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Abstract

The advent of mobile computers and wireless networks enables the deployment of wireless Web servers and clients in
short-lived ad hoc network environments, such as classroom area networks. The purpose of this paper is to benchmark the
performance capabilities of wireless Web servers in such an environment. Network traffic measurements are conducted on
an in-building IEEE 802.11b wireless ad hoc network, using a wireless-enabled Apache Web server, several wireless clients,
and a wireless network traffic analyzer. The experiments focus on the HTTP transaction rate and end-to-end throughput
achievable in such an ad hoc network environment, and the impacts of factors such as Web object size, number of clients,
and persistent HTTP connections. The results show that the wireless network bottleneck manifests itself in several ways:
inefficient HTTP performance, client-side packet losses, server-side packet losses, network thrashing, and unfairness
among Web clients. Persistent HTTP connections offer up to 350% improvement in HTTP transaction rate and user-level
throughput, while also improving fairness for mobile clients accessing content from a wireless Web server.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Ad hoc networks; Network traffic measurement; IEEE 802.11b WLAN; Web performance
28
29
30
31
32
33
34
35
C

O
R
R1. Introduction

Two of the most exciting and fastest-growing
Internet technologies from the past 10 years are
the World Wide Web and wireless networks. The
Web has made the Internet available to the masses,
through its TCP/IP protocol stack and the principle
of layering. Wireless technologies have revolutional-
U
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ized the way people think about networks, by offer-
ing users freedom from the constraints of physical
wires. Mobile users are interested in exploiting the
full functionality of the technology at their finger-
tips, as wireless networks bring closer the ‘‘any-
thing, anytime, anywhere’’ promise of mobile
networking.

A natural step in the wireless Internet evolution
is the convergence of these technologies to form
the ‘‘wireless Web’’: the wireless classroom, the
wireless campus, the wireless office, and the wireless
home. In fact, the same technology that allows Web
clients to be mobile (i.e., wireless network inter-
faces) also enables the deployment of wireless Web
servers.
.

mailto:carey@cpsc.ucalgary.ca
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Wireless Web servers play a useful role in short-

lived networks. A short-lived or portable network is
created spontaneously, in an ad hoc fashion, at a
particular location in response to some event, either
scheduled or unscheduled. The network operates for
some short time period (minutes to hours), before
being disassembled, moved, and reconstituted
elsewhere.

There are several distinguishing characteristics of
a portable short-lived network. Often, the location
of the needed network is not known a priori. There
may not be any existing network infrastructure,
either wired or wireless, at the needed location. In
addition, the time at which the network is needed
may not be known. Deployment may need to be
spontaneous, with unknown (but often bounded)
operating duration. The number of users for the net-
work is typically small (e.g., 10–100), bandwidth
requirements are moderate, and the geographic cov-
erage area for the network is limited. More impor-
tantly, there is often a need for either data
dissemination or data collection at the site of the
network. In most cases, the data access requirement
is for a ‘‘closed’’ set of specialized content, rather
than general Internet content.

Examples of deployment scenarios for short-lived
networks are sporting events, press conferences,
conventions and trade shows, disaster recovery
sites, and classroom area networks. The potential
for entertainment applications (e.g., media stream-
ing, home networking, multi-player gaming) is also
high. In many of these contexts, an ad hoc wireless
network with a wireless Web server as an informa-
tion repository provides a suitable solution.

In this paper, we explore the feasibility of wireless
Web server deployment in classroom area networks.
The paper starts with empirical measurements from
wireless Web server usage in a classroom environ-
ment to show the practicality of its operation. These
measurements are then augmented with laboratory
tests to determine experimentally the upper bounds
on achievable performance. In particular, we focus
on the performance capabilities of an Apache Web
server running on a laptop computer with an IEEE
802.11b wireless LAN interface. We study in-build-
ing Web performance for wireless Web clients. All
mobile computers are configured in ad hoc mode,
since no existing network infrastructure is assumed.
The clients download content from the wireless Web
server. A wireless network analyzer is used to collect
and analyze traces from the experiments, with traffic
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analysis spanning from the Medium Access Control
(MAC) layer to HTTP at the application layer.

Our experiments focus on the HTTP transaction
rate and end-to-end throughput achievable in an ad
hoc wireless network environment, and the impacts
of factors such as number of clients, Web object
size, and persistent HTTP connections. The results
show the impacts of the wireless network bottle-
neck, either at the client or the server, depending
on the Web workload. Persistent HTTP connections
offer significant improvements both in throughput
and in fairness for mobile clients accessing content
from a wireless Web server.

The remainder of this paper is organized as fol-
lows. Section 2 provides background information
on IEEE 802.11b, TCP, and HTTP. Section 3 pre-
sents an overview of the classroom measurements
from our study. Section 4 describes the experimental
methodology for lab-based measurements. Section 5
presents the measurement results and analyses.
Finally, Section 6 summarizes the paper and
describes ongoing work.

2. Background and related work

2.1. The Web and Web performance

TheWeb relies primarily on three communication
protocols: IP, TCP, and HTTP. The Internet Proto-
col (IP) is a connection-less network-layer protocol
that provides global addressing and routing on the
Internet. The Transmission Control Protocol
(TCP) is a connection-oriented transport-layer pro-
tocol that provides end-to-end data delivery across
the Internet [2]. Among its many functions, TCP
has flow control, congestion control, and error
recovery mechanisms to provide reliable data trans-
mission between sources and destinations. The
robustness of TCP allows it to operate in many net-
work environments. Finally, the Hyper-Text Trans-
fer Protocol (HTTP) is a request–response
application-layer protocol layered on top of TCP.
HTTP is used to transfer Web documents between
Web servers and Web clients. Currently, HTTP/1.0
[3] and HTTP/1.1 [4] are widely used on the Internet.

The overall performance of the Web depends on
the performance of Web clients, the Web server,
and the network in between. The primary challenge
in the context of wireless ad hoc networking is the
wireless channel, which is often characterized by lim-
ited bandwidth, high error rates, and interference
from other users on the shared channel. The obvious
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concern is that TCP and HTTP may suffer degraded
performance over wireless ad hoc networks.

2.2. Wireless Internet and IEEE 802.11b WLANs

Wireless technologies are playing an increasingly
prominent role in the global Internet infrastructure.
One of the popular technologies in the wireless
LAN market is the IEEE 802.11b standard. This
‘‘WiFi’’ (Wireless Fidelity) technology provides
low-cost wireless Internet capability for end users,
with up to 11 Mbps data transmission rate at the
physical layer.

The IEEE 802.11b standard defines the channel
access protocol used at the MAC layer, namely Car-
rier Sense Multiple Access with Collision Avoidance
(CSMA/CA). It also defines the frame formats used
at the data link layer: 128-bit preamble, 16-bit Start-
of-Frame delimiter, 48-bit PLCP (Physical Layer
Convergence Protocol) header, followed by a 24-
byte MAC-layer header and variable size payload,
which can be used for carrying IP packets.

In ad hoc mode, frames are addressed directly
from the sender to the intended receiver using the
corresponding MAC address in the frame header.
Frames that are correctly received over the shared
wireless channel are acknowledged almost immedi-
ately by the receiver. Unacknowledged frames are
retransmitted by the sender after a short timeout
(e.g., 1–10 ms), using the same MAC protocol.

2.3. Related work

There is growing literature on wireless traffic
measurement and Internet protocol performance
over wireless networks [5–12]. For example, Tang
and Baker [11,12] discuss wireless network measure-
ments from two different environments: a local area
network, and a metropolitan area network. More
recently, Balachandran et al. [5] report on network
performance and user behaviour for general Inter-
net access by several hundred wireless LAN users
during the ACM SIGCOMM conference in San
Diego in 2001. They find that for this set of technol-
ogy-literate users a wide range of Internet applica-
tions are used, user behaviours are diverse, and
overall bandwidth demands are moderate. Kotz
and Essien [13] characterize campus-wide wireless
network usage at Dartmouth College, but focus
only on infrastructure mode using access points.

Our work differs from these in that we consider
both a Web server and Web clients in the same wire-
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less ad hoc network environment. The ad hoc sce-
nario is of greater interest to us than the
infrastructure-based scenario because of the ‘‘any
time, any where’’ property for deployment, and
the opportunity for peer-to-peer interaction in class-
room, entertainment, and gaming applications. To
the best of our knowledge, our work is the first to
evaluate a wireless Web server in a short-lived wire-
less ad hoc network.

3. Empirical measurements

In January 2003, one of the authors (Williamson)
was assigned to teach a graduate-level networking
course in a ‘‘legacy classroom’’ environment that
had neither wired nor wireless Internet access. Since
much of the course content was provided on the
Web (see http://www.cpsc.ucalgary.ca/~carey/
CPSC601.38/archive/2003/), the solution was to
create a mirrored copy of the course content and
make it available in the classroom using a wireless
Web server. The prototype was tested in the class-
room in February 2003, during the course modules
on wireless networking and network traffic measure-
ment. Students were provided wireless laptops and
PDAs for use in the classroom at this time.

Fig. 1 shows an example of the network traffic
measurements from the classroom environment.
Following the introductory part of the lecture that
explained the experimental setup, the 14 students
(sharing eight laptops and two PDAs) were allowed
to download course content, review prior lecture
notes, and begin preliminary work on a course
assignment involving a 6 MB trace file. The graphs
in Fig. 1 show the wireless network activity for a 25-
min portion of the classroom measurements.

Fig. 1(a) shows the total number of TCP/IP pack-
ets transmitted on the wireless LAN per one-second
interval during the trace. The traffic is bursty, with
a high peak-to-mean ratio. The peak traffic rate
approaches 700 packets per second. All packet
exchanges take place directly between theWeb clients
and theWeb server, over the sharedWLAN. There is
no multi-hop forwarding required in the classroom
environment, and very limited host mobility.

Fig. 1(b) shows the total number of TCP/IP bytes
exchanged across the WLAN, which correlates
strongly with the number of packets exchanged.
The peak data rate achieved is approximately
5.0 Mbps. This user-level throughput is typical for
an IEEE 802.11b WLAN.

http://www.cpsc.ucalgary.ca/~carey/CPSC601.38/archive/2003/
http://www.cpsc.ucalgary.ca/~carey/CPSC601.38/archive/2003/
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Fig. 1. Aggregate traffic measurements from portable wireless classroom area network: (a) packets versus time, (b) bytes versus time, (c)
packet size distribution and (d) packet inter-arrival time distribution.
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IP packet sizes observed. The distribution has two
main peaks: one at 1500 bytes for full-size TCP/IP
packets, and one at 40 bytes for TCP acknowledge-
ments (ACKs). The peak for ACKs is lower because
of TCP Delayed-ACKs, which typically result in
one TCP ACK sent for every two TCP data packets
received. A small proportion of other IP packet
sizes are observed, but the distribution is clearly
dominated by the two peaks.

Fig. 1(d) shows the distribution of the packet
inter-arrival times on the WLAN. The tall peak
on the left reflects the inter-arrival times between a
TCP ACK and the next TCP data packet. The
broader hump represents the typical time spacing
between TCP data packets. There is significant dis-
persion to this distribution because of the nature of
the CSMA/CA MAC protocol in IEEE 802.11b. A
small percentage of inter-arrival times exceed 5 ms;
these are not shown on the plot.

Fig. 2 illustrates the per-client activity for the six
busiest Web clients. Clearly, the bursty aggregate
traffic arises from the highly bursty behaviours of
the individual clients. A single client is able to
obtain most of the WLAN capacity when needed
(e.g., Client 3 at time 760 s), while sharing the
WLAN capacity if other clients are active (e.g., Cli-
ents 2, 4, and 6 around time 1200 s).

Our measurement experiences in the classroom
environment lead to the following research
questions:

• What is the maximum workload that a wireless
Web server can handle in an IEEE 802.11b class-
room area network?

• How does the wireless network performance bot-
tleneck manifest itself?

The rest of the paper provides answers to these
questions.

4. Experimental methodology

4.1. Experimental setup

Our laboratory experiments are conducted on an
IEEE 802.11b wireless LAN in the Department of
Computer Science at the University of Calgary.



O
R
R
E
C
T
E
D
P
R
O
O
F

284
285
286
287
288
289
290
291
292
293
294

295
296
297
298
299
300
301
302
303
304
305

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400N
um

be
r 

of
 P

ac
ke

ts
 S

en
t p

er
 1

.0
 S

ec
on

d 
In

te
rv

al

Time in Seconds

Traffic Profile for Client 192.168.1.200

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400N
um

be
r 

of
 P

ac
ke

ts
 S

en
t p

er
 1

.0
 S

ec
on

d 
In

te
rv

al

Time in Seconds

Traffic Profile for Client 192.168.1.204

(a) (b) 

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400N
um

be
r 

of
 P

ac
ke

ts
 S

en
t p

er
 1

.0
 S

ec
on

d 
In

te
rv

al

Time in Seconds

Traffic Profile for Client 192.168.1.207

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400N
um

be
r 

of
 P

ac
ke

ts
 S

en
t p

er
 1

.0
 S

ec
on

d 
In

te
rv

al

Time in Seconds

Traffic Profile for Client 192.168.1.208

(c) (d) 

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400N
um

be
r 

of
 P

ac
ke

ts
 S

en
t p

er
 1

.0
 S

ec
on

d 
In

te
rv

al

Time in Seconds

Traffic Profile for Client 192.168.1.212

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400N
um

be
r 

of
 P

ac
ke

ts
 S

en
t p

er
 1

.0
 S

ec
on

d 
In

te
rv

al

Time in Seconds

Traffic Profile for Client 192.168.1.220

(e) (f)

Fig. 2. Per-client traffic measurements from portable wireless classroom area network: (a) Client 1, (b) Client 2, (c) Client 3, (d) Client 4,
(e) Client 5 and (f) Client 6.
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eral mobile clients and one Web server. In addition,
we use a wireless network analyzer to monitor the
wireless channel.

Each of the client and server machines is a Com-
paq Evo Notebook N600c running RedHat Linux
7.3 and X windows. Each machine is equipped with
a 1.2 GHz Mobile Intel Pentium III with 512-KB L2
cache and 128 MB of 133 MHz RAM. These repre-
sent well-resourced machines that are near state-of-
the-art. All unnecessary OS processes were disabled
prior to conducting measurements, to reduce con-
tention for system resources.

Each laptop has a Cisco Aironet 350 Series
Adapter for access to the IEEE 802.11b wireless
LAN. The wireless cards are configured to operate
in ad hoc mode. The cards are configured to use
the Distributed Coordination Function (DCF)
mechanism as the MAC protocol, with a (fixed)
physical-layer transmission rate of 11 Mbps, and a
maximum retry limit of 16 for MAC-layer retrans-
missions. The IP addresses for the laptops are
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Table 1
Experimental factors and levels for wireless Web server
benchmarking

Factor Levels

Number of clients 1, 2,3,4
Per-client TCP connection
Request rate (per second) 10, 20,30, . . . ,160
HTTP transfer size (KB) 1, 2,4,8, . . . , 64
Persistent connections No, yes
HTTP requests per connection 1, 5,10,15, . . . , 60
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assigned manually. We set the network-layer Maxi-
mum Transmission Unit (MTU) as 1500 bytes, and
disable MAC-layer fragmentation. All client laptops
are within line-of-sight of the server, and all laptops
use a transmit power of 100 mW.

During our experiments, these laptops are the
only machines operating on the wireless LAN. We
do not consider node mobility, multihop, or ad
hoc routing issues in our experiments; these impor-
tant issues are studied in separate papers [14–16].

In our experiments, httperf [17] is used to gen-
erate client requests to the Web server. httperf is
a Web workload generation tool developed at Hew-
lett–Packard Laboratories for Web performance
measurement. It provides a flexible means for gener-
ating HTTP workloads and for measuring server
performance.

The Web server in our experiments is an Apache
HTTP server (Version 1.3.23). This version is a pro-
cess-based implementation of Apache, which is a
flexible and powerful HTTP/1.1-compliant Web ser-
ver [18,19]. Apache is currently widely deployed on
the Internet, used by approximately 70% of all Web
sites [20].

Network traffic measurements are collected using
a wireless network analyzer. The analyzer used is
SnifferPro 4.6. This analyzer provides real-time cap-
ture of all observed traffic on the wireless LAN. Its
wireless network card operates in promiscuous
mode, recording all activity on the wireless LAN
(i.e., frame transmissions, acknowledgements,
CRC errors, collisions, and MAC-layer retransmis-
sions). Decoding of the captured traces enables pro-
tocol analysis at the MAC, IP, TCP, and HTTP
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layers. After recording statistics about wireless net-
work behaviour, we convert the traces to an ASCII
format for detailed TCP traffic analysis with our
own software tools.

In our experimental setup, the IEEE 802.11b
wireless LAN is the performance bottleneck. The
rationale for this observation is quite obvious, since
the Apache Web server can easily sustain workloads
in excess of 100 Mbps [19,21,22], yet the maximum
user-level throughput theoretically achievable on
an IEEE 802.11b WLAN is about 6 Mbps [23].
However, it is not clear how the WLAN bottleneck
will affect Web protocol performance.

4.2. Experimental design

A one-factor-at-a-time experimental design is
used to study the impacts of many factors on wire-
less Web server performance, including HTTP
transaction rate, number of clients, transfer size,
and HTTP protocol version. The experimental fac-
tors are summarized in Table 1. The values in bold
font show the default levels used.

4.3. Web workload model

The experiments use synthetic Web workloads,
which are easy to generate, analyze, and reproduce.
While results would differ for other workloads (e.g.,
HTTP session models, used in workload generators
such as SURGE [24]), our goals are to determine an
upper bound on achievable performance, and to
understand behaviour under overload conditions,
using the simplest scenarios possible.

The experiments are conducted using httperf

as an open-loop workload generator. We invoke
httperf on the client machine, and send requests
to the server at a specified rate to retrieve a target
Web object repeatedly. Each test lasts 2 min, with
each TCP connection issuing one or more HTTP
requests, depending on the workload being gener-
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ated. The ‘‘user abort’’ timeout in httperf is set to
5 s. This timeout value is used when establishing a
TCP connection, when sending an HTTP request,
when waiting for a reply, and when receiving a
reply. If no forward progress is made on any of
these activities during the allotted time, the client
aborts the corresponding call and reports it as an
error.

4.4. Performance metrics and instrumentation

Performance data in our experiments come pri-
marily from httperf and the wireless network
analyzer, though we also collect some performance
data, such as netstat information, on client and
server machines as well. The httperf tool reports
application-layer statistics on HTTP behaviours
(e.g., reply rate, throughput, response time, error
rate). These statistics are used for a high-level over-
view of the performance results. Detailed perfor-
mance data are available from the wireless
network analyzer, enabling traffic analysis from
the MAC layer to the HTTP layer. These traces
are used to assess wireless channel contention,
TCP protocol behaviours, and HTTP transaction
performance.

4.5. Validation

Since our experiments record both application-
layer and network-layer measurements, it is possible
to do a sanity check on the data to ensure proper
interpretation of the experimental results.

The first validation test checked the timestamps
on the TCP SYN requests to ensure that httperf
was generating workloads at the specified request
rate. For example, at a rate of 10 connections per
second, a new TCP SYN request should appear
on the network every 0.1 s. This property was veri-
fied for the Cisco Aironet 350 wireless network
cards used in our experiments.

The second validation test compared network
packet traces collected using the wireless network
analyzer with those collected using tcpdump. This
comparison identified a subtle but important point:
traces collected using the wireless network analyzer
represent the analyzer’s view of the activity on the
wireless channel, which is not necessarily the same

as those of the client or the server. Because the
receive antenna for each machine operates indepen-
dently, the received signals could differ for each
device. One machine could interpret a received
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frame as successful, while another could reject it
as a ‘‘Bad CRC’’. In other words, ‘‘what you see
at the Sniffer is not necessarily what you got at the
client or server’’.

This measurement artifact manifests itself in sev-
eral ways: successful TCP connections for which
either the client’s opening SYN or the server’s
SYN ACK was not seen; MAC-layer retransmis-
sions of frames that were already received perfectly;
and TCP acknowledgements for segments that were
never sent. We have quantified this anomaly as
affecting fewer than 1% of the TCP connections
studied, and thus have not made efforts to filter this
artifact from the measurements with pre-processing.
Pre-processing would involve inserting some pack-
ets with unknown timestamps into the trace, and
removing other packets from the trace. Running
tcpdump on the client and the server is one way
to avoid this problem, since it only records packets
that actually traverse the TCP/IP protocol stack.
However, the tcpdump overhead would affect the
measurement results.

While tcpdump was not run for the experiments
shown in the paper, it was used extensively to help
understand system behaviour during preliminary
tests. We also used netperf [25] to determine the
maximum user-level throughput achievable between
client and server for large transfers on our wireless
LAN. Throughput is typically 5–6 Mbps, depending
on the TCP transfer size, socket buffer size, operat-
ing system, MTU, wireless card, and driver configu-
ration used [26].

5. Experimental results

This section presents selected measurement
results from our experiments with a wireless Web
server in a wireless ad hoc network.

5.1. Experiment 1: request rate

The purpose of the first experiment is to deter-
mine the maximum sustainable load for the wireless
Web server. In this experiment, only a single Web
client machine is used. The client, server, and Sniffer
laptops are all less than 1 m apart. The wireless
channel is assumed to be excellent. The size of the
Web object retrieved from the server is 1 kilobyte
(KB). The experiments start with a request rate of
10 requests per second, using non-persistent connec-
tions. That is, there is exactly one HTTP ‘‘GET’’
request per TCP connection; ‘‘TCP connection
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rate’’ and ‘‘HTTP transaction rate’’ are thus synon-
ymous for this experiment. When one test is com-
plete, the test is repeated with the next higher
HTTP transaction rate, from 10 to 160 requests
per second. Each HTTP/1.0 transaction generates
10 TCP packets (six sent by the client, four by the
server), as shown in Fig. 4(a). Each TCP packet
requires access to the IEEE 802.11b WLAN for
the transmission of the frame and its corresponding
MAC-layer acknowledgement.

Fig. 5 shows the application-layer performance
results reported by httperf for this experiment.
The plots show the successful HTTP transaction
rate in Fig. 5(a), the achieved user-level throughput
in Fig. 5(b), the user-perceived response time in
Fig. 5(c), and the ‘‘user abort’’ error rate in
Fig. 5(d). In all four graphs, there are two regimes:
the ‘‘normal’’ operating regime for feasible loads,
and the ‘‘overload’’ regime generated by the open-
loop workload.

Fig. 5(a) shows the successful HTTP transaction
rate as the offered load increases. The HTTP trans-
action rate increases linearly at first with offered
load (as expected), up to about 85 requests per sec-
ond. Beyond this point, there is some instability,
and a drop to a lower plateau. Qualitatively similar
results are observed in experiments with the same
U
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Fig. 4. Example of HTTP transactions using TCP: (a) non-pers
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client and server laptops in a 10 Mbps wired-Ether-
net LAN, though the peak HTTP transaction rate
in an Ethernet LAN is 380 requests per second,
higher by more than a factor of 4. Clearly, the chan-
nel access overhead in the wireless ad hoc network
limits the performance.

The low HTTP transaction rate in the wireless ad
hoc network is explained by the bottleneck at the
client network interface, where packets wait at the
link-layer queue for medium access on the WLAN.
Fig. 6 shows this behaviour for high load on a spe-
cially instrumented Linux kernel; the client queue in
Fig. 6(a) fills in about 10 s.

With the default queue size setting of 100 in the
Linux kernel, many packet drops occur from this
link-layer queue, even before the packets make it
to the network. The server does not receive enough
requests to keep it busy, so its queue in Fig. 6(b)
does not fill.

Increasing the client queue size limit is pointless,
since the packet arrival rate to the queue exceeds the
packet service rate from the queue. We have verified
this experimentally with other (larger) settings for
the queue size. The steady-state packet loss rate is
the same, regardless of the queue size limit. The only
things that change are the time required to fill the
SYN/ACK
ACK

GET

DATA
ACK

GET

...

lient Server

DATA/ACK

GET/ACK
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FIN
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ACK
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istent (e.g., HTTP/1.0) and (b) persistent (e.g., HTTP/1.1).
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Fig. 5. httperf Performance results for Experiment 1 varying request rate (one client, 1 KB, non-persistent): (a) successful transactions,
(b) achieved throughput, (c) response time and (d) error rate.
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Uqueue, and the average delay for packets that are
waiting for transmission on the WLAN.

The Linux kernel has no flow control or back-
pressure mechanism to prevent httperf from
overflowing the queue. While each TCP connection
sends only one data packet, the control packet over-
head and the sheer number of active TCP connec-
tions eventually overwhelms the queue. Aggregate
coordination of multiple TCP flows is required to
solve this problem [27], as is a more robust Linux
kernel that checks for and signals queue overflow
to the application layer.

The performance limit is also reflected in
Fig. 5(b), which shows the application-layer
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throughput as a function of offered load. The peak
throughput achieved is just under 1 Mbps, far from
the nominal 11 Mbps capacity of the IEEE 802.11b
wireless LAN. By contrast, experiments on the
10 Mbps wired-Ethernet LAN achieve a throughput
of 3.8 Mbps.

With non-persistent connections, most of the
packets are small control packets, and the TCP con-
nection establishment overhead is high relative to
the connection lifetime. Each transaction requires
a three-way handshake for TCP connection setup,
followed by a 74-byte HTTP GET request, a 1 KB
HTTP response, and then a three-way handshake
to close the TCP connection. A typical HTTP trans-
action (10 packets) takes about 9 ms on the wireless
LAN. This HTTP transaction time is about four
times longer than that observed in similar tests on
a 10 Mbps Ethernet LAN. Again, the wireless
MAC protocol overhead limits HTTP transaction
performance.

Fig. 5(c) shows the average response time for the
successful HTTP transactions. At low load, the
response time is about 9 ms, with slight fluctuation
as the offered load increases from 10 to 85 requests
per second. When the transaction rate exceeds 85
requests per second, the response times increase sig-
nificantly, eventually exceeding 2 s.

Fig. 5(d) shows httperf ‘‘user abort’’ errors
from client-side timeouts. Under overload, aborts
occur frequently.

Fig. 7 presents detailed measurement results for
this experiment, based on traces collected by the
wireless network analyzer. In Fig. 7, we show
selected measurement results for low load (first
row of graphs), medium load (second row), and
high load (third row), as well as an overload sce-
nario (bottom row). On each row, there are two
graphs: a 60-s time-series plot of the TCP connec-
tion duration, defined as the elapsed time from first
packet to last packet for successful HTTP transac-
tions; and a marginal distribution (pdf) plot of the
TCP connection duration.

The top row in Fig. 7 represents low load: 10
requests per second. The TCP connection duration
in Fig. 7(a) fluctuates between 8 and 12 ms. The
marginal distribution in Fig. 7(b) has a mean of
9.7 ms. Qualitatively similar results would be
observed in an infrastructure-based WLAN sce-
nario, except the transaction latency would be
higher because of the additional round-trip time to
the server on the wired network.
642
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The second row in Fig. 7 represents medium
load: 50 requests per second. Here, the time series
plot in Fig. 7(c) shows greater variation. In particu-
lar, two large spikes are evident. The cause for these
anomalies is the X windows system running on the
client and server; disabling the X server and its dae-
mon processes on both machines eliminates the
spikes. The presence of the spikes is tolerable, since
the spikes are brief (10–30 ms) and have minimal
impact (e.g., the server or the client is 10–30 ms late
in generating a SYN ACK, ACK, or FIN ACK) on
the few (4 out of 3000) unlucky connections
affected. Furthermore, these results arguably reflect
realistic operating conditions, since Linux clients
and servers are likely to run X windows in a class-
room environment. Other than the two spikes, per-
formance is relatively stable at this load. The mean
TCP connection duration in Fig. 7(d) is 10 ms.

The third row of Fig. 7 represents high load (80
requests per second), approaching the previously-
determined limit of 85 requests per second. In these
graphs, there is more variability in the connection
duration in Fig. 7(e), including some spikes, and a
slight skew to the marginal distribution in
Fig. 7(f). A separate analysis (not shown here)
shows short-range correlation in the connection
durations, implying queueing delays somewhere in
the system; this queueing occurs at the client net-
work card.

The bottom row of Fig. 7 represents an overload
situation with 100 requests per second. In this sce-
nario, the sustained overload eventually saturates
the client’s link-layer queue, leading to packet
drops, retransmissions, and even TCP resets to
abort failed transactions, as indicated by the htt-

perf results in Fig. 5(d).
The effect of the queue buildup is apparent in

Fig. 7(g): the connection durations initially grow
with time, until the erratic overflow behaviour
occurs. Note that the graphs in Fig. 7(g) and
Fig. 7(h) have different vertical scales than the
graphs above them: some successful TCP connec-
tions take over 20 s to complete. The unusually long
durations arise because there is no httperf time-
out for the closing FIN handshake in TCP. Many
of the successful TCP connections last 3 s or more.
These results represent connections that had a
‘‘SYN drop’’ at the client link-layer queue on the
initial connection request: if the SYN retransmis-
sion 3 s later (a TCP default) is successful, the trans-
action proceeds as usual. If unsuccessful, httperf
aborts the connection before the next TCP retrans-
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Fig. 7. Network traffic measurement results for Experiment 1 varying request rate: behaviour of TCP connection duration as a function of
load (one client, 1 KB, non-persistent): (a) time series (low load), (b) marg. dist. (low load), (c) time series (med. load), (d) marg. dist. (med.
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mission (6 s later), because of the 5-s timeout for cli-
ent aborts.

5.2. Experiment 2: multiple clients

The next experiment uses multiple client
machines to generate HTTP requests to the wireless
Web server, using the same methodology as in
Experiment 1. With two or more clients, a higher
aggregate throughput is achieved (110 HTTP trans-
actions per second), about 30% higher than the
throughput achieved with a single client.

The higher throughput observed implies that the
bottleneck is now at the server’s wireless network
interface. Fig. 8 confirms that this is the case. This
graph shows the link-layer transmit queue behav-
iour from a high load experiment with two clients.
Fig. 8(a) shows the client-side queue, while
Fig. 8(b) shows the server-side queue. Since both cli-
ents behave similarly, results from only one client
are shown. While each client generates requests at
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a rate below the peak determined in Experiment 1,
the server experiences significant channel access
delays to send its packets, some of which are large
TCP data packets. Qualitatively similar results
would be observed in an infrastructure-based
WLAN scenario, except the queue would occur at
the Access Point, rather than at the server.

Fig. 9 indicates a new performance problem:
unfairness for multiple clients under overload. That
is, one client obtained a higher proportion of the
throughput at the expense of another.

Fairness problems can occur in wireless networks
for many reasons. Unfairness can be caused by load
imbalance [28], heterogenous transmission rates
[29], differences in wireless channel quality [30], con-
tention patterns in the wireless channel access [31],
or packet losses at a point of congestion shared by
competing upstream and downstream flows [32].
However, the unfairness problem that we observe
is different from any of these identified in the
literature.
E
D

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

S
er

ve
r 

T
ra

ns
m

it 
Q

ue
ue

 L
en

gt
h

Transmitted Packet ID)

clients, 1 KB, non-persistent): (a) Client 1 and (b) Server.

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160

A
ch

ie
ve

d 
T

hr
ou

gh
pu

t (
K

bp
s)

Request rate (request/sec)

Client 1
Client 2

b)

lients: (a) Test 1 and (b) Test 2.



683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

G. Bai et al. / Ad Hoc Networks xxx (2006) xxx–xxx 13

ADHOC 156 No. of Pages 21, Model 3+

13 February 2006; Disk Used
ARTICLE IN PRESS
A careful investigation of the traces shows that
the relative phasing (i.e., synchronization) between
the client machines is an important issue. Because
each client generates requests deterministically at
the same rate using identical hardware and soft-
ware, the relative phasing of clients at startup deter-
mines the relative ordering of requests in the server
queue. While the relative phasing may change each
time the experiment is run (see Fig. 9), we have
observed the unfairness problem repeatedly in our
overload experiments with two clients and with
three clients.

Fig. 10 presents detailed measurement results for
the unfairness problem in an overload scenario. In
this experiment, Client 1 sent its first TCP SYN
request to the Web server slightly later than Client
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Table 2
Detailed packet statistics for unfairness problem with two clients

Item Client 1

HTTP rate (req/s) 10 50 80

HTTP transactions 1200 6000 9600
Start time (s) 0.250 0.226 0.323
SYNs 1199 5875 12,913
SYN Retxmit (TCP) 0 0 3535
SYN Retxmit (MAC) 1 141 407
SYN ACK Retxmit (TCP) 0 0 1391

SYN ACK Retxmit (MAC) 4 258 945
GET Retxmit (TCP) 0 0 1072
GET Retxmit (MAC) 0 122 254
DATA Retxmit (TCP) 0 0 142

DATA Retxmit (MAC) 1 86 188
FINs 1199 5953 6072
FIN Retxmit (TCP) 0 0 206
FIN Retxmit (MAC) 0 57 200
FIN ACK Retxmit (TCP) 0 0 1100

FIN ACK Retxmit (MAC) 0 22 258
O
O
F

2. The TCP connections created by Client 1 experi-
ence much longer time on average, and a dispropor-
tionately large share of the TCP resets and client
aborts.

Further investigation of the link-layer queue
behaviour shows transient bottleneck effects at both
the client and the server, though packet drops at the
server dominate. Client 1 experiences more packet
losses than Client 2.

Table 2 summarizes the packet-level statistics for
Client 1 and Client 2. In these experiments, Client 2
starts first, and Client 1 starts a random short time
later. All transactions have a structure similar to
that shown in Fig. 4(a) for HTTP/1.0.

The values highlighted in bold font in Table 2
show the large discrepancies in TCP-layer retrans-
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Client 2

90 10 50 80 90

10,800 1200 6000 9600 10,800
0.440 0.000 0.000 0.000 0.000
14,947 1200 5997 14,290 17,063
4404 0 0 4726 6284
515 0 23 552 648
1679 0 0 695 244

935 6 241 1084 1073
913 0 0 1325 1251
226 3 117 340 349
226 0 0 0 1

199 0 70 217 248
5953 1200 5986 7216 6863
184 0 0 167 106
183 1 130 297 280
1161 0 0 0 14

248 1 60 274 245
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missions experienced by the two clients (e.g., 1161
FIN ACK retransmissions for Client 1, versus 14
for Client 2). These large differences all occur in
table rows for server-generated TCP packets in the
HTTP transactions, and the differences manifest
themselves at the TCP layer, rather than at the
MAC layer. Client 2 experienced much better per-
formance than Client 1.

The easiest way to explain this phenomenon is to
think of the server as sending a pair of back-to-back
packets to the link-layer queue, where the first
packet is from Client 2, and the second packet is
from Client 1. If the queue has ample room, then
both packets will be accepted. If the queue is full,
then both packets will be accepted. However, if
the queue has room for just 1 packet, then the
packet for Client 2 will be queued for transmission,
while the packet for Client 1 will be dropped. The
statistics in Table 2 indicate that the latter case hap-
pens quite frequently, especially for SYN ACK and
FIN ACK packets.
U
N
C
O
R
R
E
C
T

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

S
uc

ce
ss

fu
l H

T
T

P
 T

ra
ns

ac
tio

ns
 p

er
 S

ec
on

d

HTTP Requests per TCP Connection(a) (

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60

R
es

po
ns

e 
T

im
e 

(m
s)

HTTP Requests per TCP Connection(c) (

Fig. 11. httperf Performance results for Experiment 3 with persi
successful transactions, (b) achieved throughput, (c) response time and
P
R
O
O
F

For the synthetic httperf workloads, the rela-
tive phasing of sources has an important impact
on TCP fairness and overall Web performance.
While these phasing effects are unlikely to occur in
human-generated Web client workloads, we specu-
late that heterogenous client hardware (e.g., fast
versus slow) could lead to similar unfairness prob-
lems. Randomization may be required to break up
these phasing effects.

5.3. Experiment 3: persistent HTTP connections

The next experiment considers persistent HTTP
connections. With a persistent connection, multiple
HTTP transactions can be sent on the same TCP
connection, prior to it being closed [4]. This
approach amortizes the TCP overhead across multi-
ple HTTP transactions, and improves HTTP server
performance [33,34].

In this experiment, the TCP connection rate is 10
requests per second, and the transfer size is 1 KB.
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The number of HTTP transactions per TCP connec-
tion is varied.

Fig. 11 shows the application-layer performance
results reported by httperf for this experiment.
Fig. 11(a) shows that the successful transaction rate
increases as the number of HTTP requests per con-
nection is increased. The highest rate achieved is 320
HTTP transactions per second. User-level through-
put in Fig. 11(b) reaches a peak of 3.2 Mbps with 32
HTTP transactions per TCP connection. Beyond
that point, server throughput is relatively stable,
though the average HTTP response time in
Fig. 11(c) increases sharply.

These results show that persistent connections
offer a 350% improvement in performance over
non-persistent connections. Compared to the results
in Fig. 5(b), the maximum throughput has increased
from 900 Kbps to 3.2 Mbps. In the 10 Mbps wired-
Ethernet experiments, persistent connections double
the performance from 380 to 760 HTTP transac-
tions per second. The user-level throughput reaches
7.8 Mbps.
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Clearly, persistent connections offer many advan-
tages: fewer control packets (TCP SYN and FIN)
on the network, and amortization of the TCP hand-
shakes over many HTTP transactions. These advan-
tages apply to any network environment, wired or
wireless, but they are particularly important when
the wireless LAN is the bottleneck.

While the performance advantages of persistent
connections are generally well-known, their primary
benefit on the Internet is in reducing the number of
round-trip times (RTTs) between client and server.
In the wireless ad hoc network scenario, the RTT
is negligible, yet persistent connections are still
highly beneficial.

The primary benefit is the reduction in the num-
ber of WLAN packet transmissions. With persistent
connections (see Fig. 4(b)), the first HTTP transac-
tion inside the TCP connection requires only four
TCP packets (GET, ACK, DATA, ACK) instead
of 10, while subsequent HTTP transactions in the
same TCP connection typically require only two
packets, since TCP can piggyback ACKs on out-
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Fig. 13. Network traffic measurement results for Experiment 4: behaviour of TCP connection duration as a function of HTTP transfer size
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Fig. 14. Link-layer transmit queue behaviour for Experiment 4 (one client, 64 KB, non-persistent): (a) Client and (b) server.

1 These TCP resets are caused by the 5-s client abort timeout in
httperf, for a transfer that theoretically should take 130 ms.
Human users may behave differently.
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bound GET and DATA packets. This five-fold
reduction in the number of TCP packets per HTTP
transaction dramatically reduces the demand on the
wireless LAN medium access bottleneck, improving
HTTP performance dramatically.

Fig. 12 shows the results from the persistent con-
nection experiment with two clients. As expected,
the total HTTP transaction rate for the server
remains the same (320 HTTP transactions per sec-
ond). The two clients share the server and network
resources equally. This observation indicates that
the unfairness problem noted earlier for two clients
is primarily related to the packet loss dynamics dur-
ing TCP handshaking. Losses of data packets
within a TCP connection are less serious, because
they can often be recovered efficiently using TCP’s
fast retransmit mechanism, rather than a timeout.

5.4. Experiment 4: transfer size

The next experiment studies the impact of HTTP
response size on network throughput, for a single
client issuing 10 requests per second to the server.
The transfer size is 1 KB for the first run of the
experiment, and is then increased to 2 KB, 4 KB,
and so on in the subsequent runs.

Fig. 13 presents the results from this experiment,
for four selected transfer sizes: 8 KB, 32 KB, 48 KB,
and 64 KB. These values represent light load, med-
ium load, heavy load, and overload conditions for
the wireless Web server.

Fig. 13 shows the obvious result that as the
HTTP transfer size increases, the mean TCP con-
nection duration increases, as does the variance
and skew of the distribution. The 8 KB transfers
complete in about 24 ms each, representing an aver-
age throughput of 2.8 Mbps, including HTTP
E
D
P
Rheader overhead. The 32 KB transfers complete in

about 67 ms, for an average throughput of
3.9 Mbps. The results for 48 KB transfers and for
64 KB transfers represent samples from just below
and just beyond the ‘‘saturation point’’. That is, a
48 KB transfer completes on average in just under
100 ms (4.1 Mbps), which means that the server
can keep up with a sustained arrival rate of 10
requests per second. A 64 KB transfer, on the other
hand, takes well over 100 ms on average, so the
open-loop workload generator creates overload.
Experiments on the 10 Mbps wired-Ethernet LAN
show that the server can handle 10 requests per sec-
ond for 96 KB transfers before the dropoff in per-
formance occurs. The peak throughput achieved is
8 Mbps.

In this experiment, the wireless network bottle-
neck is at the server network interface, since the ser-
ver transmits more packets than the client, and
larger packets as well. The httperf request rate
is modest (10 requests per second), placing little
stress on the client-side queue. Fig. 14 illustrates
the queue buildup at the server, while Fig. 13(g)
shows the impact of this queue on HTTP response
time, which increases by more than an order of mag-
nitude. The large delay is due to the sizes of the
queued data packets.

Detailed analysis of the 64 KB scenario reveals a
new performance problem: about 50% of the TCP
connections are aborted with a TCP reset1 prior to
completion. However, relatively few (less than 2%)
of these connections failed during the opening
TCP handshake; most were aborted partially
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through the transfer. On average, each of the reset
connections sent 68 packets and 47 KB of data.

Network bandwidth is the scarce resource in this
experiment. The main concern is ‘‘network thrash-
ing’’: a large portion of the wireless channel band-
width is consumed by TCP connections that
eventually abort (i.e., partial transfers). While the
average throughput at the network layer exceeds
5 Mbps, the effective user-level goodput is about
2.2 Mbps.

Fig. 15 summarizes the httperf results for this
experiment, including the throughput drop. Admis-
sion control would be required for HTTP requests
to prevent a wireless Web server from experiencing
this form of congestion collapse.

5.5. Experiment 5: miscellaneous

Additional experiments have studied more gen-
eral Web workloads, including different HTTP
request arrival processes [35], stochastically chosen
HTTP response sizes [21], media streaming content
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[36], node mobility [14], and multi-hop wireless ad
hoc networks [16]. These results are briefly summa-
rized here.

In general, the measurements from these scenar-
ios are qualitatively similar to the foregoing results,
though much more complicated to analyze. Typical
results show good user-level performance at low to
moderate load, even for large transfer sizes and
for media streaming applications. At high load or
overload, performance degrades substantially. One
experiment in [35] illustrates the impact of the
HTTP request arrival process. When the arrival
process is changed from Deterministic to Poisson
to Self-Similar, the increasing variability in the arri-
val process triggers greater queueing fluctuations
and a less distinct saturation point, but the behav-
iour under overload is fundamentally the same.
Experiments varying transmit power and wireless
channel conditions illustrate similar results [35].

Separate experiments with multi-hop wireless ad
hoc networks [16] show that user-level TCP
throughput drops dramatically with each additional
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hop in the routing path. The drop in throughput
occurs primarily because of the contention for the
shared wireless channel at each routing hop, and
the bidirectional nature of the network traffic flows.
Additional factors are the overhead of the ad hoc
routing protocol, and the non-deterministic behav-
iours of the MAC-layer protocols.

Additional experiments have considered wireless
media streaming performance in a single-hop wire-
less ad hoc network [36]. Empirical measurement
results show that the IEEE 802.11b wireless ad
hoc network can support up to eight concurrent uni-
cast MPEG-4 streams, each with 400 Kbps video
and 128 Kbps audio. Adding one more stream
destroys the quality of service for all clients, because
of packet losses at the server’s wireless network
interface.

Node mobility in the ad hoc network can cause a
‘‘bad apple’’ phenomenon [14], wherein the aggre-
gate network performance effectively degrades to
that of the client with the worst wireless channel
quality. In particular, one client with poor or tran-
sient wireless connectivity can degrade throughput
and cause packet losses for all clients in the network
[14,36]. The problem arises because of a transient
Head of Line (HOL) blocking problem: when the
packet at the front of the server’s link-layer queue
undergoes excessive retransmissions to the ‘‘bad
apple’’ client, the queue fills and overflows, drop-
ping packets for all clients.

Other researchers have confirmed the presence of
these types of performance anomalies in (54 Mbps)
IEEE 802.11g wireless networks as well [30]. These
authors have considered TCP, UDP, and media
streaming workloads in an infrastructure-based
IEEE 802.11g WLAN, finding dramatic perfor-
mance differences depending on the wireless channel
quality for each of the clients.

Separate papers in our own research group have
used simulation to evaluate the efficacy of novel
MAC-layer protocols to solve these types of prob-
lems [15,37].

6. Summary and conclusions

This paper studies the performance of a wireless
Web server in a short-lived wireless ad hoc network,
such as a classroom area network. Application-layer
and network-layer measurements are used to assess
performance capabilities and limitations. In particu-
lar, the experiments focus on HTTP transaction rate
and user-level throughput, as a function of request
E
D
P
R
O
O
F

rate, number of clients, transfer size, and HTTP
protocol features. Measurements were conducted
on an IEEE 802.11b wireless LAN, using a wire-
less-enabled Apache Web server, several wireless cli-
ent laptops, and a wireless network analyzer.

Our experiments show that wireless Web servers
can provide 1 KB HTTP transaction rates of 110
connections per second for non-persistent HTTP
and 320 HTTP transactions per second for persis-
tent connections, with throughputs ranging from 1
to 3 Mbps. Several interesting performance prob-
lems are observed: a bottleneck at the wireless net-
work interface for either the client or the server,
depending on the workload; unfairness amongst cli-
ents due to packet losses during TCP connection
handshaking; and a network thrashing problem
for large HTTP transfers under overload. The use
of persistent HTTP connections can overcome the
inefficiencies of the IEEE 802.11b MAC protocol,
tripling the effective HTTP transaction rate, while
also improving fairness for clients accessing the
wireless Web server.

Simulation models have been used to reproduce
many of the behaviours observed in our experi-
ments, and to predict performance for up to 100 cli-
ents [38]. Few of the performance problems
identified in this paper (e.g., packet loss, phasing
effects, unfairness, network thrashing) are seen in
the classroom environment with human clients,
because of the lower average workloads generated
(i.e., due to think times, randomization, low request
rates, and browser caching effects). Nevertheless,
our study is valuable in identifying the performance
problems that must be overcome to make the wire-
less Web server solution scale well (e.g., in under-
graduate classrooms with 150 students, or sports
venues with thousands of spectators).

Experiments with a 54 Mbps IEEE 802.11a wire-
less LAN remain for future work. We suspect that
many of the performance problems observed in this
paper apply equally well to 802.11a ad hoc
networks.
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