
Simulation Modeling of Secure Wireless Sensor Networks ∗

Tuan Manh Vu Carey Williamson Reihaneh Safavi-Naini
Department of Computer Science

University of Calgary

ABSTRACT
This paper describes an extensible simulation environment
for the modeling of wireless sensor networks (WSNs). In
particular, our simulator facilitates the study of secure con-
nectivity between sensor nodes. The simulator has five main
components: network topology model, key establishment
protocol, adversary model for node capture, network anal-
ysis tools, and a graphical user interface (GUI) to facili-
tate rapid simulation, visualization, and analysis of WSNs.
We present the design and implementation of our simula-
tion tool, including the methodologies and algorithms un-
derlying each component, and the data flow dependencies
between them. Additionally, we describe the data collec-
tion and analysis functions integrated within the simulator,
and how these can be used for in-depth simulation studies.
We have used the simulator to verify asymptotic analytical
results for secure WSNs, as well as to investigate their struc-
tural characteristics. We present selected results to demon-
strate the use and value of our simulation tool.

Keywords
Wireless Sensor Networks, Key Establishment, Simulation

1. INTRODUCTION
Wireless sensor networks (WSNs) are emerging as a promis-
ing technology with a wide range of potential uses, including
environmental monitoring, building surveillance, and mili-
tary applications. A typical WSN consists of many (perhaps
thousands) of sensor nodes deployed over a region to observe

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VALUETOOLS 2009, October 20-22, 2009 - Pisa, Italy.
Copyright 2009 ICST 978-963-9799-70-7/00/0004 $5.00.

phenomena of interest. Each sensor node is a small battery-
powered device with sensing hardware to measure one or
more physical conditions, such as temperature, humidity,
pressure, sound, light, or radioactivity. Sensors have a short-
range wireless radio for communication, as well as limited
storage (memory) and computational (CPU) resources. Sen-
sors can be programmed to work collaboratively by collect-
ing, exchanging, and forwarding the sensed data to WSN
base stations, where data is processed and analyzed further.

Two important considerations when deploying WSNs are
connectivity and security. The WSN is connected if there
exists a physical (wireless) communication path from any
sensor node to any other node, including the base station.
These paths are typically multi-hop, relying on intermediate
sensor nodes to forward data. The WSN is secure if all
communication paths, including the intermediate hops, are
protected by pair-wise secret keys, so that all communication
can be encrypted.

In this paper, we are interested in WSNs that are both con-
nected and secure. In a secure WSN, a malicious adver-
sary cannot intercept communication between sensor nodes,
and cannot disrupt network operations by broadcasting bo-
gus information. Depending on different applications, sensor
nodes may be deployed with unpredictable topologies. Fur-
thermore, because of the resource constraints of sensors, con-
ventional cryptographic protocols, such as Diffie-Hellman [6]
and Kerberos [8], may not be practically applicable. There
have been several probabilistic key establishment schemes
specifically developed for WSNs that allow sensor nodes to
compute pair-wise secret keys. These schemes can provide
secure communication, while ensuring good network connec-
tivity. Due to the unpredictable deployment of sensor nodes,
simulation plays an important role in the evaluation of these
key establishment schemes.

Our work:
In spite of the growing interest in WSN research, there are
few public-domain tools for the simulation and analysis of
large-scale WSNs. The ns-2 network simulator [9] has many
built-in features for the simulation of TCP, as well as routing
and multicast protocols, but is not well-suited to the study
of secure connectivity in large WSNs with thousands of sen-
sor nodes. For these reasons, we developed our own tool
for WSN simulation, primarily to evaluate our own new ap-
proach for establishing secure communication between sen-
sor nodes. We have since redesigned, extended, and general-

ized this tool by adding support for other key establishment
methods, and improved the functionality and usability for
WSN network analysis. We have found this simulation tool
very useful in our work, and believe that it will also be ben-
eficial for others.

In this paper, we describe an extensible simulation environ-
ment for modeling secure WSNs. We have used it to verify
asymptotic analytical results for different key establishment
methods. Also, when it is not possible to study WSNs math-
ematically, one can use this tool to model and predict the
performance of the simulated WSNs.

The simulator has distinct components for tasks such as
network topology generation, secure connectivity establish-
ment, and node capture by an adversary, as well as post-
processing tools for network analysis and graphical visual-
ization. Currently, we have implemented two physical de-
ployment models for sensor nodes, three key establishment
methods, and one simple strategy for the adversary to cap-
ture nodes. Each component can be extended and integrated
into the simulator seamlessly, as long as the new imple-
mentation conforms to the overall design API. Extensibility
allows one to easily enhance the system in order to study
WSNs under various assumptions.

To simplify WSN analysis, we implement a set of widely-
known graph algorithms (i.e., shortest path, connected com-
ponents) as well as some custom algorithms to study node
degree, wireless connectivity, and key graph properties.

Our prototype runs in a Java Virtual Machine (JVM) en-
vironment on a typical desktop or laptop. In our testing
environment, with a 4-CPU Pentium (3.4 GHz) and 1 GB
of RAM, we can simulate WSNs of 1,000 to 10,000 nodes
in about 1 second. Using our tool, it is simple to simulate
a WSN multiple times (e.g., 1000 runs) to produce average
results regarding connectivity. Simulation output data can
also be redirected to a file, and then fed to external utilities
such as a statistical package for analysis, or gnuplot [2] to
produce graphical visualization.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information on probabilistic key
pre-distribution schemes, as well as terminology and metrics
analyzing key establishment approaches. Section 3 provides
an overview of our simulator, including its core components,
their dependencies, and the data flow between them. Details
about each component appear in Section 4 to Section 7. Sec-
tion 8 presents some simulation results obtained from our
tool. Finally, Section 9 concludes the paper.

2. BACKGROUND AND RELATED WORK
This section provides some brief background information on
the theory of random graphs [10], which are often used in the
analysis of secure WSNs. It then describes two prominent
probabilistic key pre-distribution schemes from the litera-
ture, and how these methods rely on random graph theory
to achieve the desired network connectivity. The notation
and terminology used to discuss and evaluate key establish-
ment schemes are briefly explained.

2.1 Random Graph Theory

A random graph G(n, p) is a graph of n nodes in which
the presence of an edge between any given pair of nodes
is equally likely; in particular, the edges are selected inde-
pendently with probability p. An asymptotic property of
random graphs is that as n approaches infinity, G(n, p) is
connected with probability c if p = 1

n
· (ln(n)−ln(−ln(c))).

In other words, if the average node degree nt in a random
graph G(n, p) is equal to 1

n
· (ln(n) − ln(−ln(c))) · (n − 1),

then the graph is connected with probability c ∈ (0, 1).

2.2 Probabilistic Key Pre-distribution
2.2.1 Eschenauer and Gligor’s scheme
Eschenauer and Gligor (EG) [5] pioneered a probabilistic
key pre-distribution method that preloads sensors with a
set of keys prior to deployment. First, a general key pool

with many (e.g., 100,000) random keys is created. Next,
each sensor is loaded with a fixed-size set of keys (e.g., 300)
drawn uniformly at random from the key pool (without re-
placement). This set of keys, called a key ring, contains the
keys as well as their corresponding key identifiers (key IDs).
Once deployed, each sensor node advertises (broadcasts) to
its wireless neighbors the IDs of keys that it possesses. Two
sensor nodes that share at least one common key can estab-
lish a secure communication channel, called a secure link.
Two wireless neighbors that can communicate over a secure
link are called wireless trust neighbors.

The secure connectivity in a WSN can be seen as a graph
G(V, E) in which each vertex represents a sensor node and
an edge exists if and only if the two corresponding nodes
have a secure link. The graph G(V, E) is referred to as a
wireless trust graph.

Given the assumptions that the sensor nodes are scattered
randomly and keys are distributed arbitrarily, Eschenauer
and Gligor modeled the wireless trust graph as a random
graph. As described earlier, a random graph of n nodes is
connected with probability c if the average node degree is
nt = 1

n
· (ln(n) − ln(−ln(c))) · (n − 1).

The average node degree can be determined based on net-
work topology information and key distribution parameters.
In particular, if N is the key pool size, and m is the key ring
size, then the probability that two key rings share at least

one common key is p̄ = 1 −
((N−m)!)2

N!·(N−2·m)!
[5]. From the wire-

less connectivity constraint, a sensor node can only set up
secure links with its wireless neighbors. Hence, the expected
node degree in a wireless trust graph is nt = nw · p̄, where
nw is the network density (i.e., the average number of sensor
nodes in a neighborhood).

In short, given the network size n and the desired connectiv-
ity c, the expected node degree can be estimated by random
graph theory. To achieve the desired node degree, either the
the key pool size N or key ring size m can be set to a fixed
value, and the other can be determined accordingly.

2.2.2 q-composite scheme
Chan et al. [3] proposed the q-composite scheme as an en-
hanced and generalized version of Eschenauer and Gligor’s
work. This scheme allows two wireless neighbors to estab-
lish a secure link if they have at least q common keys, where

q ≥ 1. The pair-wise secret key is constructed as the hash
value of the concatenation of all keys in common between
two wireless neighbors.

The probability that two random key rings share at least q

common keys is
Pm

i=q
s(i), where s(i) = ((N−m)!)2·(m!)2

N!·(N−2·m+i)!·i!·((m−i)!)2

is the probability that two key rings have exactly i common
keys [3]. Similar to the analysis of the EG scheme, if the key
pool size or key ring size is fixed, the other can be determined
so that the node degree in the wireless trust graph meets or
exceeds the desired value, making the network connected
with high probability (based on random graph theory).

However, several authors have observed that the construc-
tion of the wireless trust graph differs from that for a random
graph [4, 11]. In a WSN, the probability that a secure link
can be established is not really independent between every
pair of sensor nodes. There are two factors that affect this
edge probability between pairs of sensor nodes: the physi-
cal deployment of the WSN, and the way the keys are dis-
tributed to sensor nodes. The result obtained from random
graph theory may not be accurate for certain network topol-
ogy and key parameter settings. In Section 8, we compare
analytical results with simulation results for secure WSNs.

Other than the network connectivity, two important criteria
for evaluating a key establishment scheme are the commu-

nication overhead and the resilience against node capture.
Communication overhead measures the volume of data (bits)
exchanged between sensor nodes to complete the key estab-
lishment process. Our system reports this metric for the sim-
ulated WSNs, in addition to the connectivity information.
Node capture by an adversary is also a concern. Through
physical capture and control of a given sensor node, an ad-
versary can gain full access to all the information stored
in a node, including its keys. Using this information, the
adversary may be able to monitor, intercept, or alter data
being transmitted on many links in the WSN. Such links are
said to be compromised. The resilience against node capture
is measured by the proportion of uncompromised links re-
maining in the network after a specified number of nodes are
captured.

3. SIMULATOR OVERVIEW
This section provides an overview of our simulator, the sys-
tem requirements, and briefly highlights the main challenges
in the implementation of the simulator. We also discuss the
main components of the simulator, their dependencies, and
the data flows between them.

3.1 System Requirements
Our simulator is developed in Java 1.6, and thus can run on
any Linux, MacOS, Unix, or Windows system with support
for a Java Virtual Machine (JVM). While most of the user
interface is written in Java Swing GUI, gnuplot is used to
generate graphical output. In order for the simulator to
function fully, an appropriate platform-specific version of
gnuplot is needed. A complete stand-alone version of our
simulator for a Windows XP environment is available at [1].

Our tool can simulate a WSN of any size, as long as the
required memory is available. For hardware requirements,

at least 64 MB RAM is recommended to simulate WSNs of
size 1,000. To study larger networks with up to 10,000 nodes,
512 MB RAM or more is sufficient. As mentioned earlier,
our testing was done on a Pentium(R) 4 CPU 3.4 GHz and
1 GB of RAM, which is enough to simulate a WSN with up
to 50,000 nodes, assuming a moderate network density (e.g.,
from 30 to 60).

Execution time for simulations depends on network size and
the details of the analysis required. Some analysis routines
take significantly longer running time and more memory
than others, depending on the complexity of the algorithm
used. For instance, calculating the path lengths between ev-
ery pair of nodes has a running time of O(n3) and memory
space requirement of O(n2), where n is the network size.

3.2 Implementation Challenges
The simulator would be used for simulation of WSN with
thousands of nodes, where each node has a large key ring
(e.g., 300 keys). Important properties of interest are con-
nectivity of the network, both for wireless and wireless trust
graphs in addition to the key-sharing connectivity between
nodes. To determine connectivity one needs to consider any
pair of nodes. Therefore, it is crucial to have highly efficient
implementation in order to be able to run the simulator for
large networks. Efficiency of the simulator depends on the
efficiency of the algorithms, data structures and calculations
on large data sets. We use adjacency list with some mod-
ifications instead of adjacency matrix, together with linked

list and queue to efficiently store all necessary data.

Also, the simulator can be used to calculate quantities ana-
lytically for validating the simulation results. These calcu-
lations in many cases are computationally intensive. For ex-
ample, finding the expected probability that two key rings,
each of size 300, have at least four keys in common given
that the key pool size is 100,000, performs arithmetic oper-
ations on very large integers. This and similar calculations
need to be optimized for fast performance.

3.3 Main Components
To simulate a WSN and analyze the performance of a key es-
tablishment scheme, there are essentially three steps. First,
the locations of sensor nodes are generated, which deter-
mines the wireless connectivity based on the specified com-
munication range. Second, a particular key establishment
scheme is used to establish secure links where possible be-
tween wireless neighbors. Third, the captured nodes are
chosen and the compromised links are determined accord-
ingly. The third step is optional, and is only required if
one wishes to study the effect of node capture. After the
three steps are complete, one can use the available network
analysis functions to study the simulated WSN, such as its
connected components, path length between nodes, distribu-
tion of wireless trust neighbors, secure connectivity, fraction
of compromised links, and so on.

Since the process of WSN simulation can be separated into
distinct steps, we build several components to accomplish
different tasks. Figure 1 illustrates the five main components
in our framework: physical deployment, key establishment,
node capture, network analysis, and graphical user interface.

In the following, we explain the main purpose of each com-
ponent, as well as its input and output dependencies.

Figure 1: Main components in WSN simulator

Physical Deployment: This component defines the classes
used for creating the physical layout of a WSN. Depending
on the user-specified network topology and deployment re-
gion, a sensor node’s location can be generated either ran-
domly or deterministically. Repeating this process for all
nodes produces the complete physical deployment of a WSN,
after which the wireless connectivity between nodes is au-
tomatically determined. The information on the locations
of nodes and their wireless neighbors is accessible by other
components.

Key Establishment: This component defines the classes
used for establishing secure links in the WSN, given the
known locations of nodes, their wireless neighbors, and the
keying material available at each node.

Each sensor node is initially assigned different keying mate-
rial according to a user-specified key establishment method,
as well as the key pool size and key ring size (in the case
of EG and q-composite schemes). Trust neighbors and their
pair-wise keys are determined following the chosen protocol.
The communication overhead for the key negotiation phase
is also recorded.

The ‘key establishment’ and ‘node capture model’ compo-
nents have mutual dependencies. For example, suppose that
the ‘node capture model’ component selects nodes that are
captured by an adversary. Given the set of captured nodes,
the ‘key establishment’ component identifies what informa-
tion is accessible to the adversary, and subsequently which
secure links in the WSN are compromised.

The information on keying material of the nodes, trust neigh-
bors, pair-wise and captured keys, as well as the secure and
compromised links is made available to other components.

Node Capture Model: When a WSN is deployed in a
hostile area, an active adversary might capture one or more
sensor nodes. If this happens, all of the information stored
in the memory of the captured node is available to the ad-
versary, which can compromise secure links elsewhere in the
WSN. To study the resilience of a WSN against node cap-
ture, one needs to estimate the proportion of links that re-
main secure when one or more sensor nodes are captured.

An adversary may have different strategies for capturing
nodes. The simplest is a random capture model, where cap-
tured nodes are selected uniformly at random. Another is
a spatial approach, where all sensor nodes in a certain geo-
graphic area of the deployment region are captured. A third
possibility is an adaptive adversary, who always attacks the
most sensitive nodes in the network. Such an adversary tries
to acquire as much information as possible, maximizing the
chance to compromise links in the remaining network.

The ‘node capture model’ component enables one to study
the effect of different node capture strategies on link com-
promise. In particular, a node capture model specifies how
nodes are selected one-by-one by the adversary. Given the
adversary’s strategy, the user-specified number of captured
nodes, as well as the locations of nodes and their keying
material, this component returns a set of captured nodes.

Network Analysis: This component provides a suite of
graph algorithms and statistical tools to assess the strength
of a simulated WSN. This component uses ‘physical deploy-
ment’, ‘key establishment’, and ‘node capture model’ com-
ponents to simulate a complete WSN. The analysis functions
provide information about the simulated WSN.

Graphical User Interface: This component allows users
to easily set up parameters for network topology, key estab-
lishment, node capture model, and number of replications
for the simulation. Once the WSN has been simulated, one
can study the result visually such as WSN layout, wireless
connectivity, secure connectivity, and so on. Visualization
options are easily settable for customized simulations.

4. PHYSICAL DEPLOYMENT COMPONENT
This section explains the ‘physical deployment’ component,
specifically the classes, methodologies, and algorithms used
to generate different network topologies.

4.1 Abstract Classes
Figure 2 shows a simplified UML diagram of the ‘physical
deployment’ component including two abstract classes (i.e.,
Location and Deployment) and two implementations of each.

Figure 2: Physical deployment (topology) models

The Location class describes abstract properties of a physi-
cal location of a sensor node when deployed in a particular
region. Any sub-class of Location must implement a method
to determine if two sensors are within a given communica-
tion range or not. How the communication range is defined
depends entirely on the implementation.

The Deployment class contains attributes and methods of
an object that represents a WSN deployment. The default
constructor takes two parameters: the network size, and the
communication range. The most important method in this
abstract class generates a single node’s location. It is an ab-
stract method, which must be implemented by sub-classes.
Repeatedly calling this method generates the locations of
all nodes. We assume that node locations remain static
throughout the simulation, and that all nodes have homo-
geneous communication range. Another important method
is used to determine wireless connectivity in the network.
This method is non-abstract, and provides a default imple-
mentation to determine wireless connectivity. Basically, it
loops through every possible node pair, and checks if they
are within communication range of each other or not. A
sub-class can override this default method, if desired. For
example, execution speed may be improved by exploiting
specific characteristics of a deployment (e.g., regular grid
layout).

We implement two examples of deployment types. The first
type assumes that sensor nodes are scattered uniformly at
random within a unit square; this is a common model when
studying WSNs [4]. One issue with this type of deployment
is boundary effects: nodes near edges and corners have fewer
wireless neighbors than other nodes. Thus, after the key es-
tablishment phase, these nodes are more likely to be isolated
from the network. This leads to discrepancies between ana-
lytical results and simulation results, even when the network
has 1,000 nodes or more. (Section 8 discusses this issue in
more detail). In order to avoid boundary effects, our second
deployment type considers sensor nodes that are distributed
uniformly at random on the surface of a unit sphere (e.g.,
to model a planetary deployment). Although this is not a
realistic model for most practical WSNs, it can be useful
when studying WSNs without the boundary effect.

In the following, we describe the two implementations of
WSN deployment in our system.

4.2 Sub-classes
4.2.1 Unit Square Deployment
Location and Communication Range
Each location in a unit square is given by x and y coordi-
nates. To generate a random location with uniform distribu-
tion, we use the default random number generator provided
by Java Development Kit (JDK) 1.6 to set each coordinate
to a random value between 0 and 1. The distance between
two nodes is evaluated as the Euclidean distance between
their locations.

To reduce the computation time for wireless neighbor dis-
covery, our implementation sorts the locations of all nodes
according to their x coordinate. This technique substan-
tially reduces the number of node pairs that must be con-
sidered when determining wireless connectivity. This simple
optimization significantly improves the execution time (e.g.,
10-100 times faster than a brute force approach), especially
when the WSN is very large (e.g., up to 10,000 nodes).

Determining Communication Range
Using the default constructor, one can generate a WSN
physical deployment given a network size and a communica-

tion range. However, in some cases, it is more desirable to
generate a network deployment given a network size and a
specified average node density.

Analytically, we have derived a formula for the relationship
between network size, average density, and communication
range. Specifically, if n nodes with communication range r

(0 < r < 1) are distributed uniformly at random within a
unit square, then the average network density nw is:

nw = (n − 1) · (π · r
2
−

8

3
· r

3 +
1

2
· r

4) (1)

With this model, the simulation user can specify either the
communication range or the network density for a given
WSN size; the other value is computed automatically by
the simulator.

4.2.2 Unit Sphere Surface Deployment
Location and Communication Range
In the unit sphere model, each point is represented by three
Cartesian coordinates (x, y, z). We employ Marsaglia’s
method [7] to generate random points on the unit sphere’s
surface with a uniform distribution. The distance between
two points is computed as the great-circle distance between
them (i.e., path along the surface, not through the interior).

Determining Communication Range
We have also analytically determined the relationship be-
tween network size, communication range, and network den-
sity in the unit sphere model. Given n sensor nodes dis-
tributed uniformly at random on a unit sphere’s surface, if
the desired average density is nw, then the communication
range r is given by:

r = acos(1 −
2 · nw

n − 1
) (2)

5. KEY ESTABLISHMENT AND NODE CAP-
TURE MODEL COMPONENTS

This section discusses the ‘key establishment’ and ‘node cap-
ture model’ components, as illustrated in Figure 3.

5.1 Key Establishment Scheme
Class Scheme defines the abstract design of an object repre-
senting a generic key establishment scheme. Examples of the
abstract methods are a function to determine if two nodes
share a key, a function to return the status (compromised
or not) of a secure link, and a function to compute the pro-
portion of compromised links in the network.

There are different categories of key establishment schemes,
based on how they work. However, we focus only on proba-
bilistic key pre-distribution approaches. ProbabilisticPredis-

tributionScheme is an abstract class that extends Scheme,
specifying additional methods of a generic probabilistic key
pre-distribution scheme, such as key ring generation. A
sub-component that facilitates key ring manipulation is de-
scribed in Section 5.2.

We have fully implemented three schemes for probabilistic
key pre-distribution: EG, q-composite, and our own multi-
round scheme. The multi-round scheme is our ongoing re-
search and due to the nature of this paper, we do not go
into the details of this scheme.

Figure 3: Key establishment and node capture

5.2 Key Ring and Key Selection
The key ring sub-component provides a method to construct
a random key ring given the key pool size. Normally, a
fixed number of keys are drawn uniformly at random from
the key pool to create a key ring. Nevertheless, one may
be interested in how different key selection methods influ-
ence the performance of a particular probabilistic key pre-
distribution scheme (e.g., heterogeneous key ring sizes, non-
uniform key selection).

Class KeyRing can use any implementation of the abstract
class KeySelection to choose keys from the key pool when
forming a key ring. We have implemented two key selection
methods: keys can be chosen with Uniform or Zipf distri-
butions. Additionally, the class KeyRing provides a set of
functions for basic key ring manipulations, including union,
intersection, and set membership operations.

5.3 Node Capture Model
The abstract class NodeCaptureModel defines a method that
returns a set of captured nodes. Currently, we provide one
simple model, class RandomNodeCapture, which selects x

captured nodes (where x is the input parameter) uniformly
at random from the set of all sensor nodes.

6. NETWORK ANALYSIS COMPONENT
In this section, we describe the most essential analysis func-
tions provided by the ‘network analysis’ component.

6.1 Connectivity
Connected components
We provide a function to find all connected components and
their sizes by doing breadth-first search on a wireless trust
graph. From our observations, in many cases, when the net-
work is disconnected only a few nodes around the boundaries
and corners are isolated from the rest. In other words, de-
spite the fact that the network is disconnected, the largest

connected component consists of most of the nodes. Sim-
ply saying a network is connected or disconnected may not
provide enough information when analyzing the connectiv-
ity. For this reason, we compute and report all connected
components.

Network connectivity
To determine if the network is connected or not, we provide
a simple function that compares the size of the largest con-
nected component to the network size. If they are equal,
then the network is connected. Otherwise, the network is
disconnected.

Coverage area
In some applications, it is useful to know the geographic area
covered by a set of sensor nodes that are connected to each
other. We provide a function to estimate the coverage area
of one or more connected nodes.

Path length distribution
Another useful way of analyzing WSN connectivity is to
measure the average path length between nodes. This metric
provides an indication of the average power consumption for
WSN communication. We provide a function implementing
Floyd’s algorithm (all pairs shortest paths) on the wireless
trust graph. It computes all paths, and then returns the
distribution of the path length between every pair of nodes.

6.2 Key Ring Size and Key Usage
Initial key ring size
The key ring size is important in probabilistic key pre-distribution
schemes. Large key rings improve the chances of connectiv-
ity, but they also require more memory in sensor nodes, and
increase the risk of link compromise when a node is cap-
tured. Often one needs to estimate how many keys should
be assigned to each sensor node so that there is a high prob-
ability that the deployed WSN is connected. We provide a
small program in the data collector package to determine
this value via simulation. It performs binary search to find
the smallest initial key ring size so that the deployed WSN
is connected with high probability (i.e., at least i times out
of j simulation runs, where i and j are specified values for a
given network topology and key pool size).

Key usage
In most probabilistic key pre-distribution schemes, the as-
signed keys from the key pool are rather sparsely used. We
provide a function to examine the key usage distribution,
particularly, how many keys are used once, twice, and so on.
This usage distribution affects resilience to node capture.

Number of compromised keys
To study how many keys from the key pool are obtained by
an adversary who captures x nodes (using a particular node
capture model), we provide a function that reports all the
compromised keys.

6.3 Other Analysis Functions
In addition to the functions mentioned above, other useful
analyses compute the distribution of wireless neighbors, the
distribution of trust neighbors, the proportion of compro-
mised links, and the probability that a link is compromised
if multi-path key reinforcement technique [3] is applied.

(a) A network with 10 nodes (b) A network with 1,000 nodes

Figure 4: Screenshots of GUI for WSN simulation tool

For almost every analysis function on a single WSN, there
is a corresponding program in the data collector package to
calculate the average result from a user-specified number of
simulation replications.

7. GUI COMPONENT
Figure 4 shows example screen shots of the graphical user
interface of our simulation tool. Figure 4(a) shows a small
10-node WSN, while Figure 4(b) shows a large 1000-node
WSN. In both examples, the rightmost pane shows the WSN
layout, while the left side of the interface shows input pa-
rameters and output results from the simulation.

There are two main control tabs on the top left of the GUI
windows: Simulation and Theory. The Theory tab allows
the user to study the analytical results of random graph
theory, probability of key sharing, and so on with different
parameters for comparison with the simulation results. We
concentrate here on the other main tab, Simulation. Under
Simulation, there are three sub-tabs that let the user enter
simulation parameters, customize visualization, as well as
select and view statistics and graphs based on the simulation
results.

One parameter that the user needs to specify is the number
of simulation replications. This parameter (default value
is 1) can be changed in the data field next to the ‘Run
simulation’ button in Figure 4. Once this button is hit, a
WSN is simulated a number of times as stated by the users.
When the simulation is done, the result appears on the text
area beneath the ‘Run simulation’ button. Specifically, this
text area summarizes the simulation parameters and pro-
vides the simulation results including the average number of
trust neighbors, the network connectivity, connected com-
ponents, the number of compromised keys, the fraction of
compromised links, running time, and so on.

The rightmost portion of the GUI in Figure 4 shows the net-
work visualization from the most recent simulation run. In
the current system, we only provide the visualization for the
unit square deployment model. We have no 3D visualization
support for the spherical model.

Using the GUI to study WSNs, the user first needs to spec-
ify parameters for simulation. Once the network has been
simulated, network visualization can be customized to show
different information. Furthermore, the user can examine
the detailed (text-based) summary report from the simula-
tion, or view the graphs generated from the simulation data.
The following paragraphs elaborate on these steps.

Setting simulation parameters
To simulate a WSN, the user needs to select parameters for
network topology, key establishment scheme, and (optional)
node capture model. Besides, the user has to specify which
analysis routines should be included in the simulation (for
efficiency reasons), and the number of simulation replica-
tions.

Figure 5 shows some of the menu selections and parameter
controls for the user. Most simulation parameters can be
set manually or chosen using drop-down menus and check
boxes.

Inside the Network topology tab (Figure 5(a)), the user can
select the deployment type, and then set the network size
and either communication range or network density. The
data fields for network size and density are drop-down lists
that consist of pre-defined common values. The text boxes
are also editable so that the user can define any value they
choose. As mentioned in Section 4.2, the communication
range and the desired network density are related. Assuming
that the user has chosen a network size and deployment type,
whenever the desired density or the communication range is
changed, the other setting is automatically calculated and
updated accordingly.

From the Key Establishment tab (Figure 5(b)), the user can
choose key establishment scheme, key pool size, key ring
size, and key selection method.

The Adversary tab (Figure 5(c)) specifies the node capture
model (only one model currently) and the number of cap-
tured nodes. The default value is 0, which means there is
no adversary in the simulated WSN.

(a) Network topology (b) Key establishment (c) Node capture

(d) Network analysis (e) Visualization settings (f) Statistical settings

Figure 5: Setting simulation parameters

The Calculation tab (Figure 5(d)) allows the user to spec-
ify which network analysis functions are desired. There are
some computationally expensive routines in the analysis of
simulated WSNs which can be deactivated, avoiding extra
overhead when simulating WSNs if the user is not inter-
ested in those analyses. By default, all of these options are
selected.

Customizing visualization
Figure 5(e) shows the ‘Visualization’ tab with various set-
tings for customization. The drop-down list of graph types
lets the user see different information about sensor nodes.
The available options are wireless range (the circular com-
munication range of each sensor node), wireless connectivity

(nodes that can communicate directly with each other), the
key graph (nodes that share at least one key), and the wire-

less trust graph (secure connectivity).

To improve the clarity of the visualization, the user can se-
lect one of the three sizes: ‘Small’, ‘Medium’, or ‘Large’.
This setting scales the font size used, as well as the size of
the dots and lines used to illustrate the WSN. For a large
network, the visualization looks better with ‘Small’, and vice
versa. The user also has an option to show or hide the node
IDs, key rings, and protection keys of secure links, as well as
the captured nodes and their attached compromised links.

The network visualization shown in Figure 4a is a wireless
trust graph of 10 sensor nodes. In this example, the key
establishment scheme is EG, and each node is assigned two
keys chosen randomly from a key pool of 10 keys. It is
assumed that one node is captured by the adversary. In
the visualization, the black dot indicates the captured node,
while the red dots represent the other (uncaptured) nodes.
For each node, we can see its ID followed by the IDs of keys
that it has. In this example, node 3 is captured, and thus the
adversary has keys 1 and 3. There is one compromised link

in the network, which is shown by the dashed line between
nodes 3 and 6. The links that remain secure are shown with
solid lines.

Graphical results
Figure 5(f) shows the options available under the Statistics

tab. In this tab, the user can choose to see the distribu-
tion of the number of wireless neighbors or trust neighbors,
and the distribution of path lengths based on the simulation
result. The simulation data is fed into gnuplot to generate
graphs, which are then presented to the user. Figure 6 shows
an example diagram of the distribution of path length in a
simulated WSN.

Figure 6: A diagram showing the distribution of
path length in the simulated WSN

8. APPLICATIONS AND SIMULATION RE-
SULTS

This section presents selected simulation results to demon-
strate the functionality and value of our simulation tool for
secure WSNs. First, we validate the theoretical results of
network connectivity and link compromise probability in
the EG and q-composite schemes. Next, we examine the
boundary effects on network connectivity by i) comparing
the predictions and experimental results of key ring size and

ii) investigating the difference of the distribution of node de-
gree in random and wireless trust graphs. Finally, we use
the simulator to study if the boundary effects become less
noticeable in larger networks.

8.1 Simulation model validation
Network connectivity
Security analysis of EG protocol and its extension, q-composite
scheme, relies on modeling the key pre-distribution by a ran-
dom graph. As the first application of the tool, we exam-
ine the validity of this assumption. Assume that we want
to deploy a network of 1,000 nodes in which the nodes are
scattered uniformly at random on the unit sphere with an
average density nw = 30 nodes. The desired connectivity is
99.9% and the key pool size N is 100,000.

According to random graph theory, a network of 1,000 nodes
should be connected 99.9% of the time if the expected node
degree nt exceeds 13.8. Let p̄ be the probability that two
random key rings can be used to establish a pair-wise key.
To satisfy nt > 13.8 for nw = 30, where nt = nw · p̄, the
initial key ring size m must be chosen such that p̄ > 13.8

30
.

For a key pool size N = 100, 000, using the equations in
Section 2.2, we require m = 249 in the EG scheme, and
m = 394 for the q-composite scheme when q = 2.

We ran the simulation experiments using these theoretical

key ring sizes for EG and q-composite schemes on the unit
sphere. The result shows that the network is connected 9,992
times out of 10,000 simulation runs for the EG scheme, and
9,994 times out of 10,000 simulation runs for the q-composite
scheme. These results confirm the mathematical analysis.
The distribution of node degree is also very similar to that
in a random graph.

Resilience against node capture attack
In the second set of simulation experiments, we verify the
theoretical results of the effect of node capture attack. Re-
call that the adversary can obtain all keys stored in captured
nodes’ memory, allowing to compromise other secure links
with a non-zero probability1. Assume that we want to com-
pare the resilience against node capture attack in the EG
and q-composite schemes when q = 2 and q = 3. By a
similar derivation procedure of key ring size, we estimate
m = 502 for q-composite scheme when q = 3 to achieve a
connectivity of 99.9%. Using the same parameter settings
for network topology, the simulation results are obtained and
then compared with theoretical predictions in Figure 7. The
results generated from our simulator are consistent with the
expected link compromise probability. That is, q-composite
scheme provides better resilience under small-scale node cap-
ture attacks; however, its security weakens as the number of
captured nodes increases2.

8.2 Boundary effects
To study boundary effects, we repeated the previous exper-
iments with the same parameter settings on the unit square
deployment model. To approximate the initial key ring size

1The derivation and exact formulas of link compromise prob-
ability in the EG and q-composite schemes are available in [5]
and [3], respectively.
2Chan et al. explained this trade-off in [3].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

P
r[

a
se

cu
re

 li
nk

 is
 c

om
pr

om
is

ed
]

Number of captured nodes

EG (theory)
EG (simulation)

2-composite (theory)
2-composite (simulation)

3-composite (theory)
3-composite (simulation)

Figure 7: Comparison of the resilience against node
capture attack in the EG and q-composite schemes
when q = 2 and q = 3

for the connectivity of 99.9% using our tool, we perform
binary search for the smallest m such that the simulated
WSN is connected at least 9,990 times out of 10,000 sim-
ulation runs (i.e., the connectivity is roughly 99.9%). The
simulation results indicate that the EG scheme requires at
least 392 keys, while the q-composite scheme requires 537
keys.

The simulation results differ significantly from the theoret-
ical results. Much larger key ring sizes (about 50% larger)
are required for a desired connectivity of 99.9%. These dis-
crepancies can be explained by:

• the small network size (1,000) compared to the asymp-
totic random graph theory result, and

• the existence of nodes around the boundaries and cor-
ners (these nodes have much lower chance to establish
secure links with others because they have fewer wire-
less neighbors).

8.3 Node degree
As mentioned earlier in the validation of network connec-
tivity on the unit sphere, the distribution of node degree is
very similar to that in a random graph. Figure 8a presents
the comparison of this distribution, showing that they are
very close. This is because in random graph and on sphere,
virtually there is no boundary.

To investigate the influence of boundary effects on WSN
connectivity, we run another set of simulation experiments
to compare the node degree distribution in random graph to
those for the wireless trust graphs with EG or q-composite
scheme.

Recall that a random graph of 1,000 vertices is connected
with 99.9% if the average node degree is 13.8; thus, the edge
probability is p̂ = 13.8

999
. The probability that a vertex has

a degree equal to d is

n − 1

d

!

· p̂d
· (1 − p̂)n−1−d where

n is the number of vertices and hence equal to 1,000. This
equation allows us to find the distribution of node degree in
a random graph of 1,000 vertices and the edge probability
equal to 13.8

999
.

Also, the mathematical analysis of EG and q-composite (q =
2) schemes says that the initial key ring size should be 249

and 394, respectively, in order to ensure the expected node
degree exceeds 13.8, making the deployed networks con-
nected 99.9% of the time. We run the simulation 10,000
times using the theoretical initial key ring size with the cor-
responding key establishment scheme to find the distribution
of node degree.

Figure 8b compares the distribution of node degree in ran-
dom graph and the simulation results with both EG and q-
composite schemes on the wireless trust graph. Even though
the average node degree in all three cases is approximately
13.8, the node degree distributions in the wireless trust graphs
differ from that for the random graph. In particular, the
wireless trust graphs have more nodes with low degree. The
high number of low-degree nodes in the wireless trust graph
indicates that nodes near the edges and corners are disad-
vantaged in terms of secure connectivity.

8.4 Network size
In the last set of simulation experiments, we want to com-
pare the theoretical initial key ring size with the actual key
ring size in a larger network when the deployment region is
a unit square. Specifically, the network size is 2,000, the av-
erage density is 30, the key pool is 100,000 and the desired
connectivity is 99.9%. The theoretical initial key ring size
for EG scheme under this parameter set up is 287. The sim-
ulation result suggests that the initial key ring size should
be at least 397 for a connectivity of 99.9%. In the 2000-node
case, the difference between the theoretical and simulation
results is 38.4%, which is much lower than the 57.4% error
for the 1000-node case. When the network size increases,
the accuracy of the (asymptotic) random graph theory re-
sult improves, but the estimation error is still noticeable
even when n = 10, 000 nodes.

In summary, the boundary effects have a significant impact
on network connectivity. Although the estimation of initial
key ring size is more accurate as the network size grows,
it is still far from the actual value even if the network size
is large. Therefore, studying the network connectivity for
practical WSNs should consider boundary effects.

9. CONCLUSION
This paper has presented an extensible simulator for the
study of secure WSNs. We have found the simulator use-
ful in the study of network connectivity, and demonstrated
some discrepancies from the results predicted by random
graph theory. For future work, we are planning to imple-
ment adaptive node capture models and study their effect
on the resilience of WSNs.

Acknowledgments
The authors thank the VALUETOOLS 2009 reviewers for
their encouraging feedback on the initial version of this pa-
per. Financial support for this research was provided by
iCORE (Informatics Circle of Research Excellence) and NSERC
(Natural Sciences and Engineering Research Council).

10. REFERENCES
[1] Carey Williamson’s software page.

http://www.cpsc.ucalgary.ca/∼carey/software.html.

[2] gnuplot. http://www.gnuplot.info.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28+

P
ro

ba
bi

lit
y

Node degree

Network size: 1000
Average node degree: 13.8

EG scheme
q-composite scheme

Random graph

(a) Sensors are scattered uniformly at random on a unit sphere

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28+

P
ro

ba
bi

lit
y

Node degree

Network size: 1000
Average node degree: 13.8

EG scheme
q-composite scheme

Random graph

(b) Sensors are scattered uniformly at random in a unit square

Figure 8: Comparison of the node degree distribu-
tion in random graph and in wireless trust graph
with EG or q-composite key establishment

[3] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In
Security and Privacy, 2003. Proceedings. 2003

Symposium on, pages 197–213, May 2003.

[4] R. Di Pietro, L. V. Mancini, A. Mei, A. Panconesi,
and J. Radhakrishnan. Redoubtable sensor networks.
ACM Trans. Inf. Syst. Secur., 11(3):1–22, 2008.

[5] L. Eschenauer and V. D. Gligor. A key-management
scheme for distributed sensor networks. In CCS ’02:

Proceedings of the 9th ACM conference on Computer

and communications security, pages 41–47, New York,
NY, USA, 2002. ACM.

[6] Internet Engineering Task Force. Diffie-hellman key
agreement method.
http://tools.ietf.org/html/rfc2631.

[7] G. Marsaglia. Choosing a point from the surface of a
sphere. The Annals of Mathematical Statistics,
43:645–646, 1972.

[8] B. C. Neuman and T. Ts’o. Kerberos: an
authentication service for computer networks.
Communications Magazine, IEEE, 32(9):33–38, Sep
1994.

[9] ns-2. http://www.isi.edu/nsnam/ns.

[10] J. Spencer. The Strange Logic of Random Graphs.
Springer-Verlag, 2000.

[11] O. Yagan and A. Makowski. On the random graph
induced by a random key predistribution scheme
under full visibility. In Information Theory, 2008.

ISIT 2008. IEEE International Symposium on, pages
544–548, July 2008.

