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Abstract— While Transmission Control Protocol (TCP) vari-
ants with delay-based congestion control (e.g., TCP Vegas)
provide low queueing delay and low packet loss, the key problem
with their deployment on the Internet is their relative perfor-
mance when competing with traditional TCP variants with loss-
based congestion control (e.g., TCP NewReno). In particular, the
more aggressive loss-based flows tend to dominate link buffer
usage and degrade the throughput of delay-based flows. In this
paper, we study a novel approach for achieving fair sharing of the
network resources among TCP variants, using Rate-Delay (RD)
Network Services. In particular, loss-based and delay-based flows
are isolated from each other and served via different queues.
Using extensive ns-2 network simulation experiments, we show
that our approach is effective in providing fairness between loss-
based NewReno and delay-based Vegas flows.

I. INTRODUCTION

The Transmission Control Protocol (TCP) has been the
dominant transport-layer protocol on the Internet for many
years. TCP provides reliable byte stream delivery between end-
host applications, using a suite of mechanisms for connection
management, flow control, and error control. A congestion
control mechanism was also added to TCP in 1988 [1].

There are two different paradigms for TCP congestion
control. In the loss-based approach, a TCP source keeps
increasing its sending rate until a bottleneck link buffer is
saturated, and a data packet is dropped. Such a packet drop
provides an implicit congestion signal for the TCP source
to decrease its sending rate. In the delay-based approach,
a TCP source carefully monitors the observed Round Trip
Time (RTT) on the network, in order to detect the onset of
congestion. In particular, a sudden increase in the end-to-end
delay is an implicit congestion signal. With luck, congestion
can be detected sooner, before packet losses occur. Assuming
suitable measurement accuracy at TCP sources, the delay-
based approach can provide high link utilization, with low
queueing delay and near zero packet loss.

The main challenge with the deployment of delay-based
protocols is their relative throughput disadvantage when com-
peting with loss-based protocols [2]. In particular, the pres-
ence of aggressive loss-based flows can completely fill queue
buffers at network links, and significantly deteriorate the
throughput of delay-based flows. For example, Figure 1 shows
how a single TCP NewReno flow and a single TCP Vegas flow
share a 2 Mbps bottleneck link in a 60-second ns-2 network
simulation experiment. In this example, the NewReno flow

consumes approximately 92% of the bottleneck link bandwidth
in steady-state, while the Vegas flow receives very little.
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Fig. 1. Example of unfairness between TCP NewReno and TCP Vegas

The issue of compatibility between loss-based and delay-
based protocols has triggered substantial research over the past
decade. Many proposed solutions [3]–[5] rely on an end-to-
end approach, which assumes the deployment of the proposed
algorithms on end hosts without any help from the network.
While these techniques can be effective, there are practical
obstacles to their widespread deployment. Furthermore, the
performance achieved can be highly sensitive to the configu-
ration of their parameters.

In this paper, we explore a network-based solution to
provide compatibility between loss-based and delay-based
transport protocols. The main idea of such a solution is to
isolate loss-based flows from delay-based flows, and service
them via different queues at network links. As the basis for
our approach, we use Rate-Delay (RD) Network Services [6],
which were originally proposed for serving delay-sensitive
and throughput-oriented applications. We apply RD services
to TCP flow isolation, using TCP NewReno [7] and TCP
Vegas [8], [9] as representatives of loss-based and delay-
based protocols, respectively. Through extensive simulations,
we demonstrate that isolating these types of flows is effective.
In particular, the protocols share the network resources fairly
for a wide variety of network topologies and traffic scenar-
ios considered. In addition to the performance advantages
of our approach, there are also practical advantages. First,
our solution does not require any changes in the end-to-end
functionality of the transport protocols. Second, our approach
is simple to configure, and very robust in its performance.
Furthermore, this approach is applicable to any loss-based or
delay-based protocol.



The rest of this paper is structured as follows. Section II
provides relevant background material regarding TCP, TCP
variants, and RD Network Services. Section III presents the
design details of our proposed solution. Section IV presents
simulation experiments evaluating the performance and robust-
ness of our solution. Section V discusses practical issues, while
Section VI reviews prior related work. Finally, Section VII
concludes the paper.

II. BACKGROUND

In this section, we briefly describe TCP NewReno, TCP
Vegas, and RD Network Services.

A. TCP NewReno

TCP congestion control relies on the dynamic manipulation
of the window size used by TCP’s window-based flow control.
In particular, a TCP source controls its average data sending
rate by adjusting its congestion window size, which is an
estimate of how much data can be safely transmitted into the
network without experiencing packet loss.

To determine an appropriate data sending rate, the TCP
source operates in two different modes: slow start and con-
gestion avoidance.

1) Slow start: A NewReno source begins transmitting a
new data flow in slow start. The initial congestion window is
typically one segment. Each time a NewReno source receives
an acknowledgment (ACK) packet, it increases the congestion
window cwnd by one segment. With this approach, the con-
gestion window size expands multiplicatively, doubling every
RTT. An additional TCP parameter, the slow start threshold,
determines when this aggressive window expansion mode
should end. Once the threshold is reached, a NewReno flow
transitions into congestion avoidance.

2) Congestion avoidance: In congestion avoidance, a
NewReno source increases its congestion window linearly,
rather than multiplicatively. Upon receiving each ACK, the
congestion window is changed as follows:

cwnd = cwnd+
1

cwnd
(1)

Thus, each subsequent successful delivery of a data packet
leads to a small increase of TCP congestion window, and after
the exchange of a complete window’s worth of data, cwnd
increases by one segment. This linear increase continues until
the flow is finished, or a packet loss occurs.

3) Loss recovery: There are two ways for a NewReno
source to detect packet losses. One approach is a coarse-
grained timeout, which happens when a NewReno source has
not received any ACK during a Retransmission Timeout (RTO)
interval. When a timeout occurs, a NewReno source resets the
congestion window size to one packet, and resumes slow start.
Another approach is called triple duplicate ACK, in which
three repeated cumulative ACKs carry the same redundant
information, indicating a lost packet within a window of pack-
ets. In this case, a NewReno source decreases the congestion
window size by half.

B. TCP Vegas

TCP Vegas is one of the most prominent examples of delay-
based transport protocols. The key difference between loss-
based protocols like TCP NewReno and delay-based protocols
like TCP Vegas is that the latter uses changes in end-to-end
delay (rather than loss) as the means for detecting congestion.
In particular, since TCP throughput is inversely related to
RTT, Vegas measures the difference between the expected
throughput and the actual throughput. The idea is that the
actual throughput should match the expected throughput if
there is no congestion along the network path. A lower actual
throughput indicates increased delay, and hence congestion,
on the network path.

Similar to NewReno, Vegas has slow start and congestion
avoidance modes.

1) Slow start: One difference between NewReno and Vegas
is that the initial congestion window size is two packets
instead of one. Another difference is that Vegas doubles its
congestion window every other RTT, rather then every RTT.
This approach improves measurement accuracy, since the con-
gestion window is fixed when comparing ExpectedThruput
and ActualThruput. When the value of diff in Equation (2)
exceeds a threshold parameter γ, Vegas switches to congestion
avoidance mode.

2) Congestion avoidance: The adjustments of the conges-
tion window size are made based on the value of diff , which
determines both the direction and the magnitude of adjustment
required. The value of diff is given by:

diff = (ExpectedThruput−ActualThruput) ∗BaseRTT
(2)

where ExpectedThruput is the expected throughput,
ActualThruput is the actual observed throughput, and
BaseRTT is the minimum RTT observed for the network
path. The ExpectedThruput and ActualThruput are calcu-
lated using:

ExpectedThruput =
cwnd

BaseRTT
(3)

ActualThruput =
cwnd

RTT
(4)

where cwnd is the current congestion window size (in seg-
ments), and RTT is the actual RTT observed. A Vegas source
updates its congestion window size once per RTT, as follows:

cwnd =

 cwnd+ 1 if diff < α
cwnd− 1 if diff > β
cwnd otherwise

where α and β are specified parameters. In other words, Vegas
increases cwnd by one packet if the per-flow queue at a
bottleneck link is smaller than α, decreases cwnd by one
packet if the per-flow queue is larger than β, and keeps cwnd
unchanged otherwise. In our work, we use the typical settings
of these parameters, namely α = 1 and β = 3 [2].
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3) Loss recovery: The loss signals for TCP Vegas are
similar to those for TCP NewReno. One difference is that the
congestion window after a timeout is 2 packets. Furthermore,
if a loss is detected with triple duplicate ACKs, then the
congestion window decreases by 25%, rather than 50%.

C. RD Network Services

The key idea in Rate-Delay (RD) Network Services is to
divide the incoming traffic into two classes, and service them
through two First-In First-Out (FIFO) queues. The R queue
serves throughput-greedy applications, while the D queue
serves delay-sensitive applications. Network applications are
responsible for indicating their requirements in the Type of
Service (ToS) field of the Internet Protocol (IP) datagram
header [10].

The scheduling algorithm in RD Network Services ensures
that the relative traffic volumes dispatched from the R and D
queues obey:

λ =
nD

knR
(5)

where nR and nD are the numbers of active flows from classes
R and D (respectively) passing through the link, and k is a
configurable parameter to indicate the desired target ratio for
the average per-flow throughputs for classes R and D.

Mathematically, the service rates for the R and D queues
are given by:

SR =
knRC

nD + knR
(6)

SD =
nDC

nD + knR
(7)

where C is the link capacity. The number of flows in each
class is estimated using the time-stamp vector algorithm [11],
[12]. The buffer size BD for the D queue is configured so that
the maximum queueing delay of D packets does not exceed a
specified bound d; the rest of the buffer space BR is allocated
for the R queue. Thus, the buffer size of the R queue is
large enough to provide full utilization of the link capacity
dedicated for throughput-greedy applications. In the event of
queue overflow, the DropTail policy applies for both queues.

To accommodate the dynamic nature of Internet traffic
flows, each RD link periodically recalculates the main control
parameters SR, SD, BR, and BD. The details of the archi-
tecture are described elsewhere [6]. In the next section, we
describe how we apply RD Network Services to handle loss-
based and delay-based transport protocols.

III. SOLUTION DETAILS

We serve NewReno traffic through the R queue, and Vegas
traffic through the D queue, using the scheduling algorithm
presented in Figure 2. It is assumed that each TCP sender
performs appropriate packet marking for RD Network Ser-
vices. To estimate the number of active flows, we use the
same timestamp vector algorithm as in [6].

In the link scheduling, the selection of a queue to be served
is based on the values LR and LD, which indicate the traffic
volume served from the R and D queues, respectively, since

/* select the queue to transmit from */
if qR > 0 and qD > 0 then

if knRLD > nDLR then
x← R;

else
x← D;

else /* exactly one of the R and D buffers is empty */
x← class of the non-empty buffer;

p← first packet in the x queue;
s← size of p;
if p != null then

/* update the L variables */
if qR > 0 and qD > 0 then

Lx ← Lx + s;
δL← LRnD

knR
− LD;

if δL < 0 then δL← 0;
else /* only D buffer is empty */
if qR > 0 and qD = 0 then

LR ← 0; LD ← 0;
else /* only R buffer is empty */;

if δL > 0 then δL← δL− s;
if δL > 0 then

LD ← −δL;
else

LD ← 0;
LR ← 0;

transmit p into the link;
qx ← qx − s

Fig. 2. RD router operation when link is idle, and buffer is non-empty.
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Fig. 3. Simple dumbbell network topology

the start of the most recent recalculation interval. If LD does
not exceed λLR, then the D queue is chosen for transmission.
Otherwise, the next transmission is from the R queue.

Other relevant parameters are configured as follows. We set
k = 1, since our goal is fair sharing between TCP variants at
the bottleneck link. For the buffer size, we allocate 10% of
the total buffer space to the D queue, and the remainder to
the R queue. Determining the optimal buffer allocation will
be explored in future work.

IV. SIMULATION EVALUATION AND RESULTS

In this section, we use version 2.29 of the ns-2 network
simulator [13] to evaluate the performance of concurrent TCP
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NewReno and TCP Vegas flows sharing a bottleneck link. All
flows use packets of size 1 KB. Each experiment lasts 60
s, with 5 replications for each of the considered parameter
settings. The performance metrics for average link utilization
and average packet loss are calculated using all but the
first 5 seconds (warmup) of the experiment. For calculating
instantaneous link utilization and packet loss, we calculate and
plot the results every 0.2 s interval.

The primary performance metrics are the average utiliza-
tions achieved by NewReno flows and by Vegas flows, and the
average packet loss rate of Vegas flows. As a secondary metric,
we use a relative fairness index to quantify the compatibility
between NewReno and Vegas flows. This metric is defined
as the ratio of the average per-flow utilizations for Vegas
and NewReno in each experimental setting. A value near 1
indicates fairness between NewReno and Vegas flows.

In most of our experiments, we use a simple dumbbell
network topology, as shown in Figure 3. In this topology,
the access links have a capacity of 200 Mbps, and the core
bottleneck link capacity is 100 Mbps. The propagation delay
of the bottleneck link is 10 ms. We configure the link buffers to
be proportional to the delay-bandwidth product of the network.
Specifically, the buffer sizes are set to C · 250 ms, where C
is the capacity of the link.

The traffic scenarios vary from one experiment to the next.
In most scenarios, there are 100 long-lived TCP NewReno
flows and 100 long-lived TCP Vegas flows in each of the
forward and reverse directions. The RTTs of the flows are
chosen uniformly at random from the interval between 20 ms
and 300 ms.

A. Effect of Number of NewReno Flows

In the first simulation experiment, we study the scalability
of our solution with respect to the number of NewReno flows.
In this scenario, we fix the number of long-lived Vegas flows
(100) and vary the number of long-lived NewReno flows from
10 to 700. The number of flows in the reverse direction is the
same as in the forward direction for both types of flows.

Figure 4 shows the simulation results from this experiment.
The results are plotted with respect to the NewReno flow ratio
(i.e., the ratio of NewReno flows to Vegas flows), which varies
from 0.1 to 7.0.

Figure 4(a) shows that our solution provides proper sharing
of the network between the two flow types, in proportion to
their prevalence. When the flow ratio is 1, both flow types
share the network equally. When there are many NewReno
flows, their aggregate utilization is proportional to their preva-
lence on the network.

The relative fairness index is close to 1 across the range of
settings studied. For example, when the NewReno flow ratio
is 3 (i.e., 300 NewReno flows and 100 Vegas flows), then the
utilizations of NewReno and Vegas flows are 74% and 24%,
respectively. The fairness index is 0.24 · 0.743 = 0.97.

Figure 4(b) shows that the packet loss rate for Vegas grows
linearly with the number of NewReno flows. This happens
because the service rate of the D queue decreases.

B. Effect of Number of Vegas Flows

The second experiment investigates the scalability of our
solution with respect to the number of Vegas flows. We fix
the number of long-lived NewReno flows (100), and vary the
number of long-lived Vegas flows from 10 to 700. The Vegas
flow ratio (i.e., the ratio of Vegas flows to NewReno flows)
varies from 0.1 to 7.0.

Figure 5(a) again shows that our approach achieves the
desired sharing of network resources. As Vegas flows become
prevalent, they obtain a larger share of the network bandwidth.
The relative fairness index is close to 1 for all settings
considered.

Figure 5(b) shows that the packet loss rate for Vegas
increases non-linearly, unlike the previous scenario. This dif-
ference can be explained as follows. In the previous scenario
(fixed Vegas flows and varied NewReno flows), the loss rate of
Vegas depends on the (varied) service rate of the D queue. In
the current scenario (fixed NewReno flows and varied Vegas
flows), the loss rate is affected not only by the (varied) service
rate of the D queue, but also by the (fixed) buffer space for
Vegas flows. The packet loss rate increases because of the
increased competition for the finite Vegas buffers.

C. Effect of Web-like Traffic Flows

The previous experiments considered only long-lived TCP
flows, and their steady-state performance. In this scenario,
we augment our baseline scenario with Web-like traffic flows.
Their presence dynamically varies the number of active TCP
flows, and the competition for link buffer space, providing a
more realistic model of Internet traffic dynamics.

For this simulation experiment, we added two Web servers
(one for each TCP variant) to our simulation model, and
connected them to the bottleneck link. We varied the intensity
of Web-like traffic between 1 flow per second (fps) and 300
fps. The Web-like flows arrive according to a Poisson process.
The size of Web-like flows is Pareto distributed with a mean
of 30 KB and a shape index 1.3. The propagation RTT for
each flow was 100 ms.

Figure 6 shows the results from this simulation experiment.
The results show that our solution is quite robust to the
dynamics of Web-like traffic. In particular, the relative fairness
index ranges between 0.75 and 0.96 across the scenarios
considered. The packet loss rate of Vegas flows increases with
the intensity of Web-like traffic. This result is as expected,
because of the increased burstiness of traffic.

D. Effect of Link Capacity

We next explore the capacity scalability of our flow isolation
approach, by varying the bottleneck link capacity between 10
Mbps and 1 Gbps. As in Section IV-C, we consider Web-like
traffic flows, but with a fixed average intensity of 50 fps.

The results in Figure 7 show fairly robust performance for
our solution, except at very low link speeds. In particular,
the relative fairness index is between 0.72 and 0.88 for all
scenarios except that for 10 Mpbs. For that capacity value,
the throughput of TCP Vegas drops due to the small buffer
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Fig. 4. Dependence on the number of TCP NewReno flows: (a) average utilizations of TCP NewReno and TCP Vegas; (b) average loss rate of TCP Vegas.
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Fig. 5. Dependence on the number of TCP Vegas flows: (a) average utilizations of TCP NewReno and TCP Vegas; (b) average loss rate of TCP Vegas.
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Fig. 6. Influence of the intensity of Web-like traffic: (a) average utilizations of TCP NewReno and TCP Vegas; (b) average loss rate of TCP Vegas.

size (31.25 KB), and the fairness index is 0.61. The packet
loss rate for TCP Vegas is absurdly high (28%) at this buffer
size, but decreases quickly as the bottleneck link capacity (and
buffer size) is increased.

E. Effect of RTT

We study the influence of propagation RTT by fixing the
minimum propagation RTT for long-lived flows at 20 ms, and
varying the maximum propagation RTT from 30 ms to 1 s.
Flow propagation RTTs are chosen uniformly at random in
the range between the minimum RTT and the maximum RTT.
The traffic load is the same as in Section IV-D.

Figure 8 shows very robust performance for our solution
across the range of RTT values considered. The relative

fairness index ranges between 0.83 and 0.87. The packet loss
rate is well below 1% for all parameter settings considered.
However, its behavior is non-monotonic: it decreases from
0.29% for 20 ms to 0.01% for 200 ms, and then increases
to 0.11% for 1000 ms. The wide variation in flow RTT values
produces high variability in the packet queueing and loss
behaviour.

F. Effect of Traffic Burstiness

In all previous simulation experiments, we have assumed
that the flow arrival process is Poisson. To explore how traffic
burstiness affects the performance of protocol-based isolation,
we use Web-like flows arriving according to Pareto distribution
with shape index 1.1. This model approximates the self-
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Fig. 8. Influence of propagation RTT: (a) average utilizations of TCP NewReno and TCP Vegas; (b) average loss rate of TCP Vegas.

similarity observed in Internet traffic [14].
We run the experiments for Web-like traffic intensities of

50 fps, 100 fps, and 200 fps. The sizes of Web-like flows
are Pareto distributed with shape index 1.3, and we set the
average flow size Lavg first to 30 KB and then to 100 KB.
The long-lived flows are the same as in Section IV-E.

Figure 9 reports the throughputs and loss rates for NewReno
and Vegas. The relative fairness index is 0.9 for 50 fps, but
decreases to 0.69 for 200 fps when Lavg = 30 KB. For Lavg

= 100 KB, the relative fairness index is 0.86 for 50 fps, but
decreases to 0.67 for 200 fps. The decline in fairness can be
explained by the increase in the packet loss rate for Vegas.

G. Effect of Sudden Traffic Changes

The next simulation experiment studies the behavior of our
solution in the presence of sudden changes in the numbers of
NewReno and Vegas flows, due to flash crowds or correlated
arrivals. In this simulation only, the long-lived flows are
unidirectional. The experiment lasts for 180 s.

Figure 10(a) shows the dynamics of the traffic flows consid-
ered. For example, during the interval [60 s; 80 s] there are 20
Vegas flows and 100 NewReno flows in the network. At time
80 s, the number of Vegas flows increases suddenly to 100,
while at time 100 s, the number of NewReno flows drops to
0. These dynamics create sudden changes in the composition
of traffic at the bottleneck link.

We run this simulation experiment to evaluate the perfor-
mance of our scheme compared to traditional DropTail queues

as well as Random Early Detection (RED) with Explicit
Congestion Notification (ECN) [15], [16]. Figure 10(b) shows
the results for NewReno and Vegas flows with DropTail
queueing. These results indicate a sluggish response to sudden
changes in the flow mix, and a struggle to achieve fairness
between TCP variants. Figure 10(c) shows the results for
RED/ECN. While the behaviour has improved compared to
DropTail, response is still sluggish, and NewReno still shows
distinct throughput advantages over Vegas (e.g., see the results
from 40 s to 60 s, and from 80 s to 100 s). Figure 10(d)
shows the results for our solution using RD Network Services.
The transient response of our algorithm is immediate, and
the fairness objective is achieved throughout. Figure 10(e)
compares the relative fairness of each approach. The relative
fairness index is approximately unity with our solution. While
the behaviour of RED/ECN in Figure 10(c) resembles that of
our solution, RED/ECN still has inferior TCP fairness. The
performance of DropTail is even worse.

H. Multi-bottleneck Topology

Our final simulation experiment considers a multi-
bottleneck topology. In particular, we use a parking-lot topol-
ogy as shown in Figure 11. This topology has access links of
capacity 200 Mbps, and five consecutive bottleneck links, each
of capacity 100 Mbps. Each bottleneck link has a propagation
delay of 5 ms.

The traffic flows on this topology are defined as follows.
Each of the six pools A,B,C,D,E, and F generates 20
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Fig. 9. Heavy-tailed arrival of Web-like traffic with its different average flow size Lavg . Average throughputs of TCP NewReno and TCP Vegas, and average
loss rates of TCP NewReno and TCP Vegas: (a) Lavg = 30 KB; (b) Lavg = 100 KB.

NewReno and 20 Vegas long-lived flows. The flows starting in
pool A traverse the entire network and arrive at destinations
in pool H . The flows starting in pool B are destined to
pool C, and thus traverse only one bottleneck link. The same
applies for flows starting in pools C,D,E, and F , which have
destinations in pools D,E,F , and G, respectively (i.e., they
traverse only one bottleneck link). Thus, each bottleneck link
handles 40 NewReno and 40 Vegas flows. There are also 20
NewReno and 20 Vegas long-lived flows going in the reverse
direction, from pool H to pool A. The propagation RTTs of
all flows are distributed uniformly at random between 60 ms
and 300 ms.

As with the previous simulation experiment, we com-
pare results for DropTail, RED/ECN, and our flow isolation
scheme. Figure 12 shows the throughputs of NewReno and
Vegas flows. From left to right, the results correspond to the
five bottleneck links. For each link, there are three policies
(DropTail, RED/ECN, and RD). Within each policy, there are
vertical bars showing the relative throughputs of NewReno
and Vegas flows, in that order. Tall bars of equal height are
desired.

The results in Figure 12 show that NewReno and Vegas
achieve approximately the same throughput at each bottleneck
link with our scheme. On the other hand, NewReno flows
have a substantial advantage in DropTail and in RED/ECN.
While RED/ECN improves the relative fairness compared to
DropTail, the fairness index is still significantly less than 1.

V. DISCUSSION

The evaluation of our approach has the premise that each
TCP sender performs appropriate marking of its packets at
the source. Inappropriate classification of packets by senders
is an issue that warrants discussion. We can distinguish two
potential scenarios that may arise: Vegas senders masquerading
as NewReno, and NewReno senders masquerading as Vegas.

In the first scenario, a Vegas sender marks its packets as
NewReno. However, this (mis)behavior provides no advantage
for a (misbehaving) Vegas sender, since it leads to the same
problem of compatibility of NewReno and Vegas flows served
through the same DropTail link. Therefore, there is no reason
for a Vegas sender to misbehave in this way.

The second scenario takes place when a NewReno sender
identifies its packets as Vegas. This could provide a throughput
advantage for the misbehaving flow, and lead to serious
throughput degradation for Vegas flows. To gain a perfor-
mance advantage, a misbehaving NewReno flow needs at least
as much buffer space as it obtains when marking packets
properly. However, many NewReno flows sharing the same
bottleneck link can potentially misbehave the same way, and
a misbehaving NewReno flow does not have information
about this quantity. In addition, the buffer size of a queue
serving Vegas traffic is much smaller than for a queue serving
NewReno traffic. Therefore, inappropriate marking of packets
by a NewReno flow will not improve its performance. More-
over, the danger for a misbehaving NewReno flow from such
a behavior is that it could degrade its own throughput.

As future work, we plan to explore the question of how
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Fig. 10. Influence of sudden changes in network traffic flows

to minimize risk due to NewReno misbehavior. One potential
solution could exploit the packet-level traffic characteristics.
In particular, Vegas flows are inherently smoother, since the
congestion window size adjustments are more gradual.
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VI. RELATED WORK

Delay-based congestion control has been widely studied in
the literature [17]–[23]. In [24], the authors propose a new
transport protocol, TCP Illinois, which combines both loss-
based and delay-based approaches. In particular, information
about losses is used to make decisions regarding whether the
congestion window should be increased or decreased, while
information about queueing delay is used to determine the
magnitude of the adjustment. FAST TCP [25], [26] also relies
on both losses and queueing delay as congestion signals.
Boyden et al. [27] advocated using TCP Vegas as a transport
protocol for streaming media applications. Their results show
that using TCP Vegas is feasible under a wide range of
network conditions. Tang et al. [28] studied equilibrium in gen-
eral multi-protocol networks. Kuzmanovic and Knightly [29]
designed TCP Low Priority (TCP-LP), which allows low-
priority applications such as bulk data transfer to use excess
bandwidth without disturbing best-effort service such as TCP
NewReno. TCP-LP uses end-to-end delay to estimate the
available bandwidth.

In [5], the authors proposed two approaches for improving
fairness between TCP Vegas and TCP Reno. The first approach
modifies the original TCP Vegas; the resulting new version,
TCP Vegas+, is competitive against TCP Reno. The second
approach, ZL-RED, considers TCP Vegas and TCP Reno flows
as well-behaving and misbehaving, respectively, and drops
more packets from misbehaving flows. The main problem with
the proposed solutions is that they are highly sensitive to con-
figuration parameters. Vendictis and Baiocchi [30] proposed a
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model for calculating the throughputs of one TCP Reno and
one TCP Vegas source sharing the same link.

Feng and Vanichpun [31] showed that the default configu-
ration of TCP Vegas, i.e., α = 1 and β = 3, was incompatible
with TCP Reno. The authors proposed two approaches for
configuring α and β, in which the configuration parameters are
defined by the buffer size and the numbers of Reno and Vegas
flows. However, the delivery of such information requires
a change in the current packet structure, and increases the
feedback overhead.

Kotla and Reddy [4] proposed mPERT, a modification of
PERT (Probabilistic Early Response TCP) [32]. mPERT tries
to share bandwidth fairly with loss-based protocols through an
appropriate adjustment of the sending rate. If the delay exceeds
50% of the maximum queueing delay observed, then mPERT
assumes that there are loss-based flows present. Budzisz et
al. [3] proposed a new back-off policy for achieving fairness
between loss-based and delay-based flows. Specifically, a
delay-based flow would operate in loss-based mode when
sharing the network with loss-based flows, and would operate
in delay-based mode otherwise. While both of these schemes
show good performance, they require careful setting of the
parameters.

VII. CONCLUSION

In this paper, we proposed network-level isolation of loss-
based and delay-based transport protocols as a solution to
the problem of TCP compatibility. In particular, our approach
serves loss-based and delay-based traffic through different link
queues.

Through extensive simulations, we have demonstrated that
isolation of flow classes provides fair usage of the network
resources by TCP NewReno and TCP Vegas. There are also
significant deployment advantages to our scheme, since it
can be deployed without requiring per-flow state [33], and
requires no changes in the TCP packet structure or end-to-
end functionality. Furthermore, our approach has relatively few
configuration parameters (k and B), and provides performance
that is quite robust across a wide range of parameter settings.

In the future, we will investigate the problem of optimal
buffer allocation for loss-based and delay-based protocols in
more detail. Also, we will explore mechanisms for detecting
loss-based flows sharing the same link queue with delay-based
flows.
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