
1

Benchmarking Modern Web Browsers
Jordan Nielson Carey Williamson Martin Arlitt

Department of Computer Science
University of Calgary

Abstract— Many different Web browsers are available on the
Internet, free of charge. A browser performs several tasks,such
as rendering Web pages on the screen and executing client-side
code often embedded in Web pages. Users typically choose a
browser that gives them a satisfying browsing experience, which
is partly determined by the speed of the browser. This paper
presents benchmark performance test results for four popular
browsers (Firefox, IE, Opera, and Safari) currently available on
the Internet. The results indicate substantial differences among
browsers across the range of tests considered, particularly in
rendering speed and JavaScript string operation performance.

I. I NTRODUCTION

The first graphical Web browser, Mosaic [4], was released
in 1993, making the World Wide Web accessible to everyone,
and helping to launch an information explosion that continues
to this day. About a year later, Marc Andreesen founded
Netscape, which released Navigator as its flagship product.
In the following year, Microsoft joined the race by releasing
its Web browser: Internet Explorer.

These events were the catalyst for what is commonly re-
ferred to as the “browser wars”. Ever since, several companies
have vied for the dominant share of the browser market. Even
though the browsers themselves are not a great revenue stream,
the browser is the “window to the Internet” for many users,
and can be an influential factor in the choice of computing
device, operating system, software, and services purchased by
end users.

Given that most browsers are free, and (usually) functionally
equivalent for displaying Web pages, how does a user select
which Web browser to use? We argue that performance (i.e.,
responsiveness) is one of the factors influencing this decision.

Browser performance has garnered relatively little attention
in the research literature to date, since the primary bottleneck
has usually been elsewhere (e.g., server load, network conges-
tion, TCP effects, round-trip latency). However, many of these
performance problems have been effectively addressed (e.g.,
server clusters, proxy caching, persistent connections, parallel
connections). More importantly, the advent of “Web 2.0” and
the “services computing” paradigm have made the Web the
preferred platform for numerous novel applications, and many
of these rely heavily on client-side processing to facilitate
interactivity for users and scalable deployments for service
providers. Thus the ultimate success of “Web services” on the
Internet will hinge on the user-perceived browsing experience.

The purpose of this paper is to present an apples-to-apples
comparison of modern Web browsers, with respect to their
browsing performance. We carry out this work experimentally,
using four commonly-used Web browsers (Firefox, Internet

Explorer, Opera, and Safari), and testing them with a small
set of realistic micro-benchmarks.

The results show that no single Web browser is universally
the best; in fact, there are noticable differences among thefour
browsers across the range of tests considered. For example,
the rendering speeds for Web pages can differ by a factor of
2-3 across browsers, JavaScript string operator performance
can differ by an order of magnitude, and some browsers show
asymmetric performance for GET requests and POST requests
in AJAX. These results are of value to users for browser
selection, as well as to developers for browser performance
improvements, and to Web service providers, for offering
satisfying user experiences.

There are two main contributions in this paper. The first
contribution is a direct performance comparison of modern
Web browsers, with sufficient drill-down to the component
level. This work represents a snapshot of current Web browser
performance, providing an academic reference point to com-
plement the ad hoc collection of anecdotal reports about
browser performance available on the Web [3], [5], [6], [16],
[23], [26]. A second (and perhaps more lasting) contribution
is our experimental methodology, which can easily be applied
to a broader set of browsers, or longitudinally to an evolving
set of browsers over time.

The rest of the paper is organized as follows. Section II sum-
marizes prior related work. Section III describes the structure
of modern Web browsers. Section IV outlines our experimental
methodology, and Section V presents experimental results.
Finally, Section VI concludes the paper.

II. RELATED WORK

Performance-related research on Web user experience typi-
cally focuses on reducing the latency of page retrievals. Tra-
ditionally, retrieval of pages from remote Web servers was the
primary performance bottleneck (either the remote server,the
core network, or the user’s access network). Two techniques
are typically used to reduce retrieval latencies:caching and
prefetching. Caches store copies of recently used pages, in
case they are visited again in the near future. Much research
has focussed on improving the management of such caches;
for example, Jin and Bestavros proposed the GreedyDual*
algorithm, and demonstrated its superiority to existing cache
replacement policies [11]. Today, caches are deployed in
browsers, proxies, and servers. Content Distribution Networks
(e.g., Akamai) utilize caching at the “edges” of the Internet
to increase the scalability of Web sites, as well as to reduce
access latency for users.

Web prefetching algorithms (e.g., [9]) attempt to anticipate
future Web page requests. Prefetching works in conjunction



2

with caching to try and hide retrieval latency from users.
In the past, this topic garnered less attention than caching.
However, with asynchronous requests in AJAX pages, the area
may become more popular.

Research papers on benchmarking have focused on Web
servers (e.g., [1]) and Web proxies (e.g., [18]). Results from
Web browser studies tend to appear on developer sites, vendor
product pages, and in white papers [3], [26]. Few of these
articles are updated regularly, and none of them mention
AJAX or AJAX-related performance (other than JavaScript).
Research papers on Web browsers have focused more on new
functionality (e.g., [15]) or new client devices (e.g., [7]) than
on performance.

More comprehensive browser benchmarks will be necessary
in the future, as browser performance becomes more impor-
tant. A first step in that direction is characterization of changes
in Web workloads. An example is the work of Schneideret
al. [19], which characterizes Web 2.0 traffic.

III. M ODERN WEB BROWSERS

Modern Web browsers are composed of several parts. Each
browser must have arendering engine to create the layout and
appearance of a Web page, ascripting engine to interpret and
execute JavaScript (or similar) scripting code on a Web page,
and auser interface that includes page navigation controls, as
well as many other features (e.g., history, preferences, plugins)
created by the browser designer.

When a typical user selects a preferred browser, they most
likely base their decision on the interface, since it is the
most visible distinguishing feature. However, the other aspects,
which are more technical in nature, should not be ignored.
Both the rendering engine and scripting engine could be
graded on multiple aspects. In this paper, we focus solely on
performance, leaving issues such as correctness and security
aside.

Today’s browser market consists of dozens of different
choices. To limit the scope of the study, we consider four
specific browsers. In alphabetical order, these are Firefox[13],
Internet Explorer (IE) [12], Opera [17], and Safari [2]. These
four browsers are currently the most popular ones on the
Internet [20]. In April 2008, IE had the largest market segment
(54.8%), followed by Firefox (39.1%), Safari (2.2%), and
Opera (1.4%). While the exact usage numbers may vary
depending on the source of the data, it is generally believed
that these are currently the four most prevalent browsers.

Details on these browsers are provided in Table I. The table
shows the rendering engine and JavaScript engine used in each
of these four browsers. It also shows the current version of the
browser used in our tests.

TABLE I

SUMMARY OF WEB BROWSERSTESTED

Web Rendering JavaScript Tested
Browser Engine Engine Version
IE Trident JScript 7.0.5730
Firefox Gecko SpiderMonkey 2.0.0.13
Opera Presto linear b 9.26
Safari WebCore JavaScriptCore 3.0.4

A. Rendering Engines

A rendering engine, also known as a layout engine [24], has
the important task of displaying a Web page. Over time this
task has become more complicated, with the ongoing evolution
of the HTML standard, the continual addition of features, and
the large-scale usage of Cascading Style Sheets (CSS).

The layout engine can be considered a separable compo-
nent from the browser itself. For example, Mozilla Firefox’s
rendering engine, Gecko [14], and Internet Explorer’s engine,
Trident, are both used in a variety of other browsers and appli-
cations. Although there have been a number of layout engines
developed, only four of them are usually used by current Web
browsers. These include Gecko and Trident mentioned above,
as well as Presto (used by Opera) and WebCore, which is
the rendering component of WebKit [22], the engine currently
used by Safari.

B. Scripting Engines

Similar to a rendering engine, a scripting engine is also
an important component of a Web browser. This engine’s
responsibility is to interpret JavaScript (or similar) code that
is embedded in a Web page. Though a separable component,
the scripting engine is often tied to its corresponding layout
engine, since the scripts often influence the appearance of a
Web page. Like layout engines, these scripting components
have their own identities [25]. Firefox uses SpiderMonkey,
Internet Explorer uses JScript, Safari uses JavaScriptCore (part
of WebKit [22]), and Opera currently uses linearb, but is
switching tofuthark in their upcoming version.

IV. B ENCHMARK TESTS

Our experiments were conducted in a typical desktop PC
environment, using the commonly-used Web browsers listed
in Table I. We used the latest stable version available for each
browser, along with the known bug fixes available at the time.
All of the experiments were performed on an Intel Core2 CPU
6600 (dual core, 2.40 GHz), with 3 GB of RAM and running
Windows XP Professional SP2.

To compare the performance of Web browsers, we use a
set of benchmark tests. The tests are selected and designed
in such a way as to exercise the typical tasks handled by a
browser.

There are many factors that affect the performance of
these browser operations. Therefore the goal was to design
the tests to focus on the performance of the browser itself,
while eliminating or isolating external factors (e.g., operating
system, TCP implementation, network latency, server load).
In addition, each test is meant to exercise a single specific
element of the browser. However, a few exceptions had to be
made. For example, to perform the timing and control of the
rendering test, a snippet of JavaScript was required.

The purpose and specific details of each test are given next.

A. Start-up

The simplest test considers browser start-up time. Since a
Web browser is typically started only once per user session,the



3

start-up could be considered irrelevant. However, we include
this test for completeness.

To automate the measurement, a script records the system
time, and then launches the browser using a command-line
argument to open a specific default page. This default page
invokes a PHP script on the local machine that records the
current system time (the time at which the page is accessed).
The output from the script displays the elapsed time since the
browser was launched.

B. JavaScript

There are several client-side scripting languages supported
by modern Web browsers, but JavaScript is the most com-
monly used and most universally supported. While JavaScript
is not as powerful as some programming languages, it is still
relatively complex. The browser is responsible for parsingand
executing the JavaScript code, since it is a client-side language.

For JavaScript benchmarking, we used Apple’s SunSpider
JavaScript Benchmark [21]. This benchmark performs a thor-
ough coverage of function calls, and is well recognized as a
reliable measure of a browser’s JavaScript performance.

The SunSpider test covers 9 aspects of JavaScript perfor-
mance: 3D manipulation, access, bit operations, control flow,
cryptography, date/time, mathematics, regular expressions, and
string operations. The test was run using a local server to avoid
significant network latency.

C. Rendering

Rendering performance refers to the speed at which the
rendering engine can layout and display all of the Web
page objects within the browser window. For this experiment,
we measure the time between requesting a page and the
completion of the loading of the body of the page. The time is
measured using JavaScript event handlers. Theonload event of
a document’s body element is invoked automatically when a
page has finished loading (rendering). By attaching a function
call to the onload event, we can record the load time before
proceeding to the next Web page in the benchmark.

The home pages of popular Web sites were chosen for
this benchmark. We leveraged Dela Serna’s comparison of
traffic ratings services [8] to select the sites we used. To
eliminate the impact of network latency to these sites, the
pages were copied and stored on a local server. Care was
taken to obtain the HTML and all of the linked files (e.g.,
images, CSS, and JavaScript), including background images
defined in CSS files. A custom program was created to find
and download these images automatically, and update the
corresponding references, so that all benchmark tests could
be executed locally.

One tricky issue was isolating the rendering portion of the
loading time of the page. For example, most of these existing
pages include a lot of JavaScript. To remove this impact,
the benchmark preparation step removed all scripts and event
triggers such as ‘onload’. We also duplicated the content ofthe
body element 10 times to increase the rendering load relative
to the page overhead.

To perform the test a PHP script was created. This script
determines the next page to be displayed based on the list
provided to it. Inserted on the bottom of each page is a form
with a placeholder for the load time of the current page.
When the page is loaded, the placeholder is filled in with
the current time and the form is submitted back to the PHP
script. The script now sees the time for the current page, and
delivers the next page in the queue. When all pages have been
displayed sufficiently many times, the results are computed
and displayed. The median load time for each page is the
metric reported.

D. AJAX

A recent emerging trend on the Web is the use of Asyn-
chronous JavaScript and XML (AJAX). AJAX is not strictly
a new technology, but rather a new method of using and
combining existing Web technologies.

The way AJAX typically works is that the client side
triggers the need for a refresh of some data on the Web page.
While this could be done by refreshing the entire page, AJAX
accomplishes this in a more efficient way by asynchronously
retrieving data from the server, and updating the client’s
document accordingly. With AJAX, Web sites can deliver a
smoother experience to the user.

The typical AJAX processing steps are as follows. A
JavaScript function, often called by a timer or event, requests
an XML object from the browser using HTTP. Using this
object, the client sends a POST or GET request to the server (a
PHP or other language script). The script on the server returns
a response back to the browser, and the response is received
by a previously specified JavaScript function. This function
then updates the document based on the received response.

Our AJAX benchmark test measures each of these steps. The
test serially sends many (alternating) GET and POST requests
to the server, and follows each of these responses by updating
the Document Object Model (DOM). To avoid caching effects,
each request changes either the URL or the parameters for the
GET/POST request. The test is performed on a local host, to
limit the effect of network latencies.

V. EXPERIMENTAL RESULTS

A. Start-up Test

The start-up test was run 6 times on each browser: 3 cold
starts, and 3 warm starts. A cold start is when the browser is
first loaded after booting the computer, while a warm start is
when the browser is closed and then opened again soon. A
warm start is often quicker, if part of the application is kept
in memory.

The median start-up times are shown in Figure 1. The
times were suitably low for all browsers (under 1 second),
confirming the notion that start-up time is a non-issue. There
was little difference between the cold start times and the
warm start times for each browser. Nonetheless, the warm start
times were slightly lower, likely due to caching done by the
operating system.



4

 0

 100

 200

 300

 400

 500

 600

Safari 3Opera 9.26IE 7Firefox 2

S
ta

rt
up

 T
im

e 
(m

s)

Cold Start
Warm Start

Fig. 1. Browser Start-up Times

B. JavaScript Test

Each browser was tested using the SunSpider JavaScript test
3 times, with similar results each time. The results from these
experiments are shown in Figure 2(a). (Note the logarithmic
scale on the vertical axis in this plot.) The results of the
test were not too surprising, however a few anomalies were
observed across the 9 categories of JavaScript tests.

The fastest browser for this test was Safari, which aver-
aged just under 8 seconds per run. Safari was the fastest in
the categories of date/time, regular expressions, and string
operations, with the latter category showing a substantial
advantage. The next fastest overall was the Opera browser,
which averaged just under 9 seconds per run. It was also
the fastest in 5 of the 9 specific categories: 3D, access,
bit operations, cryptography, and mathematics. However, its
performance for string operations was much worse than that
for Safari. Firefox had an average run time of about 12.5
seconds. It was the fastest in the control flow category, but
performed quite poorly for 3D, bit operations, and date/time
functions. Internet Explorer was the slowest overall, averaging
30 seconds per run. However, it did perform competitively
in most of the categories. The primary difference was in
string operations, where Internet Explorer took about 10 times
longer than the others. Specifically, the JScript scriptingengine
in Internet Explorer performs poorly on the ‘base64’ and
‘validate-input’ tests in the string category [10].

C. Rendering Test

The rendering test consisted of 5 iterations through the list
of popular Web pages, as configured on the local machine.
The browser’s cache was flushed before each test to control
the effects of caching. While caching should not have much
impact when all Web pages are local, some differences1 could
still arise. The median load time was used, to minimize the
impact of any anomalous results.

Figure 2(b) shows the measurement results for 10 of the
selected Web sites, in alphabetical order. The fastest browser
in this test was Apple’s Safari, which was fastest not only
overall, but also for loading each individual page tested. On
average Safari took about 6 seconds to load all the pages. The
second fastest browser in this experiment was Firefox with an
average of about 19 seconds to load all of the pages. Close

1In our experiments, the MSN Web page took 81 seconds to load initially
in Internet Explorer, while it only took 1-2 seconds when it was cached. We
do not yet have an explanation for this anomaly, which occurred only for this
browser.

behind Firefox was Internet Explorer, with an average time
of about 21 seconds. There were also some sites for which
Internet Explorer was actually faster than Firefox. Opera took
over 38 seconds to load the pages: almost twice as long as
Firefox and Internet Explorer, and 6 times longer than Safari.

D. AJAX Test

The AJAX experiments were performed with a local server
just like most of the other tests, to eliminate the effect
of network latency. The overall result simply measures the
total time taken to complete the test, but we also provide a
breakdown of the time taken for the individual components:
GET requests, POST requests, and the DOM editing time.

The overall time is dominated by the GET and POST
requests. Overall there were two “fast” browsers (Safari: 3.3
seconds; and Internet Explorer: 4.1 seconds) and two “slow”
browsers (Firefox: 17.1 seconds; and Opera: 17.9 seconds).

The GET and POST categories show the same two-class
behaviour. While there was no considerable difference between
the time for GET requests and the time for POST requests for
most browsers, Internet Explorer was approximately twice as
fast on POST requests as on GET requests. Knowledge of this
asymmetry could be useful to Web developers using AJAX,
when choosing between the two different methods.

A finer-grained look at the results for DOM editing shows
that Firefox is fastest, followed by Safari, Opera, and then
Internet Explorer. While the other browsers took between 180
and 320 milliseconds, Firefox averaged about 3 milliseconds.
While seemingly impressive, we are skeptical of this result.
The abnormally low value may indicate that the work is
delegated to a separate thread and done asynchronously. In
other words, while the new thread is performing the actual
work of editing the document, the original thread proceeds
with recording the time, believing the work is done. Thus the
DOM editing result should be interpreted carefully.

E. Additional Tests

In addition to the four main Web browsers, we tested several
other Trident-based or Gecko-based browsers. Their perfor-
mance was comparable to their counterparts, as expected.

We conducted some throughput-oriented tests with bulk
downloads and found no significant differences across
browsers (e.g., 18 MB file download in about 160 seconds).
Since all browsers are using the same native operating sys-
tem and TCP implementation, this result is not unsurprising.
However, we suspected that some browsers would be using
download accelerators to gain a performance advantage; our
experiments show no evidence of this.

Finally, we conducted some forward-looking tests. Firefox
3.01 and Opera 9.51 have recently been released, and Internet
Explorer 8 is in the beta-testing stage (beta 1). We conducted
a few tests with these browsers, to assess the robustness of our
relative performance claims, as well as the claims made by the
developers about significant performance improvements over
the current versions.



5

The experimental results for these next generation browsers
are shown in Figure 3. These graphs use the same vertical
axes2 as in Figure 2, to facilitate direct visual comparisons.

In most (but not all) cases, the new versions do show im-
proved performance. All of the new browsers show substantial
improvements in the JavaScript test, which was previously
dominated by Safari and Opera. Firefox 3 now appears to
be the fastest JavaScript browser overall, since it was not
beaten in any category. Though still in early beta-testing
stages, Internet Explorer 8 appears to have corrected some
performance problems in its JavaScript implementation.

The rendering test also showed significant changes. Fire-
fox improved its speed slightly, while Opera made a large
improvement to catch up with the others. Internet Explorer 8
was actually significantly slower in this beta version, but it is
probably too early to make any judgement about the rendering
speed of the upcoming final release.

The AJAX test showed qualitativly similar results to the
rendering test. Although Firefox 3 no longer reports a neg-
ligible document editing time (which was probably due to
asynchronous behaviour), it still came out the fastest overall,
slightly ahead of Safari. Opera also made some improvement,
but is still the slowest among the browser versions tested.

VI. CONCLUSION

This paper presented benchmark measurements evaluating
the performance of modern Web browsers, primarily with
respect to JavaScript, rendering, and AJAX performance.
The experimental results show that there can be significant
differences in performance between the different browsers.
For JavaScript, the current versions of Opera and Safari are
the fastest, with the next version of Firefox poised to take
the lead. For AJAX applications, the current versions of
Internet Explorer and Safari appear to be the fastest. However,
once again the next version of Firefox achieves even better
performance. For rendering speed, the current version of Safari
is the fastest, followed by Firefox, Internet Explorer, and
Opera, in that order. Assuming Internet Explorer 8’s final
release does not suffer degraded performance like the beta
version, the new browsers would all be slightly quicker, but
their relative ordering would remain the same.

We believe that there are numerous avenues for future
work. The most obvious is evaluating browser performance
for real examples of Web 2.0 applications, to see if there
are quantifiable differences in user-perceived performance. As
another example, the choice of operating system (and TCP
stack) may affect the performance results. Understanding the
performance implications of improved correctness (or security)
is another open topic.

ACKNOWLEDGEMENTS

The authors thank the anonymous HotWeb reviewers for
their helpful comments on an earlier version of this paper.
Financial support for this work was provided by Canada’s
Natural Sciences and Engineering Research Council (NSERC),

2Note that one data point goes off the scale in Figure 3(b). Therendering
time for the Facebook page in IE8 was 16.1 seconds.

as well as by the Informatics Circle of Research Excellence
(iCORE) in the Province of Alberta.

REFERENCES

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil,J. Mar-
guerite, K. Rajamani, and W. Zwaenepoel, “Bottleneck Characterization
of Dynamic Web Site Benchmarks”.Proceedings of 3rd IBM CAS
Conference, 2002.

[2] Apple Computers, “Apple – Safari”.http://www.apple.com/
safari/

[3] J. Atwood, “The Great Browser JavaScript Showdown”.http://www.
codinghorror.com/blog/archives/001023.html

[4] Boutell.com, “WWW FAQs: What was the first Web browser?”.http:
//www.boutell.com/newfaq/history/fbrowser.html

[5] ConsumerSearch, “Web Browsers Reviews”. http:
//www.consumersearch.com/www/internet/
web-browser-reviews/

[6] CyberNet, “CyberNotes: Browser Performance Compar-
isons”. http://cybernetnews.com/2008/03/26/
cybernotes-browser-performance-comparisons

[7] O. de Bruijn, R. Spence and M. Chong, “RSVP Browser: Web Browsing
on Small Screen Devices”,Personal and Ubiquitous Computing, Vol. 6,
No. 4, September 2002.

[8] A. Dela Serna, “Top 10 Most Popular Websites in the
US”. http://www.alleba.com/blog/2007/09/30/
top-10-most-popular-Websites-in-the-us/

[9] D. Duchamp, “Prefetching Hyperlinks”,USENIX Symposium on Internet
Technologies and Systems, October 1999.

[10] Jaiprakash, “Performance Issues with String
Concatenation in JScript”. http://blogs.
msdn.com/jscript/archive/2007/10/17/
performance-issues-with-string-concatenation-in-jscript.
aspx

[11] S. Jin and A. Bestavros, “GreedyDual* Web Caching Algorithm:
Exploiting the Two Sources of Temporal Locality in Web Request
Streams”,5th Web Caching Workshop, May 2000.

[12] Microsoft, “Internet Explorer Browser”.http://www.microsoft.
com/windows/products/winfamily/ie/

[13] Mozilla Foundation, “Firefox3/Firefox Requirements”. http://
wiki.mozilla.org/Firefox3/Firefox_Requirements

[14] Mozilla Foundation, “Mozilla Layout Engine”. http://www.
mozilla.org/newlayout/

[15] A. Nadamoto and K. Tanaka, “A Comparative Web Browser (CWB)for
Browsing and Comparing Web Pages”,World-Wide Web Conference,
May 2003.

[16] Nontroppo, “Performance Tests for Opera 9.5”.http:
//nontroppo.org/timer/kestrel_tests/

[17] Opera, “Opera Browser”.http://www.opera.com/products/
desktop/

[18] A. Rousskov and D. Wessels, “High-Performance Benchmarking with
Web Polygraph”,Software: Practice and Experience, Vol. 34, No. 2,
January 2004.

[19] F. Schneider, S. Agarwal, T. Alpean and A. Feldmann, “TheNew
Web: Characterizing AJAX Traffic”,Passive and Active Measurement
Conference, April 2008.

[20] W3Schools, “Browser Statistics”.http://www.w3schools.com/
browsers/browsers_stats.asp

[21] WebKit, “SunSpider JavaScript Benchmark”.http://Webkit.org/
perf/sunspider-0.9/sunspider.html

[22] WebKit, “Open Source WebKit”,http://developer.apple.
com/opensource/internet/webkit.html

[23] Web Performance Inc., “Safari 3 Windows Performance Analysis”.
http://www.webperformanceinc.com/library/
reports/Safari%20Benchmarks/

[24] Wikipedia, “Layout Engine”, http://en.wikipedia.org/
wiki/Layout_engine

[25] Wikipedia, “List of ECMAScript Engines”, http://en.
wikipedia.org/wiki/List_of_ECMAScript_engines

[26] M. Wilton-Jones, “Browser Speed Comparisons”.http://www.
howtocreate.co.uk/browserSpeed.html



6

 0.1

 1

 10

StringRegExpMathDateCryptoControlBitOpsAccess3D

T
im

e 
(s

)

Firefox 2
IE 7

Opera 9.26
Safari 3

(a) JavaScript

 0

 1

 2

 3

 4

 5

 6

 7

LiveGoogleFlickrFacebookeBayCraigslistCNNBloggerAOLAmazon

T
im

e 
(s

)

Firefox 2
IE 7

Opera 9.26
Safari 3

(b) Rendering

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

DOMPOSTGET

T
im

e 
(s

)

Firefox 2
IE 7

Opera 9.26
Safari 3

(c) AJAX

Fig. 2. Benchmark Performance Results for Current Web Browsers

 0.1

 1

 10

StringRegExpMathDateCryptoControlBitOpsAccess3D

T
im

e 
(s

)

Firefox 3
IE 8

Opera 9.51
Safari 3

(a) JavaScript

 0

 1

 2

 3

 4

 5

 6

 7

LiveGoogleFlickrFacebookeBayCraigslistCNNBloggerAOLAmazon

T
im

e 
(s

)

Firefox 3
IE 8

Opera 9.51
Safari 3

(b) Rendering

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

DOMPOSTGET

T
im

e 
(s

)

Firefox 3
IE 8

Opera 9.51
Safari 3

(c) AJAX

Fig. 3. Benchmark Performance Results for Imminent Web Browser Releases


