [30], [34], prefetching techniques [11],
and load distribution policies for server/proxy clusters [20].
However, most prior work has focused on analysing Web
request streams in isolation, without considering the transfor-
mations Web streams undergo as they traverse proxy caches.

Fonseca et al. [15], [16] recently proposed a general
Aggregation-Disaggregation-Filtering (ADF) framework for
analysing the transformations of Web streams as they traverse
multiple caches. This framework considers three basic trans-
formations, namely aggregation, disaggregation, and filtering.
Aggregation refers to multiple streams being merged into a

single stream based on their arrival times. A typical example
is the aggregation of requests from multiple sources (clients
and proxies) at a server. Disaggregation is the reverse of
aggregation where a single stream is split into multiple streams
based on destination addresses. A typical example is the
forwarding of requests by a proxy server to different origin
servers. Filtering is a by-product of caching wherein some
requests in a stream are absorbed by the proxy as cache hits,
while others (those that result in cache misses) are forwarded
to a higher-level proxy, or the origin server.

Among the properties of Web workloads, locality of ref-
erence is one of the most important characteristics affecting
caching performance. Locality manifests itself as non-uniform
referencing of documents over short-term and long-term time
scales. This property can be exploited by cache replacement
policies to determine which documents should be kept in
the cache and which documents should be evicted, given a
fixed-size cache [17]. Cache replacement policies that exploit
locality characteristics, however, produce filtered streams that
have significantly less locality. This filtering behaviour has
been quantified in empirical measurements of Web proxy
caching hierarchies [25], where it has been observed that the
document hit ratios decreased significantly at higher levels of
a proxy caching hierarchy.

The goal of this paper is to study how reference locality
influences Web caching performance within the ADF frame-
work. Specifically, the following questions are addressed:

• What impacts do locality characteristics have on caching
performance? Here the focus is on determining which
caching policies are more adept at exploiting locality
characteristics. Also of interest are the locality properties
of the resulting filtered streams.

• What are the locality characteristics of streams that result
from aggregation of filtered streams? This question helps
us understand the advantages/disadvantages of organizing
proxies in hierarchies.

Trace-driven simulations are conducted to answer the above
questions. Regarding caching performance, we observe that
cache replacement policies should attempt to exploit reference
locality arising from temporal correlation between document
references as well as that arising from sheer popularity of
documents. Furthermore, our results indicate that the Greedy
Dual-Size [9] replacement policy has robust performance for
a wide range of locality characteristics. Finally, our simulation
results indicate that in many scenarios, aggregating misses
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from several child proxies at a parent proxy only marginally
increases reference locality. The latter result suggests limited
advantages for organizing proxies in caching hierarchies.

The rest of the paper is organized as follows. Section II
reviews the principle of locality and the terminology used in
the paper. Section III describes the experimental methodology
for the simulation study. Section IV discusses the simulation
results for filtering at the lower-levels of a Web caching hier-
archy. Section V quantifies locality characteristics of reference
streams obtained by aggregating filtered streams at a higher-
level proxy. Section VI presents conclusions and future work.

II. PRINCIPLE OF LOCALITY

Fundamental properties of locality were first established by
Denning and Schwartz in the context of memory systems [14].
Subsequently, locality properties were observed and studied
in the context of file referencing behaviour [26], [28], [32],
distributed file servers [5], [36], and more recently in the
context of Web workloads [3], [4], [13], [16], [18], [25], [33].
For a string of references to a set of objects†, the principle
of locality asserts that: 1) during any interval of time, the
references are non-uniformly distributed over the objects; 2)
the frequency of reference to any object changes slowly over
time; and 3) the correlation between immediate past and
immediate future references tends to be high, whereas the
correlation between distant references tends to be low [14].

Locality properties have been quantified, to varying extents,
in Web workloads. First, Web references are known to be
governed by a Zipf or Zipf-like distribution [2], [4], [6], [25].
In the literature, two distinct terms are used to describe this
behaviour: concentration [25] and popularity [18]. Second,
empirical studies of Web workloads have established that
the set of references to the most popular objects are quasi-
stationary [23]. The third locality property, also referred to
as temporal locality in the literature, has also been widely
observed in Web workloads [12], [16], [18], [23]. Previous
work has established two sources of temporal locality: correla-
tion between references due to the surfing habits of individual
clients, and correlation between document references due to
sheer popularity of objects [18], [23].

Understanding locality properties is crucial to the success of
demand-driven caching schemes. Cache replacement policies
attempt to remove from the cache objects that are unlikely to
be referenced soon, based on past reference behaviour. One
consequence of a Zipf-like distribution is that a small fraction
of the total objects can account for a large fraction of the total
references, indicating that frequency-based cache replacement
policies might be fairly successful in increasing cache hit
rates [6]. Similarly, a stream with a high degree of temporal
locality will tend to reference in the near future documents
that have been referenced in the recent past, and thus might
benefit from the use of a recency-based cache replacement
algorithm. In this work, we restrict our attention to popularity

†We use “objects” as a general term to refer to Web documents, files, or
memory addresses, as the case may be for Web references, file references, or
memory references, respectively.
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Fig. 1. Single-level Web Proxy Caching Hierarchy Simulation Model

and temporal locality characteristics of Web streams, and study
the transformations that take place when streams undergo
filtering and aggregation.

III. EXPERIMENTAL METHODOLOGY

This section describes the experimental methodology used
for understanding filtering and aggregation effects in single-
level and two-level caching hierarchies.

A. Web Proxy Caching Hierarchy Models

Two simulation models are considered in this study.
The first simulation model (see Figure 1) considers a single

Web proxy directly receiving requests from several clients.
This proxy acts as an intermediary between the clients and
the Web servers. This simulation model is used to study cache
filtering effects and to analyse the performance of different
caching policies.

The second simulation model (see Figure 2) considers a
two-level hierarchical Web proxy configuration where requests
from clients are directed to lower-level child proxies. The
misses at the child proxies are forwarded to an upper-level
parent proxy. If the parent proxy is unable to satisfy a request,
it retrieves the document from the server and sends it to
the client through the appropriate child proxy. Document
caching at each level of the hierarchy is determined by a
caching strategy. This simulation model is used to analyse
the properties of the aggregated stream as seen by the parent
proxy. The experiments consider aggregated streams from two,
four, and eight child proxies.

Web caching hierarchies deeper than the two-level con-
figuration considered in this study are the subject of future
work. However, there is evidence in the literature that sug-
gests that caching hierarchies with several levels may be
undesirable [22], [24], [25], [35]. For example, empirical
measurements from a three-level caching hierarchy indicate
document hit ratios of 35-40% at a university-level proxy, hit
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Fig. 2. Two-level Web Proxy Caching Hierarchy Simulation Model

ratios of 15-20% for a national-level proxy, and hit ratios of 5-
10% for a root-level NLANR cache [24]. Since the chances of
finding a document of interest decreases as the search moves
up in the caching hierarchy, caching hierarchies are said to
suffer from diminishing returns [1], [7], [35]. Furthermore,
deeper caching hierarchies may increase document access
latencies. This is because cache hits at the higher levels incur
longer delays in locating the cached document as well as
percolating the document through the hierarchy (compared to
a cache hit at a lower level).

B. Factors and Levels

Five factors are considered in the experiments: Web proxy
workload, degree of temporal locality, degree of aggregation,
cache replacement policy, and cache size.

1) Web Proxy Workload: This study uses synthetic Web
proxy traces as they provide a flexible means of controlling
the locality properties of the workloads. The synthetic traces
are generated using WebTraff [27]. WebTraff is a Web proxy
workload generation tool that statistically models five im-
portant Web workload characteristics that affect caching per-
formance, namely one-time referencing, document popularity,
document size distribution, correlation between document size
and popularity, and temporal locality.

In WebTraff, temporal locality is introduced in the traces
using the LRU Stack Distance (LRU-SD) model [8], [27].
The LRU-SD model is a stack-based ordering of requests
according to their recency of reference with the most recently
referenced document located at the top of the stack. Whenever
a document is referenced, the LRU stack is searched for the
document and if found, the document is removed from its
present position in the stack, and moved to the top of the
stack while pushing the documents above it down the stack.
If a document is not found in the stack, it is simply added
to the top of the stack; the other documents in the stack are
moved down the stack by one position. Each position in the

TABLE I

CHARACTERISTICS OF SYNTHETIC WEB PROXY WORKLOADS

Property Trace1 Trace2

Total requests 1,480,336 1,480,336
Unique documents 495,000 495,000
Unique documents (% of requests) 33 33
One-timers 345,835 345,835
One-timers (% of unique documents) 70 70

Total size of unique documents (GB) 6 6
Total size of trace (GB) 14 14
Smallest document size (bytes) 25 25
Largest document size (bytes) 36,454,766 36,454,766
Median document size (bytes) 3501 3501
Mean document size (bytes) 10,245 10,245

Zipf Slope 0.8443 0.8443
Pareto Tail Index 1.2 1.2
Stack Depth (Temporal Locality) 1 (Low) 1000 (High)

stack has an associated probability of reference, determined
from the analysis of empirical workloads.

By varying the stack depth used in the workload generator,
different degrees of temporal locality can be modelled in the
traces. WebTraff incorporates two versions of the LRU-SD
model: static and dynamic. The dynamic model introduces
document-specific temporal locality in the workload, while the
static model results in homogeneous temporal locality among
the documents of the workload. This study uses the static
LRU-SD model for the experiments.

Table I summarizes the characteristics of the traces used
in this paper. These traces differ only in the temporal locality
characteristics. Trace1 has low temporal locality, while Trace2
has high temporal locality.‡ Stack depths of 1 and 1000 were
used for generating Trace1 and Trace2, respectively.

For the two-level Web proxy model, a separate trace is used
as input for each child proxy. An alternative approach is to
generate inputs for the child proxies by splitting a big trace into
smaller ones. However, our approach provides greater control
over the characteristics of the workload and the desired degree
of document overlap.

Two workload overlap models are considered, namely a
no overlap model and a partial overlap model. The first
model represents a situation where traces observed by the
child proxies have no documents in common. The latter model
represents the scenario where references to certain documents
are observed at all child proxies. In the experiments reported
here, 50% of the unique documents seen at a child proxy are
common with the other child proxies in the caching hierarchy.

2) Degree of Temporal Locality: Simulation experiments
were conducted using traces with varying degrees of temporal
locality. Results are reported for Trace1 and Trace2, the traces
with the lowest and highest degrees of temporal locality.

3) Degree of Aggregation: The aggregation experiments
consider aggregating misses at a parent proxy from two, four,
and eight child proxies.

4) Cache Replacement Policies: Cache replacement poli-
cies set the criteria for evicting documents resident in the cache

‡We also conducted several experiments with traces that have intermediate
degrees of temporal locality.
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to make room for new documents, when there are constraints
on the cache size. Five different cache replacement policies
are considered, namely: Least Recently Used (LRU), Least
Frequently Used (LFU), Greedy Dual-Size (GDS), Random
(RAND), and First In First Out (FIFO) [30]. These policies
reflect a broad range of (cache) replacement algorithms found
in the literature.

The LRU policy is a recency-based policy that removes from
the cache the document that has not been accessed for the
longest period of time. This policy has been widely used in
various computer systems for many years.

The LFU policy is frequency-based. It keeps a reference
count for every document in the cache and removes the
document with the lowest count value. The implementation
of LFU in the simulations provides aging of documents that
build up high reference counts but are not requested again
[23], [30]. The aging policy halves the reference counts for
all documents in the cache when the average reference count
exceeds a specified threshold. The aging mechanism makes
documents that have not been referenced for an extended
period of time eligible for removal from the cache.

The GDS policy is a size-based policy. It maintains a utility
value H = 1

s for every document in the cache, where s is the
size of the document [9]. The document with the lowest H
value is removed from the cache. The H values for all other
documents are reduced by the value for the evicted file.

The RAND policy randomly chooses a document for re-
moval from the cache, while the (arrival-based) FIFO policy
removes the oldest document in the cache.

5) Cache Size: In the first simulation model, fifteen cache
sizes are considered. These are: 1 MB, 2 MB, 4 MB, 8 MB, 16
MB, 32 MB, 64 MB, 128 MB, 256 MB, 512 MB, 1 GB, 2 GB,
4 GB, 8 GB, and 16 GB. An upper bound of 16 GB is chosen
as it reflects an infinite cache size for the synthetic traces
considered here. Infinite cache size is useful for determining
the maximum achievable cache hit ratios.

For the second simulation model, nine cache sizes are used,
namely, 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB,
128 MB, and 256 MB.

C. Performance Metrics

Four performance metrics are used in the simulation study.
These are document hit ratio, byte hit ratio, cumulative refer-
ence measure, and inter-request measure.

The effectiveness of the caching performance is measured
using the hit ratios. Document hit ratio is defined as percentage
of total requests that are satisfied by the proxy. Byte hit ratio is
the percentage of total volume of data (in bytes) that is satisfied
by the proxy. Higher hit ratios signify better performance of
the cache replacement policy. A higher document hit ratio
would mean that more documents are being filtered at the
proxy, and thus less load on the server. A higher byte hit ratio
implies lower bandwidth consumption between the proxy and
the server (i.e., more requests are satisfied at the proxy itself).

Locality characteristics are measured using two new met-
rics. The cumulative reference measure of a request stream is

defined as the fraction of total requests accounted for by the
top 10% of the most popular documents. This measure quanti-
fies popularity. The inter-request measure is the probability of
referencing a document again within at most 1000 intervening
requests to other documents. This measure quantifies temporal
locality.

IV. SIMULATION RESULTS FOR FILTERING

This section presents results from the trace-based simulation
experiments. The simulation results are organized into three
sections: Section IV-A summarizes caching performance of
the replacement policies, Section IV-B describes the impact
of filtering on popularity characteristics, and Section IV-C
discusses temporal locality properties of the filtered traces.

A. Performance of Cache Replacement Policies

Figure 3 depicts the document hit ratios and byte hit ratios
for the two workloads. Among the caching policies considered,
GDS consistently performs better than the others with respect
to document hit ratio. This is because GDS tends to keep
smaller documents in the cache (i.e., more documents reside
in the cache). The bias of GDS against larger documents,
however, results in fewer hits for large documents, limiting
the byte hit ratio.

The performance results for RAND and FIFO provide some
interesting observations. Both policies have low document hit
ratios when the workload has little temporal locality. The
low hit ratios occur because these policies do not consider
frequency issues when evicting documents from the cache. It
might be expected that RAND will perform poorly regardless
of the temporal locality characteristics of the traces, since
this policy ignores document popularity and temporal locality
characteristics. However, the results show that RAND benefits
from increased temporal locality in the workload, and even
outperforms LFU (see Figures 3(c) and (d)). A FIFO cache
naturally captures documents that exhibit temporal locality. As
expected, its performance improves with increased temporal
locality. These results show that cache replacement policies
must consider both types of locality.

The performance of LRU also improves with increased tem-
poral locality. Considering the document hit ratios for a cache
size of 16 MB, observe that for Trace1 (see Figure 3(a)) the
absolute difference in the document hit ratios between GDS
and LRU is 7.8%. This difference becomes minimal (1.7%) for
Trace2 (see Figure 3(c)). Also note that LRU has the highest
byte hit ratio for Trace2 (see Figure 3(d)). Being a recency-
based policy, LRU exploits correlations between document
references leading to an improvement in both document and
byte hit ratio.

For Trace2 with stronger temporal locality, the LFU policy
generally has the worst hit ratios. A possible explanation of
this behaviour is as follows. Note that the LRU-SD model
introduces temporal locality in a homogeneous fashion across
all documents in the trace. The LFU policy tries to keep
the highly referenced documents in its cache. However, it is
possible that documents with medium popularity also have
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Fig. 3. Document and byte hit ratios for Trace1 and Trace2
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temporal locality and thus references to these documents are
close together in time. With LFU, these documents with
medium popularity could stay in the cache long after their
last reference (i.e., before the aging threshold policy makes
them eligible for eviction).

B. Popularity after Filtering

Figures 4(a) and (b) show how the popularity characteristics
change after cache filtering. These graphs show popularity
profile plots of the cache output streams for a cache size of
8 MB, for the five cache replacement policies. The results for
Trace1 and Trace2 highlight the “flattening effect” for different
caching policies. Observe that the popularity profile for GDS
is not as flat as that for LRU and LFU. This behaviour can
be attributed to the way GDS functions. Since the criteria for
evicting documents from the cache is based only on their size,
the impact of GDS is felt over a wider range in the popularity
profile and not concentrated over the left hand portion of the
profile. LFU has the most impact on the popularity profiles
of the traces. The flattening effect is more prominent for LFU
because this policy keeps the most popular documents in the
cache. Policies like RAND and FIFO have little flattening
effect on the popularity profile because of their inability to
filter popular documents.

Figure 5 demonstrates the filtering effect for different cache
sizes and varying degrees of temporal locality. For any given
cache size, note the leftward and downward shift of the popu-
larity profile when moving from the results for Trace1 to those
for Trace2. The shift can be attributed to increased filtering; as
temporal locality increases more requests are absorbed in the
cache, and cache misses typically consist of documents with
lower popularity. This phenomenon is depicted in the graph
by the simultaneous decrease in the height and the length of
the popularity profile lines.

Figure 6 shows the cumulative reference measure for the
different caching policies versus cache size. Recall that the
cumulative reference measure quantifies document popularity
in the traces as the percentage of total requests accounted
for by the most popular 10% of the documents (i.e., the left-
hand portion of the popularity profile). GDS consistently has
the greatest reduction in document popularity. This can be
attributed to the workload size distribution (i.e., many small
documents and a few very large documents). Since GDS is
biased towards smaller documents, this policy filters more
documents, reducing the overall document popularity.

C. Temporal Locality after Filtering

Figure 7 shows the inter-request measures for the traces.
The inter-request measure remains steady for small cache
sizes and drops toward zero for larger cache sizes, since
a huge cache will satisfy all re-references to a document.
The results show that LFU produces the least reduction in
temporal locality. Intuitively, this makes sense since LFU only
exploits the popularity component of reference locality. It is
also interesting to observe that RAND has a higher impact
on the inter-request measure than LFU. The decrease in the

inter-request measure is most pronounced for the FIFO and
LRU policies, both of which exploit temporal locality in the
traces. For FIFO, however, exploiting temporal locality alone
does not necessarily result in a better document hit ratio.

V. SIMULATION RESULTS FOR AGGREGATION

This section presents selected results from the second set of
experiments. The purpose of these experiments is to quantify
locality characteristics of reference streams obtained by ag-
gregating filtered cache output traces from the child proxies.

The experiments consider two (N = 2), four (N = 4), and
eight (N = 8) child proxies for the purpose of aggregation
at the parent proxy. The results for N = 1 provide a
baseline, representing the trivial case for aggregation. Results
are presented for the case where all child proxies run the LRU
replacement policy. For N ≥ 2, both the partial and no overlap
workload model as discussed in Section III are considered.

A. Popularity after Aggregation

Figure 8 shows the impact of aggregation on popularity
under no overlap and partial overlap situations. In Figure 8(a),
the cumulative reference results for all N values are the same.
This is a characteristics of the no overlap scenario. In this
case, the streams entering the child proxies have exactly the
same characteristics, but no documents in common. Because
the original streams have identical characteristics, the misses
from the proxies also have identical characteristics. Therefore,
aggregating the misses from N child proxies has the effect
of scaling the number of requests, the number of unique
documents, and the number of references accounted for by
the 10% most popular documents by a factor of N .

In the partial overlap scenario in Figures 8(b) and (c), a
modest increase in popularity of the aggregated stream is
observed as N increases. Since the request streams at the
child proxies have some documents in common, the misses of
these streams also have some documents in common. When
these miss streams are aggregated, the new stream has a
higher concentration of documents that are common across the
original streams. This effect increases the number of requests
for the popular documents, and thus the cumulative reference
measure.

The results presented here all assume the LRU replacement
policy at the child proxies. Qualitatively similar results are
observed for the other cache replacement policies considered.

B. Temporal Locality after Aggregation

Figure 9 shows the inter-request measures for the aggregated
streams with the LRU policy at the child proxies. Figures 9(a)
and (b) show the inter-request measure results when there are
no documents common among the reference streams entering
the child proxies. Figure 9(a) is for the stream with low
temporal locality, while Figure 9(b) is for the stream with high
temporal locality. Figures 9(c) and (d) show the inter-request
measure results for the partial overlap scenario, when 50%
of the documents are common among all reference streams
entering the child proxies.
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Fig. 6. Fraction of total requests accounted for by the top 10% of the popular documents for different cache sizes in the filtered stream
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Fig. 8. Fraction of total requests accounted for by the top 10% of the popular documents in the aggregated misses (child proxies running LRU cache
replacement policy)

In Figure 9(a), the temporal locality of the aggregated
stream decreases as N increases. For example, at a cache size
of 1 MB, the inter-request measure for N = 2 is reduced by
about 60% in comparison to N = 1. A similar observation
applies for N = 4: the inter-request measure is 38% lower
than that for N = 2. This phenomenon remains consistent
over other cache sizes as well and is best explained through
an example with N = 2. Suppose in the filtered stream
from one child proxy a document, say A1

1, is referenced

again after 50 references to other documents, as shown in
this string: A1

1, U
1
1 , U1

2 , · · · , U1
50, A

1
1. The design of the no

overlap scenario is such that the other child proxy will
observe the same situation, albeit with different documents
(one that does not exist in the filtered reference stream of
the first child proxy), as shown, for example by this string:
A2

1, U
2
1 , U2

2 , · · · , U2
50, A

2
1. Note that time stamps (by design)

are identical in both reference streams. Thus, the aggre-
gated stream A1

1, A
2
1, U

1
1 , U2

1 , U1
2 , U2

2 , · · · , U1
50, U

2
50, A

1
1, A

2
1
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Fig. 9. Probability of re-referencing a document within at most 1000 intervening requests to other documents in the aggregated misses (child proxies running
LRU cache replacement policy)

has twice as many documents (≈ 100) between re-references
for A1

1 and A2
1.

In Figure 9(b), the temporal locality of the aggregated
stream also decreases as N increases, though the difference
is not as pronounced as in Figure 9(a). In this case, the
streams that are directed to the child proxies have a higher
degree of temporal locality (i.e., the inter-reference distances
are smaller). Thus, even with no documents common amongst
the streams, there is enough temporal locality present in the
miss streams that its effect is still evident when aggregated.

For the partial overlap scenario, temporal locality in the
aggregated stream actually increases as N increases. Fig-
ures 9(c) and (d) graphically illustrate this phenomenon. This
phenomenon can be attributed to the 50% document overlap
among all the traces. As an illustration, consider N = 4 child
proxies and assume that documents A and B (exhibit temporal
locality and) are common in a section of the misses of each
proxy. A section of concurrent misses from the child proxies
might be as follows:

Child Proxy 1: A, B, U1
1 . . . U1

50, A, B
Child Proxy 2: A, B, U2

1 . . . U2
50, A, B

Child Proxy 3: A, B, U3
1 . . . U3

50, A, B
Child Proxy 4: A, B, U4

1 . . . U4
50, A, B

Aggregation of the misses at the parent proxy produces the
stream: A,A, A,A,B,B,B,B,U1

1 , U2
1 , U3

1 , U4
1 . . . U1

50, U
2
50,

U3
50, U

4
50, A,A,A, A,B, B, B, B. In this aggregated stream,

observe that the references to document A from child proxy
1 are separated by approximately 200 references to other
documents. However, the very fact that this document A was
present in the streams of the other proxies has resulted in four
references to it being clustered together, effectively increasing
temporal locality.

VI. CONCLUSIONS AND FUTURE WORK

This paper used trace-driven simulations of synthetic Web
proxy workloads to study the impact that locality of reference
has on caching performance. Two simulation models were
used to understand the filtering and aggregation effects on
locality characteristics (popularity and temporal locality) in a
single-level and two-level Web proxy hierarchy, respectively.

The first set of experiments showed that the GDS policy
consistently performed better than the other cache replacement
policies with respect to document hit ratio. The performance
of GDS is relatively insensitive to changes in the degree of
temporal locality. FIFO and LRU were most successful in
exploiting temporal locality in the filtered stream. Also, the
hit ratios for LRU increased with an increase in temporal
locality. For FIFO, exploiting temporal locality alone does
not necessarily result in a better document hit ratio. Both
popularity and temporal locality must be considered when
designing a good cache replacement policy.

The second set of experiments quantified locality character-
istics of reference streams obtained after aggregating filtered
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cache output streams from the lower-level of the Web caching
hierarchy. It was observed that document popularity remained
constant in no overlap situations irrespective of the caching
policy used. Also, the structural change in the temporal locality
of the aggregated stream with increasing number of child
proxies is strongly dependent on the degree of overlap among
the input streams. This characteristic will ultimately determine
the effectiveness of Web proxy caching hierarchies.

Future work will extend this work to deeper caching hierar-
chies, consider alternative cache organization (e.g., mesh-like
organization), and study the impact of heterogeneous cache
replacement policies within the hierarchy. We also plan to
validate our observations with empirical measurements.
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