
Enhancing Redundant Network Traffic Elimination

Emir Halepovic Carey Williamson Majid Ghaderi

Department of Computer Science
University of Calgary

2500 University Dr. NW, Calgary, Alberta, Canada T2N 1N4

Abstract

Protocol-independent redundant traffic elimination (RTE) is a method to de-
tect and remove redundant chunks of data from network-layer packets by using
caching at both ends of a network link or path. In this paper, we propose a
set of techniques to improve the effectiveness of packet-level RTE. In particu-
lar, we consider two bypass techniques, with one based on packet size, and the
other based on content type. The bypass techniques apply at the front-end of
the RTE pipeline. Within the RTE pipeline, we propose chunk overlap and
oversampling as techniques to improve redundancy detection, while obviating
the need for chunk expansion at the network endpoints. Finally, we propose
savings-based cache management at the back-end of the RTE pipeline, as an
improvement over FIFO-based cache management. We evaluate our techniques
on full-payload packet-level traces from university and enterprise environments.
Our results show that the proposed techniques improve detected redundancy by
up to 50% for university traffic, and up to 54% for enterprise Web server traffic.

Keywords: Redundant traffic elimination, content-aware chunking,
packet-level caching

1. Introduction

As Internet traffic volumes continue to grow, redundant traffic elimination
(RTE) has attracted a lot of research attention in recent years [1, 2, 3, 4, 8, 11,
14]. The redundancy in Internet traffic arises naturally from the large number of
users, as well as the highly-skewed popularity distribution for Internet content [5,
6]. As a result, there are many repeated transfers of the same (or similar)
content, both in client-server and in peer-to-peer networking applications.

From a philosophical viewpoint, repeated transfers of similar data represent
a waste of network resources. In more practical terms, redundant traffic can be
a particularly acute problem for limited-bandwidth Internet access links (e.g.,

Email address: {emirh, carey, mghaderi}@cpsc.ucalgary.ca (Emir
Halepovic Carey Williamson Majid Ghaderi)

Preprint submitted to Computer Networks December 24, 2010



wireless or cellular access networks), or even for high-bandwidth links operating
at or near their capacity. Redundant traffic can also be an issue economically, if
Internet providers (or users) are charged based on the traffic volumes sent and
received between peering points (i.e., usage-based billing).

Many techniques have been proposed for RTE, including protocol-independent
RTE [14], which operates at the network layer. Protocol-independent RTE di-
vides packet payload into chunks, and uses unique hash values to detect redun-
dant content [14].

The RTE process can be viewed as a pipeline, as shown in Figure 1. A
chunk selection algorithm has a sampling parameter that determines how many
chunks are chosen, and a heuristic to determine which ones are chosen. The
selected chunks are usually non-overlapping. There is a finite cache of recently-
observed packets at each endpoint, usually with a First-In-First-Out (FIFO)
cache replacement policy. When matching chunks are detected within a packet,
an optional chunk expansion algorithm can be run at the endpoints to expand
the matched region, increasing byte savings [2, 14].

Packet

NIC

Chunking
(no overlap)

FIFO cache
management

Forwarding

Yes

Yes

Packet

NIC

Fingerprinting

Forwarding

Large 
enough?

No

Next 
chunk

Overlap 
OK?

No

non-FIFO cache
management

Prior work Our work

Fingerprinting

Chunk expansion
Content 

promising?
No

Yes

Figure 1: Processing pipeline for RTE

There are many important factors that influence the practical effectiveness
of RTE (i.e., the byte savings achieved on a network link). These factors include
the data chunk size, the chunk selection algorithm, the sampling period, and
the cache replacement policy. In the literature, the bandwidth savings reported
for RTE are typically 10-12% for university campus Internet traffic, and as high

2



as 30-60% for outbound enterprise traffic [3].
In this paper, we augment the RTE pipeline with additional functionality,

as shown on the right hand side of Figure 1. Our new proposed techniques
include size-based bypass, chunk overlap, savings-based cache management, and
content-aware chunk selection. We evaluate these techniques on full-payload
packet traces from university and enterprise environments, and demonstrate
their effectiveness. We also carefully investigate the impacts of chunk size,
sampling period, and cache management on the RTE benefits.

The unifying theme in our work is exploiting non-uniformities in Internet
traffic. For example, the bimodal distribution of Internet packet sizes [5] moti-
vates our size-based bypass technique, wherein large data-carrying IP packets
are subjected to full RTE processing, while small IP packets are not. As an-
other example, the Zipf-like skew observed in redundant chunk popularity [3]
motivates a savings-based approach to cache management that retains the most
valuable chunks, in terms of cumulative byte savings. Finally, non-uniform
chunk popularity is a basis for our novel chunk selection scheme, called content-
aware RTE, which preferentially chooses promising chunks, rather than random
or non-redundant chunks. We exploit these non-uniformities to improve RTE
performance.

Our key results include the following:

• Using 64-byte chunks rather than 32-byte chunks improves RTE by up to
21%, while reducing execution time.

• Size-based bypass reduces execution time by 2-25%, while improving RTE
up to 4% in some cases.

• Chunk overlap can improve RTE by 9-14%.

• A savings-based cache replacement policy can improve the effectiveness of
RTE by up to 12%.

• The cumulative effects of the foregoing techniques improve existing RTE
savings by up to 54%.

• Content-aware RTE can improve redundancy detection by up to 37%.

The rest of this paper is organized as follows. Section 2 reviews prior re-
lated work. The data sets and methodology used in this study are described
in Section 3. Techniques for improvement of the RTE pipeline are presented
in Section 4, while the notion of content-aware RTE is discussed in Section 5.
Finally, Section 6 concludes the paper.

2. Background and Related Work

In general, RTE techniques deploy extra hardware or software resources in
the network to detect and eliminate repeated data transfers. For example, Web
proxy caches have been successfully deployed and used for well over a decade [5].

3



{ { {

Chunk A Chunk B Chunk C

Distance Overlap

Chunk cache

Chunk B

Chunk C

Chunk AFP A

FP C

FP B

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

FP A = fingerprint (Chunk A)

Figure 2: RTE terminology

However, object-level caching alone cannot eliminate all redundancy [14]. Fur-
thermore, traditional object-level caching does not work well for personalized
Web pages that have slight changes to the base content. Delta encoding [8] can
help in this case, but it requires that both client and server share the same base
version of the document, which is not applicable for general Internet traffic.

2.1. Content-Defined Chunking

Content-Defined Chunking (CDC) is a general-purpose RTE technique that
works within individual objects (packets, files, or Web pages) as well as across
objects. Objects are divided into chunks to facilitate comparisons within an
object or across objects (see Figure 2). Data chunks could be fixed-size or
variable-size. Chunks generally do not correspond to a specific location inside
the object; rather, they are defined by their content. Based on the chunk se-
lection algorithm, chunks might be separated by some distance, or they might
overlap.

For each chunk, a probabilistically unique hash value is computed using a
fingerprinting technique such as SHA-1 or Rabin fingerprint [10, 12]. Chunks
are typically 32-64 bytes in size, while fingerprints are 8 bytes (64 bits). Rabin
fingerprints are especially useful because they can be computed efficiently using
a sliding window over a byte stream.

In storage systems, the CDC approach is widely used for data de-duplication [10].
That is, chunking is used to reduce the overall disk space required, by writing
duplicated chunks only once. A similar technique is used in the rsync tool to
find portions of a file that need to be updated. Chunking can also be combined
with other techniques, such as delta-encoding [8, 15].

In networking, protocol-independent RTE using CDC in conjunction with
Rabin fingerprints was originally proposed and evaluated on Web server traf-
fic [14]. Using six Web server traces, the authors show that Web traffic is up to
54% redundant. This approach operates at the packet level, using middle-boxes
inserted at the two endpoints of a bandwidth-constrained network link [3, 14].

4



An RTE process runs on each of these middle-boxes and employs a cache of
recently transferred packets, together with fingerprints of their selected chunks.
If a current packet’s payload (or a portion thereof) has been previously seen
and cached, then it can be encoded using meta-data and transferred using fewer
bytes than the actual packet. This meta-data consists of fingerprints and other
information sufficient to reconstruct the whole chunk using the receiver-side
cache. Therefore, there is an overhead penalty associated with encoding chunks
with meta-data inside the packet.

This technique detects redundancy within and across objects, as well as
within and across the traffic of individual users. Furthermore, the approach
is protocol-independent, since it can find redundancy in all Internet traffic,
regardless of the application protocol. This and similar approaches based on
CDC are often called WAN optimization in commercial products [7]. Other
architectures for RTE include universal deployment across Internet routers [2],
coordinated RTE across routers within a network [4], and end-system RTE
within enterprises [1].

2.2. Chunk Selection Algorithms

The core of any RTE process is a chunk selection algorithm. Because the
sliding window used for chunk analysis advances by one byte at a time, there
are many candidate chunks to consider on any given packet (e.g., 37 candidates
for 64-byte chunks on 100 bytes of data). Since recording all of these chunks
is impractical, a sampling heuristic is used to record only a fraction 1/p of all
possible chunks for caching. The parameter p is called the sampling period. A
typical value is p = 32, for which about 3% of all possible chunks are selected,
on average.

There are many possible ways to select the chunks for caching. In practice,
the choice is often based on some property of the chunk (e.g., location, value,
byte content) or its fingerprint (e.g., numerical value). Even with the same sam-
pling period, selection algorithms may differ in how many chunks are selected,
as well as in how the chunks are spatially distributed within the data. In the fol-
lowing, we briefly review several chunk selection algorithms from the literature,
and illustrate their properties in Figure 3. The left-hand side of Figure 3 shows
examples of chunk locations within the data packet, while the right-hand side
depicts the distribution of inter-chunk distance (the horizontal axis is the inter-
chunk distance, while the vertical axis is the relative frequency of occurrence
for a given distance).
FIXED: The FIXED approach selects every p-th chunk, as shown in Fig-
ure 3(a). This method is computationally efficient, achieves exactly the target
sampling rate, and ensures that the chosen chunks are non-overlapping. How-
ever, the deterministic sampling approach is not robust against small changes in
the data (e.g., inserting a word in a text document). Therefore, this approach
should not be used [11, 14], since it is not as effective as other approaches [1].
MODP: MODP is the original chunk selection algorithm proposed for network-
layer RTE [14]. It selects chunks for which the fingerprint value is equal to 0 mod
p. The MODP method is robust to small changes in objects (files or packets),

5



Frequency Distance between selected chunksa) FIXED

Frequency Distance between selected chunksb) MODP

Frequency Distance between selected chunksc) WINN

Frequency d) BIMODAL

Chunk marker

Frequency Distance between selected chunksa) FIXED

Frequency Distance between selected chunksb) MODP

Frequency Distance between selected chunksc) WINN

Frequency Distance between selected chunksd) BIMODAL

Chunk marker

Figure 3: Example chunk selection algorithms

produces a controllable number of fingerprints, and is simple to compute when p
is a power of 2. Its main drawback is the unpredictability of its chunk selection.
As shown in Figure 3(b), the distance distribution can have a long tail, indicating
that large blocks of data may remain unselected for fingerprinting.
WINN: Winnowing is a way to “filter” a data stream. Unlike MODP, the
WINN algorithm ensures that at least one chunk is chosen within a specified
data interval [13]. It is implemented by tracking a sliding window of recent
fingerprints, and explicitly choosing the numerically largest (or smallest) value
from the sliding window. The additional data structure imposes processing
overhead on WINN causing it to be slower than MODP. Figure 3(c) shows that
chunk selection in WINN is approximately uniform, and the distance between
chunks is always bounded. The predominating distance is equal to the sampling
period. This approach improves RTE, especially on HTML pages [13].
MAXP: One possible concern with MODP and WINN is the processing over-
head required to compute Rabin fingerprints for every possible data chunk. Al-
though Rabin fingerprints can be computed efficiently, almost a thousand such
computations are needed on a 1 KB packet. A more efficient algorithm would
compute fingerprints only when necessary (i.e., when a data chunk is selected
for caching). One such algorithm is MAXP [3]. MAXP is based on WINN, but
instead of choosing a local maximum among fingerprints, it selects based on the
data bytes of the chunk. This reduces the overhead of fingerprint computation.
The distribution of chunks is similar to that achieved with WINN.
SAMPLEBYTE: A recently proposed algorithm uses specific byte values in
the content as triggers for chunk selection. In particular, selection is based on the
most redundant bytes, determined by training the algorithm on sample traffic,
and recording values in a lookup table [1]. The sampling pattern achieved (not
shown) is unpredictable, since it depends on the locations of the trigger bytes.
The main benefit of SAMPLEBYTE is even faster execution than MAXP, while
preserving robustness to small perturbations in content.

6



2.3. Content-Aware Chunk Selection

In our work, we advocate selecting the most promising data chunks, in terms
of their potential contribution to RTE.

Our method uses non-uniform sampling: little or no sampling for low-
redundancy content, and oversampling for highly-redundant content. The distri-
bution of selected chunks is shown in Figure 3(d). The distribution is bimodal,
reflecting highly concentrated sets of selected chunks, as well as lengthy blocks
of bypassed data. In this case, it is acceptable to have expansive regions of
skipped data, especially when the data has little redundancy. The details of
this approach are discussed later in the paper.

3. Evaluation Methodology

In this section, we describe our data sets and methodology, as well as the
basic configuration parameter settings for RTE evaluation.

Table 1: Characteristics of the data traces (GB)

Trace Date Time In Out Total

1 Apr 6, 2006 9 am 19.9 15.5 35.4
2 Apr 6, 2006 9 pm 8.2 14.9 23.1

3 Apr 7, 2006 9 am 23.6 16.9 40.5
4 Apr 7, 2006 9 pm 18.3 12.5 30.8

5 Apr 8, 2006 9 am 8.8 8.2 17.0
6 Apr 8, 2006 9 pm 18.9 12.3 31.2

7 Apr 9, 2006 9 am 7.7 10.6 18.3
8 Apr 9, 2006 9 pm 21.9 15.4 37.3

A Apr 11, 2006 12 am - 49.5 49.5
B Apr 12, 2006 12 am - 46.6 46.6

W 1-20 Apr/May, 2004 12 am - 6.2 6.2

3.1. Data Sets

We evaluate our proposed RTE approach using three sets of full-payload
packet traces (see Table 1 for details about the traces). The first set comes
from the Internet access link at the University of Calgary campus. A total of 8
one-hour bi-directional traces were collected, with the total IP payload of 233.6
GB. These traces are labeled 1-8. The second set consists of 2 traces collected
from the student residences at the University of Calgary. These are outbound
traces with a total IP payload of 96.1 GB, and they are labeled A and B. The
third set consists of 20 day-long traces collected at an enterprise Web server,
during April and May 2004. These are bi-directional traces, but we use only
the outbound portion, which carried most of the data. These traces, which are
almost exclusively HTTP, are labeled W 1-20.

The primary set of traces used for evaluation of each RTE improvement
technique is the set of campus traces. The residence and Web server traces are
used to demonstrate that our results generalize across a variety of environments.

7



While the campus traces are several years old (from 2006), there are three
reasons why we use them in our experiments. First, the traces are from a
university environment and have comparable composition to those studied in
prior RTE work [3]. Second, our traces provide snapshots of Internet traffic
on mornings and in evenings, as well as on weekdays and weekends, so that
we can assess the robustness of RTE across different traffic mixes. Third, these
traces were used in prior published work on Internet traffic classification [9], and
thus we have detailed knowledge about the traffic composition in these traces.
Table 2 summarizes the application profile for all traces.

Table 2: Application profile for all traces

Application 1-8 Out 1-8 In A B W 1-20

HTTP 30% 45% 1% 1% 100%
Email 6% 7% 0% 0% 0%

Unknown 27% 22% 24% 28% 0%
P2P 23% 11% 60% 61% 0%

SSL 7% 9% 9% 6% 0%
Other 7% 6% 6% 4% 0%

The campus traces are divided into the incoming and outgoing traffic, with
the rationale that they should be studied separately. The main reason is that
different redundancy may exist in each direction. The volume of data in different
directions may also merit different cache sizes, RTE algorithms, or parameter
settings.

3.2. Implementation Details

We use a custom-written simulator to process the traces and report on de-
tected redundancy. Simulations are performed on a Linux-based server with 3
GHz Quad-core CPU and 32 GB of RAM. We consider the following six factors,
and investigate their effect on RTE and execution time: (1) Chunk selection al-
gorithm; (2) Data chunk size; (3) IP packet size; (4) Chunk overlap; (5) Cache
replacement policy; and (6) Content-aware RTE.

The primary focus in our work is on redundancy detection. For this rea-
son, we choose WINN as a representative of uniform sampling algorithms, since
MAXP and SAMPLEBYTE focus primarily on improving execution time. How-
ever, we do not completely disregard execution time in our study. Rather, we
use it to quantify the tradeoffs for the factors that we investigate.

We implement MODP using an approach similar to Spring and Wether-
all [14]. We compute Rabin fingerprints, and select them using a sampling
period of 32, the same as the base case used in [3, 14]. We adjust the sampling
period as necessary when exploring improvements in our study. Our WINN im-
plementation follows the algorithm from [13], including a small bug fix for the
“index off by one” special case. Most of our experiments use default settings
from previous work as a base case scenario, such as 32-byte chunk size, 500 MB
cache, and FIFO cache replacement policy [3]. We explicitly indicate when we
deviate from these values.

8



In previous work, chunk expansion is an additional step performed at the
endpoints to increase redundancy detection. After a matching chunk is detected,
the matching region is expanded byte-by-byte around the chunk to achieve the
largest possible match [3, 14]. Expansion improves average RTE by 13.6% over
direct chunk match [1], but introduces additional processing and storage over-
heads.

We use a much simpler approach, with fixed-size data chunks, and introduce
chunk overlap as a technique to obviate the need for chunk expansion at the
endpoints. The benefits of our approach are reduced processing costs, lower
encoding overhead for meta-data, and reduced storage that requires only fin-
gerprints and chunks to be stored, rather than whole packets. In general, the
meta-data needs to include the chunk identifier (fingerprint), the location inside
the packet where the matching chunk starts, and the information about the
expanded matching region before and after the matching chunk. With chunk
expansion, this overhead can be as high as 12 bytes per chunk, to convey all the
necessary information [14]. However, an optimized implementation can reduce
this overhead by using cache indexing based on the offset of the matching region
inside the cache, rather than the value of the fingerprint [1].

When using our fixed-size chunks, we only need to encode the chunk location
in the packet payload, and the offset in the cache. For example, this overhead
is 34 bits per chunk, for a 512 MB cache of 64-byte chunks. For larger caches,
or any additional meta-data, increasing the penalty to 5 bytes per chunk still
represents only 7.8% overhead for the 64-byte chunk. Smaller chunk sizes would
have correspondingly higher overhead, since more chunks could be stored in the
cache.

Throughout this paper, we use detected redundancy as the metric for eval-
uating RTE, keeping in mind that the practical implementation will include
encoding overhead in the actual byte savings.

3.3. Baseline Experiments

In this section, we establish baseline parameter settings for chunk selection
algorithm and chunk size.

3.3.1. WINN versus MODP

We first conduct an apples-to-apples comparison between the MODP and
WINN chunk selection algorithms. To the best of our knowledge, these two
chunk selection algorithms have only been compared on HTML pages [13], and
not on network traces. Anand et al. [3] compared MODP and MAXP, showing
that MAXP detects 5-10% greater redundancy in most cases, and up to 35%
more in specific cases. That study used 32-byte chunks and a sampling period
of p = 32.

Our comparison explicitly considers the number of chunks selected, as well
as the execution time of each algorithm. One algorithm can be considered better
than another if it is faster, while offering the same level of RTE, or if it provides
better RTE using the same number of chunks.

9



Table 3: Comparison of MODP and WINN for different sampling periods

Value 30 MB cache 131 MB cache
Algorithm of p Savings Time Savings Time

MODP 32 8.4% 93 10.0% 104
MODP 16 9.4% 124 11.7% 144
MODP 8 9.4% 171 12.4% 212
MODP 4 9.6% 258 12.8% 335

WINN 35 9.3% 170 11.1% 172
WINN 20 10.0% 191 12.4% 209
WINN 10 9.8% 227 12.7% 581
WINN 5 9.6% 288 12.8% 781

We want to know whether WINN is always better than MODP. We configure
MODP with a sampling period of p = 32, as used in previous studies [3, 14].
For WINN, the sampling period is defined by a sliding window of fingerprints,
from which the local maximum (or minimum) fingerprint value is chosen.

Our preliminary tests showed that the sampling periods for MODP and
WINN do not correspond directly. That is, p = 32 does not produce the same
number of selected chunks for these two algorithms, even though we want them
to be comparable. It would be unfair to compare two algorithms based on the
same sampling period if that period produces vastly different numbers of chunks.
Given that WINN selects chunks more uniformly than MODP, WINN tends to
select more chunks than MODP on the same data.

Since the sampling period adjustment for MODP is extremely coarse (power
of 2), we make adjustments to the sampling in WINN until we arrive at a similar
number of selected chunks for each MODP setting. Since an exact match in the
number of fingerprints is difficult to obtain, we are satisfied when they are within
2%.

Based on our experiments with one campus trace, we determined the corre-
sponding values for sampling periods, as shown in Table 3, where MODP and
WINN are compared across different sampling periods.

MODP is always more efficient than WINN in terms of execution time (ex-
pressed in seconds throughout the paper). However, the RTE benefits of WINN
are evident with longer sampling periods, because of its more uniform sampling
property. The benefits disappear at higher sampling rates, such as p = 4. We
have verified that the relative performance of MODP and WINN remains the
same when using different cache sizes and other incremental improvements.

Table 4 compares the detected redundancy and execution time of these two
algorithms for all 8 campus traces with our baseline parameters. For both
inbound and outbound traffic, WINN detects more redundancy. Comparing the
average RTE per trace, WINN is better by 19% for inbound traffic, and by 9.7%
for outbound traffic. In some cases (Traces 2 and 6), WINN detects significantly
more redundancy than MODP. However, MODP is again more efficient in terms
of execution time.

In the rest of the paper, we use WINN as our baseline, because of its higher

10



Table 4: Comparison of MODP and WINN algorithms

Inbound Redundancy Inbound Time
Trace MODP WINN MODP WINN

1 16.3% 16.6% 3478 5969
2 9.9% 16.9% 1466 2433
3 8.8% 9.1% 4722 7808
4 9.8% 10.8% 3511 6004
5 7.3% 7.7% 1840 2862
6 6.3% 10.2% 3884 6281
7 8.2% 8.7% 1548 2428
8 5.8% 6.1% 4557 7099

Average 9.0% 10.8% 3126 5111

Outbound Redundancy Outbound Time
Trace MODP WINN MODP WINN

1 18.3% 18.8% 2940 4787
2 8.4% 11.8% 2944 4752
3 9.4% 9.8% 3401 5498
4 7.9% 8.4% 2407 4022
5 15.2% 15.9% 1479 2486
6 9.5% 11.8% 2339 3966
7 7.5% 7.9% 2099 3572
8 11.0% 11.4% 2937 5107

Average 10.9% 12.0% 2572 4274

RTE. The slower execution time of WINN is a secondary concern, since it is
known that using MAXP in place of WINN retains the advantages over MODP
in both savings and execution time. While our results for MODP and WINN are
consistent with those from previous studies, we do not make direct comparisons
to prior work due to the different traces and implementations used.

3.3.2. Chunk Size

An important factor in RTE is the chunk size, for which there is an inherent
tradeoff. With small chunks, more matches occur, but the meta-data overhead
to encode and transmit chunks is excessive. With large chunks, the meta-data
overhead is manageable, and the byte savings from a chunk match are greater,
but fewer chunk matches occur.

A good compromise is a chunk size of 32-64 bytes, which provides suffi-
cient RTE to compensate for the costs associated with storage, processing, and
encoding. The analysis of RTE using different chunk sizes for MODP was pre-
sented in [14], leading to the adoption of 64-byte size as a good compromise. For
MAXP and SAMPLEBYTE, 32-byte chunks were found to be the best, when
coupled with chunk expansion [1, 3]. Empirical evidence shows that most of the
benefits of RTE arise from matches of less than 150 bytes, in both enterprise
and campus traces [3]. Furthermore, 3 of the 5 most popular chunk matches
were between 42 and 68 bytes in length [3]. These results justify why 32 and 64
bytes are considered good values for RTE.

11



Table 5: Comparison of 32-byte and 64-byte chunks

Packet Inbound Redundancy Inbound Time
Trace 32-byte 64-byte 32-byte 64-byte

1 16.6% 19.1% 5969 5453
2 16.9% 19.3% 2433 2327
3 9.1% 10.8% 7808 6850
4 10.8% 13.3% 6004 5129
5 7.7% 9.1% 2862 2493
6 10.2% 11.9% 6281 5357
7 8.7% 10.6% 2428 2158
8 6.1% 7.3% 7099 6307

Average 10.8% 12.7% 5111 4509

Outbound Redundancy Outbound Time
Trace 32-byte 64-byte 32-byte 64-byte

1 18.8% 22.2% 4787 4257
2 11.8% 13.9% 4752 4318
3 9.8% 12.3% 5498 4829
4 8.4% 10.3% 4022 3562
5 15.9% 19.0% 2486 2297
6 11.8% 14.6% 3966 3511
7 7.9% 9.5% 3572 3174
8 11.4% 14.4% 5107 4405

Average 12.0% 14.5% 4274 3794

For our implementation, which uses fixed-size chunks without expansion,
chunk size selection is even more important. If expansion is used, every byte
of successful expansion amortizes the overhead from encoding the meta-data.
Without expansion, however, this overhead is a constant. Therefore, a careful
selection of chunk size is required. For this reason, we compare RTE using
32-byte and 64-byte chunks.

Fortunately, the experimental results are quite definitive. In particular, we
find that using 64-byte chunks improves both redundancy detection and execu-
tion time (see Table 5). Improvements in RTE are 17.8% and 21.3% on average,
for inbound and outbound traffic, respectively. The corresponding results for
execution time show reductions by 11.8% and 11.2%, respectively. In other
words, having fewer large matches is better for RTE than having more smaller
matches. The reduced execution time reflects fewer chunks being processed and
managed by the cache. Since smaller chunk sizes imply higher encoding over-
head, it is clear that 64-byte chunks are the preferred choice in our work, where
fixed-size chunks are used.

4. Proposed RTE Improvements

In this section, we present and evaluate our new network-layer techniques
for RTE pipeline processing, as illustrated in Figure 1. We begin with the

12



 -5%0%5%10%15%20%

0 8 16 24 32 48 64 80 96 112 128 144 196 256 512Improvement
Bypassed packet size (not linear scale)

TimeRTE Savings
 -5%0%5%10%15%20%

0 8 16 24 32 48 64 80 96 112 128 144 196 256 512Improvement
Bypassed packet size (not linear scale)

TimeRTE Savings
(a) Inbound traffic (b) Outbound traffic

Figure 4: Effects of bypassing small packets

bypass technique at the front of the RTE pipeline, and then discuss results for
chunk overlap and non-FIFO cache management. We defer content-aware RTE
to Section 5.

4.1. Size-based Bypass

In the RTE packet caching approach described in [14], every packet is cached
at least once, even if it is smaller than the chunk size. However, there are storage
and processing costs associated with each packet.

Our objective is to select only those chunks that could eventually produce
savings, which requires at least one full chunk per packet. Clearly, packets that
carry just a few bytes, or no data at all, are of no use for RTE. Previous works
do not explicitly consider packet size as a factor in RTE performance [2, 3, 14],
although some do so implicitly by applying a minimum chunk size.

One of the well-known non-uniformities in Internet traffic is the bimodal
packet size distribution induced by TCP [16]. About half of IP packets are
“full” data-carrying packets, and about half are minimal size, carrying TCP
acknowledgments (ACKs). Specifically, we want to skip the processing for small
ACK packets traversing the network. Furthermore, many data packets carry just
a few data bytes, rendering them “useless” for potential RTE savings. Signalling,
control information, and secure shell are examples of such packets. The RTE
process running at the network layer should therefore ignore all packets that
carry insufficient data bytes, regardless of the transport or application protocol.

For RTE purposes, the best packet size threshold depends on the chunk size
used for fingerprinting. A reasonable heuristic is that the data should provide
enough bytes for a complete 64-byte chunk. Network-layer RTE should also
ignore transport-layer headers, which have limited redundancy. In our traces,
many TCP packets carry an extended header of up to 32 bytes, including TCP
options (e.g., SACK, timestamps).

We investigate in detail the benefits of size-based bypass for different packet
size thresholds ranging from 8 to 512 bytes. Figure 4 shows the percentage
improvement in execution time (upper line) and RTE (lower line) for MODP
on Trace 2, with inbound traffic on the left and outbound traffic on the right.

13



Execution time improves as expected with a larger threshold, since fewer packets
are processed. RTE savings improve initially as well, since fewer chunks from
small packets occupy the cache. Naturally, savings decrease beyond a certain
threshold size, since less and less of the network data is eligible for chunk caching.
Negative values indicate that the RTE savings are worse than using no threshold
at all.

Since our focus is on improving detected redundancy, the best threshold
point to choose is where improvement in RTE peaks. This point is between 96
and 128 bytes for inbound traces, and between 64 and 96 for outbound traces.
To maximize the benefit, the threshold should be carefully adjusted for the type
of traffic on the particular link, perhaps even over time, as traffic may change.

We choose 96 bytes as the threshold1 for size-based bypass, providing a
compromise between the two traffic directions, and consistent benefits across
our university traces. This setting offers significant improvement in execution
time, and slightly higher detected redundancy.

We have evaluated the benefits of this approach by comparing the RTE and
execution time results for all traces. In the best case (MODP, small sampling
period, large cache) the benefits from bypassing small packets are up to 25.8%
improvement in execution time, and up to 4.2% improvement in RTE. In the
worst case (WINN, p = 35, 64-byte chunks, 500 MB FIFO cache), the im-
provement in average execution time per trace is 2.1%, and RTE remains the
same.

4.2. Chunk Overlap

In previous work, selection of a chunk is followed by a matching region
expansion around the chunk to achieve the largest possible match [1, 3, 14].
Expansion introduces overhead in processing cost and storage, but improves
average detected redundancy by 13.6% [1].

For expansion to make sense, selected chunks should be disjoint, with a
gap between them that is filled by expanding the matching region. However,
ensuring that such a gap exists will reduce the number of selected chunks in
many cases, especially when the sampling period is greater than or equal to the
chunk size. In the simplest case of FIXED selection algorithm, 32 byte chunks
with sampling period of 32 will cover the block of data completely, without gaps
and without overlap. Hence, introducing gaps to enable expansion necessarily
reduces the number of initially selected chunks. Fewer chunks lead to lower
detected redundancy, since it increases the sampling period.

We explore a simple alternative that covers more data chunks and allows
overlap of chunks selected for caching. We start with overlapping chunks, and
then prune chunks whose overlap exceeds a threshold, to avoid selecting chunks
for which most bytes overlap.

1A sample of our trace data shows that nearly 50% of TCP packets are smaller than 96
bytes, with the vast majority of the data bytes carried in the larger packets.

14



 
050001000015000200002500030000

0 16 32 48 64 80 96 112 128Frequency
Distance between chosen chunks (bytes)

MODP
 

050001000015000200002500030000
0 16 32 48 64 80 96 112 128Frequency

Distance between chosen chunks (bytes)
WINN

(a) MODP (b) WINN

Figure 5: Distance between selected chunks

With both MODP and WINN, selected chunks may overlap either because
of the selection criteria or relationship between chunk size and sampling period.
MODP selects chunks based on fingerprint values ending in a certain pattern,
whereas WINN selects based on fingerprint value only. Overlap of chunks natu-
rally occurs in both of these algorithms, as seen in Figure 5, where we show the
distribution of distance between consecutive chosen chunks. The distance is the
number of bytes between the initial bytes of two chunks. The tail of the MODP
distribution extends well over 400 bytes, though the graph is truncated at 128.
This confirms that WINN chooses chunks more uniformly, and always within a
specified sampling period, whereas MODP can skip long blocks of data.

Overlap can also occur depending on the relationship between chunk size and
sampling period. For example, a very large sampling period of 512 and chunk
size of 4 would rarely choose overlapping chunks. Another extreme would be a
small sampling period of 1, where every chunk is selected, and overlap would
occur for every chunk size larger than 1.

Intuitively, overlap should be avoided, especially if expansion of the matching
region is done. Overlapping chunks do not offer the full savings of a whole chunk,
and additional processing overhead is required.

Surprisingly, overlapping chunks can actually improve RTE at a small pro-
cessing cost, when appropriately parameterized. We start by comparing de-
tected redundancy and execution time for different overlap thresholds on Trace
3 inbound traffic. The overlap thresholds are (1) None: no overlap allowed,
(2) Half-Chunk: overlap allowed up to one half of chunk size (i.e., 32 bytes of
overlap for 64-byte chunks), and (3) Any: any amount of overlap is allowed, up
to the chunk size less 1 byte.

Table 6: Comparison of different chunk overlap thresholds

RTE Cache Overlap Redundancy Overlap Time
Algorithm Size (MB) None Half-Chunk Any None Half-Chunk Any

WINN 1000 11.7% 13.0% 13.4% 2373 2545 3049

MODP 1000 10.1% 11.2% 11.2% 1295 1480 1986

MODP infinite 12.0% 14.0% 14.9% 1236 1314 1531

15



From Table 6, we find that half-chunk overlap increases detected redundancy
by 11.1% to 16.7%, depending on the algorithms and cache size, but execution
time also increases by 6-14%. Allowing any overlap can increase detected redun-
dancy even more, but the cost in execution time is too high, up to 53%, which
is not acceptable. We therefore adopt the threshold of half-chunk overlap, and
proceed with evaluation on all traces, using WINN, p = 35, 64-byte chunks, 500
MB cache and FIFO replacement policy.

Table 7 shows that allowing up to half-chunk overlap consistently improves
detected redundancy with a slight penalty in execution time for each trace.
Actually, an 8.7% average improvement in detected redundancy per trace has
a cost of 9% in execution time for inbound traffic. A similar tradeoff exists for
outbound traffic. We find this tradeoff acceptable.

The benefits of chunk overlap diminish with either small (4 or 8) or large
sampling periods (128 and higher). With small sampling periods, too many
chunks are selected, and nearly all of them overlap by at least half, which de-
generates to FIXED selection. Long sampling periods select so few chunks that
they rarely overlap, and the threshold becomes irrelevant. Therefore, controlled
half-chunk overlap makes sense only when sampling period is within 1/4 to 1/2
of the chunk size.

Table 7: Benefits of allowing chunk overlap

Packet Inbound Savings Inbound Time
Trace None Half-Chunk None Half-Chunk

1 19.1% 20.5% 5453 5805
2 19.3% 20.5% 2327 2384
3 10.8% 11.9% 6850 7425
4 13.3% 14.7% 5129 5551
5 9.1% 10.2% 2493 2757
6 11.9% 12.7% 5357 5853
7 10.6% 11.7% 2158 2393
8 7.3% 8.1% 6307 7166

Average 12.7% 13.8% 4509 4917

Packet Outbound Savings Outbound Time
Trace None Half-Chunk None Half-Chunk

1 22.2% 23.4% 4257 4828
2 13.9% 15.0% 4318 4759
3 12.3% 13.6% 4829 5204
4 10.3% 11.4% 3562 4048
5 19.0% 20.5% 2297 2447
6 14.6% 16.1% 3511 3679
7 9.5% 10.5% 3174 3164
8 14.4% 16.1% 4405 4596

Average 14.5% 15.8% 3794 4090

To make sure that half-chunk overlap indeed produces actual byte savings,
we assess an encoding penalty of 5 bytes per 64-byte chunk and evaluate byte

16



 

-2%2%6%10%14%18%22%
4 8 16 32 64 128Advantage of o

verlap
Sampling period

RedundancySavings
Figure 6: Benefits of chunk overlap

savings for WINN. For all traces, the savings with overlap are indeed higher
than without overlap (Figure 6).

In summary, overlap improves RTE in a similar way to chunk expansion, by
covering more consecutive matching bytes. It incurs extra overhead by process-
ing more chunks than without overlap, but expansion imposes higher processing
cost as well. It should be noted that both approaches must process every chunk
using the sliding window to accommodate the Rabin fingerprinting algorithm,
regardless of whether a previous chunk expanded the matching region or not.
Another advantage of overlap is its reduced storage overhead. Expansion re-
quires full data packets to be stored in the cache regardless of the number of
chunks selected from each packet, with many packets providing no savings. The
overlap approach, with a fixed chunk size, uses the cache only for chunks, and
not for any additional packet data.

4.3. Cache Replacement Policy

In this section, we discuss alternative cache replacement policies for the
chunk cache. In previous works, a FIFO cache was assumed [3, 14]. Since
our approach caches fixed-size chunks rather than full packets, we can exploit
temporal locality and the non-uniform popularity of chunks.

We evaluate two policies other than FIFO to improve RTE. The comparisons
between all cache replacement policies are based on WINN with p = 35, 64-byte
chunks, half-chunk overlap, 1 GB cache, and packet-size bypass of 96 bytes.

4.3.1. LRU

Prior work showed that popular chunks exhibit temporal locality [3], and we
find the same property in our traces. Given this behavior, we consider Least
Recently Used (LRU) as a cache replacement policy. LRU removes the least
recently used chunk when space is needed to add a new chunk to the cache.

Table 8 shows the RTE and execution time results for LRU, in a column
adjacent to FIFO. The improvement in detected redundancy is negligible, which
is a poor tradeoff with the significantly higher execution time.

17



Table 8: Comparison of FIFO, LRU, and LSA

Packet Inbound Savings Inbound Time
Trace FIFO LRU LSA FIFO LRU LSA

1 22.0% 22.7% 23.2% 5544 7747 5430
2 22.3% 23.0% 23.6% 2203 3028 2177
3 13.5% 14.2% 14.7% 7190 9830 6956
4 16.4% 17.6% 17.8% 5182 7303 5122
5 11.5% 12.0% 12.5% 2475 3404 2501
6 14.2% 15.1% 15.3% 5337 7557 5381
7 13.0% 13.5% 14.1% 2119 2937 2130
8 9.1% 9.5% 9.7% 6325 9193 6393

Average 15.2% 15.9% 16.4% 4547 6375 4511

Packet Outbound Savings Outbound Time
Trace FIFO LRU LSA FIFO LRU LSA

1 26.9% 27.7% 28.1% 4646 5786 4181
2 17.1% 17.7% 18.5% 4487 5738 4041
3 15.3% 16.0% 16.5% 5136 6678 4711
4 12.9% 13.3% 13.9% 3813 4906 3452
5 22.8% 23.5% 24.3% 2384 3025 2171
6 17.9% 18.6% 19.4% 3668 4631 3423
7 12.0% 12.5% 13.3% 3244 4169 2947
8 17.9% 18.3% 18.8% 4672 5991 4373

Average 17.9% 18.4% 19.1% 4006 5116 3662

4.3.2. Least Savings with Aging (LSA)

Since exploiting temporal locality was not beneficial for improving RTE, we
turn to another non-uniformity in network traffic: the popularity of data chunks.
Earlier work has shown that the popularity of chunks has a Zipf-like power-law
distribution [3].

If some data chunks are more popular than others, then they should be
kept in the cache as long as they are useful. This is analogous to the Least
Frequently Used (LFU) replacement policy. Traditional LFU tracks cache hits
for every object, and removes the one with the fewest hits when replacement
is needed. In our implementation, where chunk overlap is allowed, it would be

Table 9: Contribution to detected redundancy by most popular chunk content types

Content type Redundancy Description Example

Nulls 57.1% String of consecutive null bytes 0x00000000

Text 16.7% Plain text (English) Gnutella

HTTP 7.3% Fragment of HTTP directives Content-Type:

Mixed 6.2% Plain text and other characters 14pt font

Binary 5.8% Seemingly random characters 0x27c46128

HTML 3.7% Fragment of HTML code <HTML> <p>

Char+1 3.2% Many repeated text characters AAAAAAAz

18



naive to rank the chunks solely by number of hits, since we may over-value some
chunks whose contribution to detected redundancy is less than the full chunk
size. It is thus not the number of hits that is our metric for ranking chunks,
but rather the actual byte volume contributed to RTE. Our proposed cache
replacement policy removes the chunk with the least RTE savings so far.

A common issue with LFU-based policies is cache pollution, wherein objects
can stay too long in the cache, following a period of high activity. That is,
their hit count becomes so high that they never get replaced. Solutions for
this problem include limiting the maximum hit count, or introducing an aging
factor. We use a form of aging that purges all chunks from the cache, hence our
policy’s name Least Savings with Aging (LSA).

Two important notes on LSA are as follows: (1) a large majority of chunks in
the cache are recent chunks without any detected redundancy, which are often
evicted soon; and (2) due to the temporal locality property of popular chunks,
we can simply purge the entire cache periodically as a form of aging. We find
that a good purging period is when the cumulative number of chunks processed
is 5 to 10 times the number of cache entries.

The cache warm-up period is extremely short, as seen in Figure 7. We show
the start of Trace 3, where detected redundancy reaches steady-state within the
first 100 MB, and recovers quickly after complete purges were performed at 250
MB and 500 MB of processed trace data. Since popular chunks are temporally
close, they populate the cache very quickly without significant effect on the
overall detected redundancy.

Table 8 shows that LSA consistently produces higher RTE than FIFO. The
average difference is 7.3% and 7.0% for inbound and outbound traffic, respec-
tively. In addition, execution time for LSA is no worse than FIFO. LSA is faster
in most cases, since eviction is simple, and it handles less data than other poli-
cies, due to purging. Since evicted chunks in LSA generally have no detected
redundancy yet, and there are many of them, they are stored and evicted in a
FIFO manner.

Overall, LSA performs better than FIFO and LRU. LSA uses a simple
method for aging, and exploits the fact that non-redundant chunks are nu-
merous, and almost always are the ones that get evicted.

4%

6%

8%

10%

12%

14%

S
av

in
g

s

Savings

0%

2%

4%

100 150 200 250 300 350 400 450 500 550

Data processed (MB)

Savings

Purge at 250MB

Purge at 500MB

Figure 7: LSA cache has fast warmup

19



Table 10: Redundancy and execution time before and after improvements

Packet Before improvements After improvements
Trace Redundancy Time Redundancy Time

Campus In 10.8% 5111 15.5% 5052

Campus Out 12.0% 4274 17.7% 4056

Residential 6.3% 15075 8.2% 13996

Web server 25.7% 2548 40.3% 2625

We have confirmed that the benefits of LSA continue to hold when using a
small cache of 100 MB and without chunk overlap (not shown). The advantage
of LSA in detected redundancy was 11.7% and 10% for inbound and outbound
traffic, respectively, while execution time was slightly faster.

4.4. Summary

The cumulative improvement in detected redundancy using network-layer
improvements, compared to the base case, is illustrated in Table 10. The results
for all traces are presented as averages per trace.

The absolute increase in RTE due to the individual techniques is about 2-
5% for the campus traces, because the level of redundancy in our campus traces
is modest. However, the relative increase in RTE, as well as the cumulative
effects of the improvements, are significant, particularly since they have minimal
computational cost.

To elaborate, the average RTE for campus traces of 11-12% byte savings
typically achieved with existing RTE approach can be improved to 16-18% with
our combined techniques. This represents a relative improvement of 45-50%.
Average RTE for residential traces is improved from 6.3% to 8.2%, which is
a 30% relative improvement. For enterprise Web traffic, RTE savings improve
from 26% to 40%, which is a 54% relative improvement. Campus and residential
traces show a small reduction in execution time, wheres Web server traces take
slightly longer to process than in the base case.

The key result of this section is that the network-layer improvement tech-
niques are beneficial and lead to higher detected redundancy for a variety of
environments with different traffic mixes, including low-redundancy residence
traffic and highly-redundant Web server traffic.

5. Content-Aware RTE

In this section, we consider improvements to end-system RTE. Moving the
RTE process from the network to the end system was proposed in earlier
work [1]. We propose a content-aware approach to RTE, and quantify its ben-
efits using a separate set of standalone experiments, as well as traffic traces.

20



5.1. A Posteriori Analysis

The fundamental question in RTE is: how do we choose the best chunks to
cache, and do so without having to fingerprint every possible chunk?

Protocol-independent RTE means that the chunk selection algorithm is ag-
nostic of the content type and application that generates the data. All data is
fingerprinted regardless of the content type, and chunks for caching are selected
from all applications indiscriminately. However, not all applications generate
traffic of equal redundancy, nor do they contribute equally to the overall de-
tected redundancy. This is yet another manifestation of traffic non-uniformity.

To provide greater insight into the fundamental RTE question, it is instruc-
tive to analyze the content of the most popular chunks observed. We select
from all traces the chunks that remained in the cache after RTE processing,
and contributed the most to RTE savings. We identify the Top 100 chunks,
each of which contributed at least 48 KB of actual RTE savings. As found
in [3], the most popular chunk is a string of null bytes, which contributed 57.1%
of byte savings within our Top 100. The other top chunks, which differ from
those observed in [3], are classified into several categories in Table 9.

The results in Table 9 show that much of the redundancy can be detected
by searching for strings of zeros. However, there is another important finding
as well. In particular, text-based data (Text, HTTP, HTML, and Char+1) in
aggregate contribute 30.9%. Only 12% of detected redundancy is contributed
by other non-text data (Mixed and Binary).

5.2. Toward Content-Awareness

The low RTE savings for non-text data suggest that such data could be
bypassed. Bypassing useless data would save CPU cycles and cache space that
could be used for additional sampling of (highly-redundant) text-based data.
Doing so would also mean that the cache contains more useful chunks. The two
applications that contribute the most bytes on typical access links are Web and
file-sharing. The former is primarily (but not exclusively) text-based, while the
latter is not.

As a proof-of-concept, we conduct a standalone experiment on a separate
library of data files. We use a collection of HTML files to represent text-based
content, PDF files to represent mixed content, and MP3 files to represent non-
text content (e.g., encoded, compressed, or encrypted objects).

Table 11 provides details on each file set, as well as the redundancy detected.
The HTML set contains all pages of a major university Web site, which may
contain some duplicate pages. The PDF set contains networking literature,
class assignments, and various software manuals, with 5 files having partially
repeated content. The MP3 files are all distinct. Therefore, any (intra-object
or inter-object) redundancies found do not arise from repeated objects in the
PDF and MP3 file sets.

When fingerprinted separately using 64-byte chunks, overlap, MODP 32 and
WINN 35, with a 64 MB FIFO cache, all three file types show vast difference in
redundancy. The HTML files show high redundancy (72-77%), while the PDF

21



files show moderate redundancy (11-13%), and the MP3 files little redundancy
(0.4%). When data sets are combined in a pair-wise fashion (i.e., two at a
time), the HTML-MP3 redundancy is 36.5% for MODP and 38.6% for WINN,
whereas PDF-MP3 redundancy is 5.7% for MODP and 6.4% for WINN. The
MP3 files, with negligible redundancy, clearly reduce the overall RTE savings
in the combined data sets.

5.3. Ideal bypass
We next implement an ideal bypass technique at the file granularity, where

content type can be determined at the end system. This approach is based on
known file types, where we oversample the redundant file type and bypass the
non-redundant files type, with the goal of achieving higher overall RTE.

From Table 8, the ideal bypass approach improves RTE for the HTML-MP3
set to 44.1% for both algorithms. This represents a 20.7% improvement for
MODP, and a 13.7% improvement for WINN. In the PDF-MP3 case, the RTE
results are 7.7% for MODP and 7.6% for WINN. The improvement for MODP
is 35.7%, while that for WINN is 18.7%. MODP and WINN achieve nearly the
same RTE, but MODP is faster.

These results demonstrate that content-aware RTE at end systems is ben-
eficial. It detects more redundancy, and it can also reduce processing time,
compared to the no-bypass case. It is also worth noting that we have applied all
network-layer improvements already (except LSA and size-based bypass), and
added content-awareness to the RTE pipeline process. This shows the addi-
tive effect of network-layer improvements and content-awareness for end-system
RTE.

Table 11: Content-aware and file-based bypass on HTML, PDF and MP3 data sets

Data set Files Data (MB) MODP 32 WINN 35 MODP WINN

HTML 5340 132.7 72.1% 76.5% 18.0 s 39.0 s

PDF 248 132.3 11.0% 12.5% 20.9 s 44.3 s

MP3 40 130.7 0.4% 0.4% 21.7 s 43.6 s

Combination of data sets without bypass

HTML:MP3 5380 263.4 36.5% 38.8% 42.4 s 88.9 s

PDF:MP3 288 262.9 5.7% 6.4% 45.7 s 88.6 s

Combination of data sets with ideal file-based bypass

MODP 4 WINN 5

HTML:MP3 5380 263.4 44.1% 44.1% 54.5 s 65.4 s

PDF:MP3 288 262.9 7.7% 7.6% 71.2 s 78.5 s

Combination of data sets with content-aware bypass

MODP 4 WINN 5

HTML:MP3 5380 263.4 43.3% 43.4% 174.6 s 159.1 s

PDF:MP3 288 262.9 7.0% 6.9% 199.5 s 205.8 s

5.4. Text-based bypass
The next step is to apply content-awareness to network-layer RTE. Achieving

ideal bypass of non-redundant content type by middle-boxes at the network

22



layer would require determining the content type of the payload of each packet.
Simply determining the higher layer protocol inside the TCP connection is not
sufficient. For example, HTTP may carry different content types, such as text-
based HTML and non-text images, within persistent connections. A simpler
solution, one that only requires inspection of the current packet, is required.

To translate the ideal bypass into the RTE process at the network layer,
we need to use some characteristic of the data chunk that would provide an
indication of the underlying file type (i.e., a form of content-awareness). For
example, we could use entropy, or the proportion T of plain-text characters
within the data chunk, for which we coin the new term “textiness”. We know
from Table 9 that null-strings and text-based chunks account for most of the
detected redundancy. In our file sets, however, null-strings are rare, so we focus
on textiness instead.

We start by calculating textiness using characters whose ASCII values2 are
32 to 126 (inclusive), for all data chunks in the HTML and MP3 sets. Their dis-
tributions are shown in Figure 8(a). The expected distinction is clearly shown,
with HTML chunks having numerically high textiness, compared to MP3 files.
The majority of MP3 chunks have T ∈ (0.3, 0.45). It is clear that RTE should
bypass all data chunks with T < 0.9, so that is what we implement for content-
awareness for the HTML-MP3 data set.

The results are shown in the bottom part of Table 11. For this data set,
the simple implementation of content-awareness achieves nearly the same RTE
as the ideal file-based bypass for both MODP and WINN. However, processing
times increase significantly (79% for WINN), which is one challenge for content-
aware RTE. There are, however, two possible solutions for the high processing
cost. One way to reduce processing cost is to track chunk content concurrently
with fingerprinting, as opposed to fingerprinting a posteriori as in our current
implementation. Another improvement would be to apply the sliding window
approach to calculation of textiness (or entropy), by removing the first byte
in the chunk from the calculation of textiness and adding the new byte as the
sliding window advances.

Another challenge becomes evident when we consider the PDF-MP3 data
set next. Figure 8(b) shows the histograms of textiness for PDF and MP3 files.
The similarity of distributions is clear, but we know that PDF files contain more
redundancy. There is no clear-cut difference in textiness of PDF and MP3 files
as there was between HTML and MP3 files. We choose to oversample and select
chunks with textiness of (0.3, 0.45] and (0.9, 1].

As seen in the bottom rows of Table 11, the detected redundancy did not
achieve the same levels as ideal file-based bypass. The RTE benefit was mod-
erate for MODP, but small for WINN. The reason for lower RTE is that MP3

2The text-based implementation of content-awareness relies on ASCII values, which are
appropriate for English content. Entropy can be used to find redundancy in other languages
when characters are represented using encodings other than ASCII. Based on our experiments,
entropy offers the same savings as textiness, but at higher processing cost.

23



chunks still get selected, even though they are not redundant.

5.5. Content-aware RTE at network layer

The standalone experiments with file sets demonstrated the benefit of content-
awareness for end-system RTE, but revealed the limitations of a bypass approach
if applied at the network layer. Rather than using a single sampling period and
a static configuration of textiness values to bypass, we develop a heuristic that
uses multiple sampling periods.

Figure 8(c) compares textiness of chunk hits with that for all chunks on
campus traces. Both distributions are multi-modal. The distribution for all
chunks is concentrated around 0.4, with a slight peak at 0, and additional peaks
beyond 0.9. The distribution for hits looks similar, but with distinct differences.
Null-strings whose textiness is 0 produce many cache hits, approximately 5 times
more than their proportion of traffic volume. Similarly, plain-text chunks (near
1.0) get about 4 times more hits than their proportion of traffic volume. In
these cases we gain RTE savings. However, chunks around 0.35 account for
most of the data volume, yet produce proportionally fewer hits; this is where
RTE savings are lost.

It is clear that we should not completely bypass some chunks in favor of
others, since most of the chunks offer some savings. Instead, we use multiple
sampling periods depending on the ratio of hits to all chunks for each textiness
level. We first tried to implement multiple sampling periods with MODP, which
was impractical due to coarse (powers of 2) granularity of MODP sampling.
WINN, however, is a better choice, and allows fine-grained adjustment of the
sampling period. Following the distribution of textiness values from Figure 8(c),
we sample chunks according to the following criteria:

• if T ∈ [0.0, 0.2): p = 8,

• if T ∈ [0.2, 0.3): p = 16,

• if T ∈ [0.3, 0.5): p = 50,

• if T ∈ [0.5, 0.8): p = 16,

• otherwise: p = 8.

Chunks are oversampled if they generate more hits than their proportional
volume (sampling period reduced from 35 to 16), and are undersampled other-
wise (sampling period increased from 35 to 50). A sampling period of 16 provides
very high coverage of data when 32-byte chunks are used without overlap. For
extreme (low or high) textiness values, where chunks are highly redundant, we
reduce the sampling period from 35 to 8 to ensure even fuller coverage of the
data.

When applied to real traffic traces, the adjustment of sampling period works
as follows. Once a chunk is selected, the sampling period is adjusted to the level
corresponding to that chunk’s textiness, and sampling with that period con-
tinues with the expectation that subsequent chunks will have similar textiness.

24



40%

60%

80%

Pe
rce

nt
ag

e o
f C

hu
nk

s HTML
MP3

0%

20%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pe
rce

nt
ag

e o
f C

hu
nk

s

Textiness value
(a) HTML and MP3 files

10%

15%

20%

25%
30%

Pe
rce

nt
ag

e o
f C

hu
nk

s PDF
MP3

0%

5%

10%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pe
rce

nt
ag

e o
f C

hu
nk

s

Textiness value
(b) PDF and MP3 files

10%
15%
20%
25%
30%

Pe
rce

nt
ag

e o
f C

hu
nk

s Hits
All chunks

0%
5%

10%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pe
rce

nt
ag

e o
f C

hu
nk

s

Textiness value
(c) Cache hits and All chunks

Figure 8: Distribution of textiness for the file sets

25



Table 12: Redundancy and execution time with and without content-awareness

Packet Content-unaware Content-aware
Trace Redundancy Time Redundancy Time

1 18.8% 4787 25.1% 7816

2 11.8% 4752 15.7% 7085

3 9.8% 5498 15.0% 8598

4 8.4% 4022 12.0% 5804

5 15.9% 2486 21.2% 3953

6 11.8% 3966 15.8% 5817

7 7.9% 3572 11.4% 4948

8 11.4% 5107 15.0% 7363

Average 12.0% 4274 16.4% 6423

A 6.2% 15554 7.2% 20744

B 6.5% 14596 7.6% 19578

Average 6.4% 15075 7.4% 20161

The sampling period is adjusted again after selecting a chunk whose textiness
merits a different sampling period. While this heuristic is not a perfect solu-
tion, it allows us to achieve similar number of selected chunks so we can fairly
compare RTE savings with and without content-awareness.

Table 12 shows a comparison of RTE savings and execution time for cam-
pus and residential outbound traces. (Results for campus inbound traces are
similar.) The average improvement for campus traces is from 12% to 16.4%,
and for residential traces from 6.4% to 7.4%. Content-aware RTE is, there-
fore, beneficial at network layer, but not as much as network-layer improvement
techniques. It is also peculiar that when content-awareness and network-layer
improvements (described in Section 4) are applied together at network-layer,
the additive effect is very small compared to the case where content-awareness
is applied at the end system. Therefore, content-aware RTE is best applied at
the end system, where it provides higher savings and reduced processing cost,
rather than at network layer, where savings are similar, but processing cost
increases.

5.6. Summary

The presented results strongly indicate that content-aware RTE is a good
approach to increase detected redundancy. The improvements achieved by
content-awareness at the file level make a strong case for implementing RTE
at end systems, where content type can be determined more easily. Informa-
tion about the content type could be passed with the data to the socket layer
or transport layer, and used for RTE purposes. The RTE benefit would be
reflected in transmitting fewer IP packets, as opposed to reducing the size of
packets when using network-layer RTE [1].

26



6. Conclusions

In this paper, we propose several techniques for improving network-layer
redundant traffic elimination (RTE) by exploiting non-uniformities in network
traffic with respect to packet size, chunk popularity, and content type. In addi-
tion, we demonstrate the benefits of using larger chunks, chunk overlap, and a
savings-based cache replacement policy. Our proposed network-layer improve-
ments apply to many chunk selection algorithms, and may be used individually
or combined. As illustrated in Table 10, the relative improvement in average
detected redundancy per trace is up to 50% for campus traffic, and up to 54%
for enterprise Web server traffic.

In addition, we introduce content-aware RTE using file type and textiness
of data chunks, and demonstrate its benefits for redundancy detection. When
applied at end systems, content-awareness improves detected redundancy by up
to 36% on top of network-layer techniques.

References

[1] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An End-System
Redundancy Elimination Service for Enterprises”, Proceedings of USENIX
NSDI, San Jose, CA, pp. 419-432, April 2010.

[2] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet Caches
on Routers: The Implications of Universal Redundant Traffic Elimination”,
Proceedings of ACM SIGCOMM, Seattle, WA, pp. 219-230, August 2008.

[3] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in Network Traffic: Findings and Implications”, Proceedings of ACM SIG-
METRICS Seattle, WA, pp. 37-48, June 2009.

[4] A. Anand, V. Sekar, and A. Akella, “SmartRE: An Architecture for Co-
ordinated Network-wide Redundancy Elimination”, Proceedings of ACM
SIGCOMM, Barcelona, Spain, pp. 87-98, September 2009.

[5] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Character-
ization and Performance Implications”, IEEE/ACM Transactions on Net-
working, Vol. 5, No. 5, pp. 631-645, October 1997.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching and
Zipf-like Distributions: Evidence and Implications”, Proceedings of IEEE
INFOCOM, New York, NY, March 1999.

[7] Cisco, “WAN Optimization and Application Acceleration”,
http://www.cisco.com/en/US/products/ps6870/.

[8] F. Douglis and A. Iyengar, “Application-specific Delta-encoding via Re-
semblance Detection”, Proceedings of USENIX Technical Conference, San
Antonio, TX, pp. 113-126, June 2003.

27



[9] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Of-
fline/Realtime Traffic Classification Using Semi-Supervised Learning”, Per-
formance Evaluation, Vol. 64, No. 9-12, pp. 1194-1213, October 2007.

[10] P. Kulkarni, F. Douglis, J. Lavoie, and J. Tracey, “Redundancy Elimina-
tion within Large Collections of Files”, Proceedings of USENIX Technical
Conference, Boston, MA, pp. 59-72, June/July 2004.

[11] A. Muthitacharoen, B. Chen, and D. Mazieres, “A Low-bandwidth Net-
work File System”, Proceedings of ACM SOSP, Lake Louise, AB, Canada,
pp. 174-187, October 2001.

[12] M. Rabin, “Fingerprinting by Random Polynomials”, Technical Report
TR-CSE-03-01, Center for Research in Computing Technology, Harvard
University, 1981.

[13] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: Local Algorithms
for Document Fingerprinting”, Proceedings of ACM SIGMOD, San Diego,
CA, pp. 76-85, June 2003.

[14] N. Spring, and D. Wetherall, “A Protocol-independent Technique for Elim-
inating Redundant Network Traffic”, Proceedings of ACM SIGCOMM,
Stockholm, Sweden, pp. 87-95, August 2000.

[15] T. Suel, P. Noel, and D. Trendafilov, “Improved File Synchronization Tech-
niques for Maintaining Large Replicated Collections over Slow Networks”,
Proceedings of ICDE, location, pp. 153-164, March/April 2004.

[16] C. Williamson, “Internet Traffic Measurement”, IEEE Internet Computing,
Vol. 5, No. 6, pp. 70-74, November/December 2001.

28


