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Abstract. We study the applicability of random graph theory in model-
ing secure connectivity of wireless sensor networks. Specifically, our work
focuses on the highly influential random key predistribution scheme by
Eschenauer and Gligor to examine the appropriateness of the modeling
in finding system parameters for desired connectivity. We use extensive
simulation and theoretical results to identify ranges of the parameters
where i) random graph theory is not applicable, ii) random graph theory
may lead to estimates with excessive errors, and iii) random graph the-
ory gives very accurate results. We also investigate the similarities and
dissimilarities in the structure of random graphs and key graphs (i.e.,
graphs describing key sharing information between sensor nodes). Our
results provide insights into research relying on random graph modeling
to examine behaviors of key graphs.

1 Introduction

Wireless sensor networks (WSNs) are ad-hoc networks that consist of hundreds
to thousands of small sensor nodes communicating wirelessly to collect and de-
liver data to base stations. Generally, sensor networks rely on symmetric key
algorithms to avoid the high computation cost of public key crypto-systems
such as Diffie-Hellman key exchange [3]. Furthermore, traditional methods of
key establishment that use a trusted authority (e.g., Kerberos protocol [16]) are
not suitable due to the frequently used unattended deployments of WSNs.

Eschenauer and Gligor (EG) [6] pioneered an innovative randomized ap-
proach to key establishment that provides an efficient and self-organising way
of constructing pairwise keys for sensor nodes with guaranteed security. In the
EG scheme, every sensor receives a random subset of m keys called a key ring,
from a key pool of N keys. Once deployed, sensor nodes broadcast the identifiers
of keys in their key rings to discover wireless neighbors with whom they have at
least one key in common, and then establish secure links.

The key graph for a WSN of n sensor nodes is a graph with n vertices in which
each node is represented by a vertex, and two vertices are joined by an edge if the
two corresponding nodes share at least one key. The important question is how
to choose key ring size m and key pool size N so that the key graph is connected
with desired probability c. A connected key graph implies that any two nodes can



set up a pairwise key. Eschenauer and Gligor modeled the key graph as an Erdős-

Rényi random graph G(n, p), a graph of n nodes where each possible edge exists
independently with a fixed probability p. This modeling allows to determine m
givenN and n such that secure connectivity is guaranteed with probability c. The
EG scheme has generated a flurry of research on key predistribution for WSNs
that employ Erdős-Rényi’s theory of random graphs to study connectivity [2, 4,
10, 13–15]. This modeling makes two crucial assumptions:

1. Asymptotic results provide accurate prediction for all network sizes.

Erdős-Rényi[5] studied asymptotic behavior of random graphs, showing that
as n → ∞ there are certain properties that will almost surely appear in
the graph, once the edge probability exceeds a threshold that depends on
the property. Connectivity is one such property; a random graph with edge

probability p = ln(n)−ln(−ln(c))
n is connected with probability c. It is how-

ever unclear if choosing p as above for all possible values of n will achieve
connectivity with probability c.

2. Edge probability in key graphs is fixed and edge probabilities are independent.

In key graphs, although the probability that an edge between two arbitrarily
given nodes exists is fixed, these probabilities are not independent of the
existence of other edges in the graph [17]. For example consider a key graph
for a network with three nodes X , Y , and Z, and key ring size m = 2.
Using the results from [6] for sufficiently large key pool size, say N > 10,
the probability that two nodes share at least one key is less than 50% (see
Equation 5). However, if the two pairs (X,Y ) and (Y, Z) each share a key,
then the probability that X and Z have at least one key in common exceeds
50%, regardless of N . This is because both X and Z have at least one key
in a fixed set of two keys (i.e., key ring of Y ). This is referred to as the
transitivity property. There are also certain values of (N,m) for which the
key graph is clearly not an Erdős-Rényi random graph. For instance, if each
node has only one key (i.e., m = 1), then the set of all nodes having the
same key forms a complete graph.

The goals of this paper are i) to study the applicability of random graph
theory in estimating key ring size (for desired connectivity probability) in key
graphs, and ii) to compare structural properties of the two families of graphs.
The latter study is motivated by application of random key predistribution in
secure group connectivity in sensor and ad-hoc networks.

1.1 Our work

We consider the following two questions:

Q1 Can random graphs be always used to model secure connectivity achieved
by random key predistribution systems, and when applicable how accurate
are the estimated key ring sizes?

Q2 How similar are the structural properties of the two graph families?



We provide two types of results: (i) analytical results and (ii) simulation re-
sults. The latter results are obtained by constructing many random instances
of key graphs and determining the relative frequency of instances that have the
property of interest. For this, we developed a simulator [19] that can efficiently
generate key graphs from the prescribed random key assignment process. Us-
ing results from statistics we estimate the measurement error and confidence
intervals for the obtained values.

Our results for Q1: The simulated key ring sizes for a network of size n differ
from the analytical results. The differences can be categorized into four intervals

delineated by three threshold values n
[N,c]
1 , n

[N,c]
2 , n

[N,c]
3 .

1. Interval I: n ≤ n
[N,c]
1 . Random graph theory cannot be used as it results in

p > 1 which is an invalid edge probability. The value n
(N,c)
1 is independent

of key pool size N and is determined only by connectivity c.

2. Interval II: n
[N,c]
1 < n < n

[N,c]
2 . Random graph theory can be used in this

interval, however key ring sizes predicted by random graph modeling are
slight over-estimation. We define over-estimation as the relative error ≥ 5%
and the absolute error > 2 (see Section 3.2 for more details). When the

network size n and connectivity c are fixed, the value of n
[N,c]
2 increases as

N grows. Nevertheless, the empirical simulation results suggest that for wide

ranges of parameters (see Table 2), n
[N,c]
2 never exceeds 100.

3. Interval III: n
[N,c]
2 ≤ n < n

[N,c]
3 . In this interval, random graph modeling

provides very good estimates for m (i.e., compared to key ring sizes obtained
by simulations, either the relative error < 5% or the absolute error ≤ 2), and

the predicted key ring size ≥ 2. The value n
[N,c]
3 depends on connectivity c

and key pool size N .

4. Interval IV: n ≥ n
[N,c]
3 . In this interval, random graph modeling always gives

m = 1. This however does not provide connectivity except for the trivial
case where all nodes have the same key. Simulation results suggest that m
should be 2 instead.

The results suggest that random graph theory, when used within appropriate
parameter ranges, provides very good estimates of key predistribution parame-
ters for achieving desired secure connectivity of WSNs.

Our results for Q2: We consider the following structural properties:

1. Global clustering coefficient.
2. The size of the maximal clique.
3. The number of cliques with respect to clique sizes.

These properties are important in studying key predistribution as well as routing
in WSN. Global clustering is a measure of transitivity that also enables us to
explain behavior of the other two properties. Cliques are used in many ad-hoc

algorithms for constructing group-wise keys, detecting intrusion and choosing



group leaders (i.e., clusterheads in WSNs), as well as algorithms for finding
capacity, quality of service, and routing [8, 11, 12, 21]. Our study shows that:

1. Global clustering coefficient of key graphs deviates significantly from that of
random graphs for smaller key ring sizes, but starts to converge as the key
ring size increases.

2. Key graphs contain many more cliques than do random graphs of the same
size.

3. The maximal clique size observed in a key graph is much larger than in
random graphs of the same size.

The rest of this paper is organized as follows. In Section 2, we give background
preliminaries and definitions. Section 3 explains our methodology and results for
estimating key ring size. Structural properties of the two graph families are
compared in Section 4 and finally, Section 5 provides concluding remarks and
directions for future work.

2 Preliminaries

2.1 Random graph

An Erdős-Rényi random graph, denoted by Gr(n, p), is a graph of size n gener-
ated through the following random process. First, we start with n vertices and

no edges. Next, each of n·(n−1)
2 possible edges between vertex pairs is added to

the graph with probability p, determined by a biased coin flip. A graph obtained
through this random and independent edge generation process is an instance
from a family of random graphs.

Connectivity

The probability of Gr(n, p) being connected is the probability that the random
and independent edge generation process with parameters n and p results in a
connected graph. Erdős and Rény showed that,

lim
n→∞

Pr [Gr (n, p) is connected] = c, where p =
ln(n)− ln(−ln(c))

n
(1)

Global clustering coefficient

Holland and Leinhardt [9] introduced the notion of global clustering coefficient
C. This is an important measurement in studying social and real-world networks
to examine the property, “a friend of my friend is likely to be my friend as well”.
In other words, C implies transitivity relation between pairs of vertices: if there
exists an edge between vertices (X,Y ) and an edge between vertices (Y, Z), then
there is a high probability that there is an edge between vertices (X,Z). Global
clustering coefficient is defined as a metric for a particular graph. In the family
of random graphs, since each edge occurs independently, we have

E[C] = p. (2)



Number of cliques

A clique in an undirected graph G is a subset S of vertices such that every two
vertices in S are connected by an edge. Let the random variable Γk(G) denote
the number of cliques of size k in G. Given a subset S of k vertices in Gr(n, p),

the number of pairs of vertices is k·(k−1)
2 , and thus the probability of S being a

clique is pk·(k−1)/2 [1] and

E[Γk(Gr(n, p))] =

(

n
k

)

· pk·(k−1)/2. (3)

Maximal clique size

Let the random variable Υ (G) denote the maximal size of a clique in an undi-
rected graph G. Specifically, Υ (G) = max{k : Γk(G) > 0}. Grimmett and Mc-
Diarmid [7] studied asymptotic behavior of the maximal clique size in random
graphs, showing that

lim
n→∞

Υ (Gr(n, p))

ln(n)
=

2

ln(1/p)
. (4)

2.2 Key graph

A key graph Gk(n,N,m) describing key sharing information between nodes is
constructed through the following random key assignment process. We start with
n nodes, each with a randomly chosen key ring of size m from a key pool of size
N . For every two nodes X and Y that share at least one key, we add the edge
(X,Y ). All instances of graphs corresponding to all possible key assignments
with parameters (n,N,m) define a family of key graphs.

2.3 Modeling key graphs using Erdős-Rényi random graph theory

Two arbitrary nodes are joined by an edge if their assigned key rings intersect.
As shown by Eschenauer and Gligor [6], this occurs with probability

pkey sharing = 1− ((N −m)!)2

N ! · (N − 2 ·m)!
. (5)

Assuming Gk(n,N,m) is Gr(n, pkey sharing), Equation 1 suggests that to achieve

connectivity c, pkey sharing should be at least ln(n)−ln(−ln(c))
n . This allows key

ring size m to be estimated as a function of n, N , and c.

3 Applicability of Random Graph Theory in Estimating

Key Ring Size

In the following, we give our theoretical results and explain how simulation data
are obtained, and then discuss our observations.



3.1 Framework

Using random graph theory: As explained in Section 2.3, for network size
n, key pool size N , and desired connectivity c, key ring size m is estimated as
the smallest integer that satisfies the following

1− ((N −m)!)2

N ! · (N − 2 ·m)!
≥ ln(n)− ln(−ln(c))

n
. (6)

Using simulation: To find true connectivity probability c for key graphs with
parameters (n,N,m), we need to generate all key graphs with these parameters
and find the ratio of the connected graphs to the total number. The number of
key assignments, however, grows exponentially with n, N , and m, which makes
this calculation infeasible. We therefore use random sampling of the set of key
graphs to estimate connectivity. By selecting a sufficiently large sample size, the
simulation results give, with high confidence, an accurate estimate of c.

We use two algorithms. Algorithm 1 takes inputs n, N , m, and the size S
of the sample set, generates S random instances of Gk(n,N,m), examines their
connectivity, and calculates the ratio of connected key graphs to S. This is the
estimation of connectivity ĉ of Gk(n,N,m). Algorithm 2 performs binary search
on the given interval (i.e., the algorithm inputs) to determine the smallest m
such that ĉ ≥ c. This method works correctly since when network size n and
key pool size N are fixed, connectivity probability c monotonically increases as
key ring size m grows. The pseudocode for both algorithms are given in the
appendix.

Error and confidence interval: In the experiments, we use a sample size of
S = 10, 000 to achieve a reasonable statistical behavior. In particular, if ĉ is the
estimated connectivity of Gk(n,N,m) obtained by Algorithm 1, the standard

deviation of ĉ is σ =
√

ĉ·(1−ĉ)
S =

√
ĉ·(1−ĉ)

100 . With the 99% confidence level,

the true connectivity c falls within z∗ · σ from ĉ, where z∗ is the critical value
corresponding to the desired confidence level. For the 99% confidence level, we
have z∗ = 2.58. Table 1 summarizes the confidence intervals for different values

Table 1. Accuracy of graph connectivity simulation results with 99% confidence level

Connectivity Std error Margin of error Confidence
ĉ σ (z∗ · σ = 2.58 · σ) interval

0.500 0.0050 0.0129 0.500 ± 0.0129
0.700 0.0046 0.0119 0.700 ± 0.0119
0.900 0.0030 0.0077 0.900 ± 0.0077
0.999 0.0003 0.0008 0.999 ± 0.0008

of ĉ, showing that 10,000 random samples give a very good estimate of graph



connectivity. For instance, if Gk(n,N,m) is connected with probability ĉ = 0.8
in the experiment, then the true connectivity c lies in the interval (0.8 ± 0.0103)
99% of the time.

Data sets: We obtain key ring size m theoretically and using simulation over
wide ranges of n, N , and c as indicated in Table 2. Our observations are discussed
in the next section.

Table 2. Data sets

Parameter Range

Network size n {3..100, i · 10j | i = 2..10, j = 2..3}
Key pool size N {10, 1

4
· 10i, 1

2
· 10i, 3

4
· 10i, 10i | i = 2..5}

Desired connectivity c {0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999}

3.2 The results

We first compare m obtained theoretically and by simulation when both N and c
are fixed, and discuss how the value of n affects the applicability and accuracy of
random graph modeling. We then extend these results to all n, N , and c ≥ 50%.
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Figure 1 plots key ring sizes with respect to network size n when N = 100
and c = 99%. In Figure 1, we can identify four distinct intervals.

Interval I, n ≤ n
[N,c]
1 - Small graphs: Figure 1 does not have the plot for

theoretical key ring size for n ≤ 6. This is because, for n ≤ 6, N = 100, and



c = 99%, random graph theory estimates edge probability p > 1 (see Equa-
tion 1), which cannot be achieved.

Finding n
[N,c]
1 : Random graph theory suggests that p ≥ ln(n)−ln(−ln(c))

n where
connectivity c ∈ (0, 1). Additionally, n ∈ [3,∞) as only networks with at least
three nodes are of interest. We want to determine for which values of c and n
in their respective domains, ln(n)−ln(−ln(c))

n becomes an invalid probability. Due
to the limited space, we do not go into the details but summarize the results

instead. Basically, we examine the variation of p(n) = ln(n)−ln(−ln(c))
n , and find

when p(n) is equal to 0 and 1, and reaches the maximum. From that, we make
the following observations.

1. When c is close to 0, there is a bound n
[N,c]
0 of n such that ∀n ∈ [3, n

[N,c]
0 ] :

p(n) < 0. Explicitly, let n
[N,c]
0 be the solution to p(n) = 0, n

[N,c]
0 = −ln(c).

It follows that, n
[N,c]
0 ≥ 3 (i.e., −ln(c) ≥ 3) if and only if c < c† where

c† = e−3 ' 0.05. In short, ∀c < c†, ∀n ∈ [3,−ln(c)] : p(n) < 0. In such
cases, random graph theory suggests that choosing edge probability 0 (i.e.,
key ring size m = 0) will achieve connectivity c. However, if m = 0, the key
graph is surely disconnected, and c is 0. Nevertheless, since c is too small
(i.e., c < 0.05) to be considered in an actual WSN deployment, we are not
interested in this case.

2. When c is close to 1, there is a bound n
[N,c]
1 of n such that ∀n ∈ [3, n

[N,c]
1 ] :

p(n) > 1. That means the edge probability estimated by random graph
theory is larger than 1, which cannot be achieved. This range is noted as (I)
in Figure 1 for the particular parameters N = 100 and c = 0.99. In such

cases, random graph theory is not applicable. We define n
[N,c]
1 as

n
[N,c]
1 = max{n : p(n) > 1 and n ≥ 3}.

The value of n
[N,c]
1 depends on c only, and grows as c increases. Let c∗ be

the solution to ln(3)−ln(−ln(x))
3 = 1, we have c∗ = e−eln(3)−3 ' .86, and

∀c < c∗, ∀n ≥ 3 : p(n) < 1 (i.e., n
[N,c]
1 does not exist). Some examples of

n
[N,c]
1 are presented in Table 3. One cannot use random graph theory to

estimate m given n and c if c ≥ c∗ and n ∈ [3, n
[N,c]
1 ].

Table 3. Lower bound of network size n with respect to connectivity c

Desired connectivity c n
[N,c]
1 Desired connectivity c n

[N,c]
1

0.8 n/a 0.9 3
0.99 6 0.999 9

Interval II - Over-estimation: We compare the theoretical and simulated
key ring sizes. We define over-estimation when the relative error ≥ 5% and the



absolute error > 2. Both conditions are required since considering only one kind
of error may be misleading. For example, if theoretical and simulated values of
m are 5 and 4, respectively, then the random graph modeling estimate is off by
only one key and we consider it as a good estimation despite the relative error
being 25%. On the other hand, if the two values are 111 and 107, respectively,
then the relative error is less than 4% while the absolute error is 4 keys.

For n ∈ [7, 10), N = 100, and c = 99%, random graph theory results in
over-estimation. For wide ranges of parameters where N is up to 105, n is up to
104, and c is from 50% to 99.9%, the comparison results suggest that there is a
small interval of n in which using random graph theory gives over-estimation.

The left side of this interval is n
[N,c]
1 + 1 if c ≥ c∗, or 3 otherwise.

Finding n
[N,c]
2 : For fixed c, the right hand side of the interval increases as N

grows but over the ranges of parameters summarized in Table 3, it never exceeds
100. Thus, when n < 100, our simulation results show that an excessive over-
estimation may occur. 1 One can always use the simulator [19] to obtain key ring
size m by simulations for better estimate.

Interval III - Good estimation: Figure 1 shows that when N = 100 and
c = 99%, random graph theory gives accurate estimates for n ∈ [10, 1167).
Specifically, the theoretical key ring sizes perfectly match the simulated ones in
most cases. In other cases, random graph theory over-estimates by only one key.
We did not observe any under-estimation. When n ≥ 1167, the theoretical results
show m = 1, while the simulation experiments yield m = 2. This phenomenon as
well as at which values of n it occurs (e.g., n = 1167 for N = 100 and c = 99%)
is further discussed later in this section.

Let us assume that n
[N,c]
3 , which is a function of c and N , is a lower bound

for n such that random graph modeling estimates m = 1, ∀n ≥ n
[N,c]
3 . We call

the interval [100, n
[N,c]
3 ) safe for using random graph theory for estimating m.

Table 5 presents selected comparison results of key ring sizes for c = 99.9%
and different values of n and N . Aside from the correct estimates and a few
over-estimates with low relative errors, the theoretical key ring size is 1 when
N = 100 for some cases. In these cases, n is outside the safe interval (i.e.,

n ≥ n
[100,0.999]
3 ). Generally, when the key pool size is large and network size

is small, over-estimation may occur, but the relative error is less than 5%. For
small key pool sizes, if there is an over-estimation, the absolute error is only one
or two keys.

Tables 6a-d in Appendix show the difference between theoretical and sim-
ulated key ring sizes with respect to n, N , and c. A light-gray cell represents
an under-estimation while dark-gray cell indicates an over-estimation. Again, we
can see that there is a pattern of under-estimating key ring sizes when n is large

1 Over-estimation leads to extra keys in the key rings. In the case of an eavesdropping
adversary, this only results in less efficient (larger key ring size) systems. In the case
of a node capturing adversary, larger key rings result in higher probability of edge
compromise.



and N is small in all four tables. In those cases, m is estimated by random graph
theory as 1, and n is outside the safe interval. There are rare situations in which

random graph theory under-estimates m when n ∈ [100, n
[N,c]
3 ). One such case

is when n = 1000, N = 50000, and c = 70% as shown in Table 6b. We believe
this is due to statistical error.

As noted earlier, over-estimation occurs when N is very large and n is small;
the relative error in such cases, however, is less than 5%. In general, when n lies in
the safe interval, the data in Tables 6a-d supports the claim that, the estimate for

key ring size based on random graph theory is very precise for n ∈ [100, n
[N,c]
3 ).

Interval IV - Large graphs: For a fixed N , the key sharing probability for
m = 1 is 1

N . As the network size n increases, the edge probability p that is

required for connectivity c given by p = ln(n)−ln(−ln(c))
n decreases. For sufficiently

large n, we will have ln(n)−ln(−ln(c))
n ≤ 1

N . Therefore, according to random graph
theory, connectivity c can be achieved with m = 1. In this case, nodes that have
the same key can be grouped together and so the graph can be decomposed into
disjoint cliques. The key graph is connected only if all n nodes have the same
key and this happens with probability 1

Nn−1 , which could be much lower than

desired connectivity c. We define n
[N,c]
3 as follows

n
[N,c]
3 = min{n :

ln(n)− ln(−ln(c))

n
≤ 1

N
}.

Given desired connectivity c and key pool N , random graph theory always gives

incorrect estimate for key ring size (i.e., m is estimated as 1) when n ≥ n
[N,c]
3 .

Figure 2 plots n
[N,c]
3 with respect to key pool size N and connectivity c.
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Summary Table 4 describes four intervals of network size n for given connec-
tivity c and key pool N . These intervals provide insights into the applicability of
random graph theory in estimating key ring size to achieve connectivity c when
c ≥ 50%. For c < 50%, one would expect similar interval structure.



Table 4. Four intervals of network size n with respect to key pool size N and desired
connectivity c

0.5 ≤ c < c∗ c ≥ c∗

n

Interval I n/a [3, n
[N,c]
1 ]

Interval II [3, 100) (n
[N,c]
1 , 100)

Interval III [100, n
[N,c]
3 )

Interval IV [n
[N,c]
3 , +∞)

4 Structural Properties

We examine and compare structural properties of random graphs and key graphs
for given n and p, that is the same network size and the same edge probability.
We use the following approach:

1. For each set of parameters (n,N,m), we calculate the edge probability p
according to Equation 5.

2. We then generate α random instances of Gk(n,N,m) and measure the av-
erage value of property X .

3. Finally, we compare the simulation result with the theoretical values ob-
tained for Gr(n, p). The parameters n, N , and m are chosen to achieve
‘reasonable’ edge probability p.

The number of random instances of key graphs in each set of simulation
experiments is α = 1, 000. In Figures 3-5, the simulation results are plotted with
the error bars indicating the 99% confidence intervals for the true mean.

4.1 Global clustering coefficient

In the first set of simulation experiments, we measure the global clustering co-
efficient C in the two graph families. Recall that in a random graph, each edge
occurs independently, and thus C is always equal to the edge probability. How-
ever, this value in key graphs gives the probability that two nodes share keys if
they both share keys with some common node. In the experiments, we choose
n = 100,N = 1000, and observe C asm varies. Figure 3 provides our comparison
results. It can be seen that for very small values of m, C in key graphs is much
higher than that in random graphs. This is because if nodes X and Y share key
k1, nodes Y and Z share key k2, and m is small, then it is likely that k1 is k2,
which means X and Z have at least one key in common. Nevertheless, when m
is large enough, C in key graphs converges to C in random graphs. In the case
of n = 100 and N = 1000 in our experiments, when the key ring size is 25 or
more, there is hardly any difference between the global clustering coefficients C
in the two graph families.
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4.2 Size of the maximal clique

In the second set of simulation experiments, we study the maximal clique in key
graphs. The simulations assume that N is 1000 andm is 11 (i.e., edge probability
p ' 0.1). The comparison results summarized in Figure 4 show that the average
size of the maximal clique in key graphs increases linearly with the network size
n. On the other hand, the expected size of the maximal clique in random graphs
grows very slowly as n increases. In the following, we give a lower bound of the
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size of the maximal clique in a key graph, to explain the linear behavior.

Proposition 1. The maximal clique size a in key graph is at least dn·m
N e.

Proof: Each of n nodes has m keys, and the total number of keys including
duplicated ones is n ·m keys. Since the number of distinct keys is at most N , by



pigeon hole principle, there exists some key k duplicated at least dn·m
N e times. In

other words, at least dn·m
N e nodes have the same key k, hence they form a clique.

Since keys are distributed randomly, the frequencies of occurrence for each key
may vary in a given random key assignment. That is, the number of nodes having
the same key can well exceed dn·m

N e. Furthermore, it is not required that all the
nodes in a clique must have the same key. Thus, dn·m

N e is a loose lower bound
for the size of the maximal clique in a key graph. When N and m are fixed, this
lower bound increases linearly as n increases. That means the actual size of the
maximal clique grows at least linearly with the network size. ut

4.3 Number of cliques with respect to clique sizes

Figure 5 plots the number of cliques in key graphs and random graphs. In these
experiments, we choose n = 100 and N = 1000. We use the two values of m = 11
and m = 15 so that edge probability is approximately 0.1 and 0.2, respectively.
The comparison results suggest that given the same number of nodes and the
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Fig. 5. Number of cliques in a key graph and a random graph for different edge prob-
abilities when n = 100 and N = 1000.

same edge probability, cliques tend to be larger and more plentiful in key graphs
than in random graphs. Specifically, Gk(100, 1000, 15) contains more than 200
cliques of size 5 on average, while there are fewer than 10 cliques of that size in
a random graph with the same number of nodes and the same edge probability.
Moreover, cliques of size up to 10 can be observed in Gk(100, 1000, 15), as op-
posed to the random graphs where the expected number of cliques of size 6 (or
larger) is negligible.

Explanation of the larger number of cliques in key graphs: Let Sk be the set of
all nodes that have the key k. In key graphs, any set Sk 6= ∅, forms a clique
regardless of edge probability. In random graphs, however the expected number
of cliques is a function of n and p (see Equation 3). Additionally, because of



i) the maximal clique in key graphs is much larger than that in random graphs
(see Figure 4), and ii) any non-empty subset of nodes in a clique is also a clique
itself, one expects more cliques in key graphs.

We can also use the global clustering coefficient to explain the formation
of cliques in key graphs. As noted earlier, when m is small, if two nodes have
a common neighbor in the key graph, there is a higher chance that they are
connected by an edge. In general, the more common neighbors that two nodes
X and Y have, the higher the probability that the edge XY exists. Thus, given
a set of nodes such that many pairs of nodes are connected by an edge, the
transitivity property implies there would be even more pairs that are directly
connected, and the probability of this set of nodes being a clique increases. In
contrast, a set of nodes S in random graphs forms a clique only when all the
independent edge formation events between every pair of nodes in S occur at
the same time.

5 Conclusions and Future Work

We study the applicability of random graph theory in modeling secure connec-
tivity of wireless sensor networks. We identify ranges of parameters for which
random graph modeling is not applicable and suggest how one can estimate
key predistribution parameters for such cases. Besides, we determine ranges of
parameters for which random graph theory may give estimates with excessive
error, as well as other ranges of parameters where random graph theory pro-
vides very accurate results. We also study various structural properties in two
graph families, observing and discussing the similarities and differences in the
structure of random graphs and key graphs. In future work, we may extend the
study of applicability of random graph modeling when the wireless connectivity
is taken into account. Finally, there are other structural properties that we may
investigate as well.
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Appendix

The attached appendix contains algorithmic details and additional tabular re-
sults for the paper.



Input:
– n: network size

– N : key pool size

– m: key ring size

– S: sample size

Output: connectivity c

counter ← 0
for i← 1 to S do

construct a key graph Gk(n,N,m)
if Gk(n,N,m) is connected then

counter++
end

end

return counter
S

Algorithm 1: Determining connectivity

Input:
– n: network size

– N : key pool size

– lowerBound: lower bound on key ring size

– upperBound: upper bound on key ring size

– S: sample size in each simulation experiment

– c: desired connectivity

Output: Key ring size m

lBound← lowerBound
uBound← upperBound
while uBound− lBound > 1 do

mid← (uBound+ lBound)/2
if connectivity(n, N,mid, S) ≥ c then

uBound← mid
else

lBound← mid
end

end

return uBound

Algorithm 2: Binary search for key ring size



Table 5. Theoretical and simulated key ring sizes to achieve connectivity 99.9%

Key pool size N

100 500 1,000 5,000 10,000 50,000 100,000

N
e
tw

o
r
k

s
iz
e
n

100
4 8 11 25 35 77 107 Simulation

4 8 12 25 35 79 111 Theory

500
2 4 5 12 17 37 51 Simulation

2 4 6 12 17 37 52 Theory

1,000
2 3 4 9 12 26 37 Simulation

2 3 4 9 12 27 38 Theory

5,000
2 2 2 4 6 13 18 Simulation

1 2 2 4 6 13 18 Theory

10,000
2 2 2 3 5 9 13 Simulation

1 1 2 3 5 9 13 Theory

Table 6. Difference between theoretical and simulated key ring sizes
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(a) Desired connectivity c = 50% (b) Desired connectivity c = 70%
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