
Barrier Counting in Mixed Wireless Sensor Networks

Shambhavi Srinivasa Carey Williamson Zongpeng Li
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

{srinivs, carey, zongpeng}@cpsc.ucalgary.ca

Abstract—Barrier coverage problems in sensor networks
involve detecting intruders that attempt to cross a region of
interest. In this paper, we formulate the k-connect barrier
count problem for Mixed Sensor Networks (MSNs). The k-
connect barrier count problem is to find the maximum number
of barriers in an arbitrary MSN where at most k distinct
mobile sensors can be used to construct any given virtual edge
used in a barrier. We present the solution for the k-connect
barrier count problem for k ∈ {0, 1, 2} via Integer Linear
Programming. Using simulation results, we show that as k
increases, the density of sensors required to achieve barrier
coverage decreases. The results quantitatively demonstrate the
benefits of mobile sensors.

Keywords-Wireless sensor networks; barrier coverage

I. INTRODUCTION

A Wireless Sensor Network (WSN) typically consists
of stationary sensors with no movement capability. With
advancements in robotics, however, sensors with movement
capability are now possible. These sensors are mounted on
a mobile platform, and are known as mobile sensors.

A Mixed Sensor Network (MSN) is a special type of WSN
that consists of stationary sensors as well as mobile sen-
sors. While mobile sensors are expensive, and have limited
movement capability, they provide distinct advantages for
MSNs over WSNs. In particular, the ability to move selected
sensor nodes as needed can improve sensor coverage, and
provides tactical advantages for tracking and surveillance
in hostile or environmentally-sensitive environments (e.g.,
military scenarios, wildlife corridors).

An important problem in sensor network deployments
is barrier coverage, for detecting intruders that attempt to
cross an area of interest. The solution requires a chain
(barrier) of sensors across the deployed region such that the
sensing areas of adjacent sensors mutually overlap. A strong
barrier can protect critical infrastructure against all possible
intruder crossing paths. Thus, barrier coverage has received
significant research attention in recent years.

There are two general approaches to achieving strong
barrier coverage. One approach is to scatter sufficiently
many stationary sensors so that a strong barrier is present
with high probability. Another approach is to deploy a mix
of stationary and mobile sensors, using the latter to heal the
coverage gaps, if any, that occur in barrier formation for the
stationary sensors.

The benefits of mobile sensors have been explored primar-
ily in the context of area coverage in fully-mobile sensor
networks (i.e., WSNs that consist entirely of mobile sensors).
However, Saipulla et al. [9] mathematically analyze the
fundamental limits of barrier coverage with mobile sensors.
The authors show that sensor mobility can effectively lower
the critical density of sensors required (i.e., percolation
threshold) for barrier formation in a network. The authors
also devise an algorithm that determines the presence or
absence of a barrier under constrained sensor mobility in an
arbitrary MSN.

In this paper, we further investigate the benefits of mobile
sensors. We formulate a novel problem called the k-connect
barrier count problem, which considers not just the presence
or absence of a barrier, but determines the maximum number
of barriers that can be formed in an arbitary MSN. That
is, our approach seeks to provide fault-tolerance in barrier
coverage. We define this problem in terms of k, which
is the maximum number of mobile sensors that can be
used to construct any given virtual edge used in a barrier
(see Figure 1). We formulate the k-connect barrier count
problem as a maximum flow problem, which we solve using
Integer Linear Programming. We also use simulation and
visualization to test and verify the accuracy of our solution
on randomly-generated MSN topologies.

There are two primary contributions in this paper:

• We formally define the k-connect barrier count prob-
lem, and solve it using Integer Linear Programming for
k ∈ {0, 1, 2}.

• We use simulation to study the effects of sensing radius,
movement radius, and the number of mobile sensors
on the percolation threshold. In general, increasing k
decreases the network size at which barrier coverage
is achieved, thus demonstrating the benefits of mobile
sensors.

The remainder of the paper is organized as follows. Sec-
tion II reviews recent literature on barrier coverage in WSNs
and MSNs. Section III presents the k-connect Barrier Count
Problem. Section IV presents an overview of our solution
methodology for the k-connect Barrier Count Problem for
k ∈ {0, 1, 2}. Section V presents simulation results. Finally,
Section VI concludes the paper.



(a) Barrier using k = 0 mobile sensors (b) Barrier using k = 1 mobile sensors (c) Barrier using k = 2 mobile sensors

Figure 1. Examples of the k-connect barrier count problem in Mixed Sensor Networks (MSNs)

II. RELATED WORK

There are three broad categories of coverage problems in
WSNs: point coverage, area coverage, and barrier coverage.
In this paper, we focus solely on barrier coverage.

Barrier coverage refers to the ability of a WSN to protect
an area of interest from intruder penetration, typically in
military and homeland security applications. While barrier
coverage is a relatively new topic in the field of WSNs, it
has garnered significant research interest over the past few
years. The bulk of this work is for stationary sensors, but
recent works have considered mobile sensors as well.

Gage [3] introduced the notion of barrier coverage in
the context of ensemble motion behaviors of robots. The
objective of barrier coverage is to achieve a static arrange-
ment of sensors that minimizes the probability of an intruder
penetrating the barrier without being detected.

The barrier coverage problem has also been viewed in
terms of exposure, expressed as either worst-case coverage
or best-case coverage. In worst-case coverage, the objective
is to find a path through the sensing field for which the
probability of detecting an intruder is the lowest. This path
is called the Minimal Exposure Path [7] or the Maximal
Breach Path [5], [8]. Finding such a worst-case path is
important because additional sensors could be deployed
along that path to increase the quality of coverage. In the
best-case formulation, the objective is to find a path through
the sensing field for which the probability of detecting an
intruder is highest. Such a path is called the Maximal Ex-
posure Path [11] or the Maximal Support Path [8]. Finding
such a path can be useful for applications that are security-
sensitive and highly resource-constrained. An example is a
solar-powered autonomous robot traversing a light-detecting
WSN. By using the best-coverage path, the robot obtains the
maximum amount of sunlight within a limited time.

Kumar et al. [4] introduce the notion of k-barrier cov-
erage (not to be confused with our k-connect barrier count
problem). A given area is k-covered if every crossing path
across the width of the area intersects the coverage areas
of at least k sensors. They establish whether or not it is
locally possible to determine if a given area of interest is
k-covered or not. They establish the optimal deployment

pattern for k-barrier coverage when the sensors are deployed
deterministically, and also consider the case when the sen-
sors are deployed randomly. Next, they introduce the notions
of weak and strong barrier coverage, deriving the critical
conditions for the existence of weak k-barrier coverage, and
the minimum number of sensors required to provide it.

Chen et al. [2] propose the notion of local barrier
coverage. They provide a localized algorithm for sensors to
determine whether or not an intruder can cross the area of
interest undetected. Although local barrier coverage does not
always guarantee global barrier coverage, the authors show
through simulations that for thin belt regions, local barrier
coverage always translates into global barrier coverage.

Deriving the critical density is a fundamental problem in
coverage. Below the critical density, the network (w.h.p.)
does not provide barrier coverage, while above this critical
threshold, barrier coverage almost surely exists. Balister et
al. [1] derive reliable density estimates for barrier coverage
in thin strips. Recently, Liu et al. [6] present the critical
conditions for strong barrier coverage in rectangular strips.

Barrier coverage with mobility is just beginning to ap-
pear in the literature. Existing papers deal with the barrier
coverage problem with mobility-constrained sensors.

The work most relevant to our own is that by Saipulla
et al. [9], in which the authors present a mathematical
analysis of the fundamental limits of barrier coverage with
sensor mobility. When m mobile sensors are deployed in
a rectangular area of dimension l × w, if all sensors have
a sensing radius of r, they show that a maximum of 2mr

l
barriers can be formed. They also present a sensor mobility
scheme that achieves the maximum barrier coverage, while
minimizing the maximum sensor movement distance. The
authors devise an algorithm that detects the presence or
absence of a barrier under (discrete) constrained sensor
mobility. The authors also show that sensor mobility can
effectively reduce the percolation threshold of a network,
with the extent of the reduction depending on the number
of mobile sensors as well as their movement radius.

Our work considers a novel (and more difficult) variant
of the barrier coverage problem, in which we determine
the maximum number of barriers that can be concurrently
established across a given region, using the mobile sensors.



III. PROBLEM FORMULATION

A. Network Model and Assumptions

We consider a Mixed Sensor Network deployed in a
rectangular deployment area. The deployment follows the
random deployment model and sensors adopt the commonly
used Binary Sensing Model. In the following, we define the
terms that we use in the description of the network model.

1) Wireless Sensor Network: A wireless sensor network
WSN(N,RS, RC) is a network of N sensors. Every sensor
has a unique ID and a unique location (x, y). A sensor
can sense any object within a maximum distance RS from
its current position, where RS is the sensing radius. It can
also communicate with any sensor lying within a maximum
distance RC from its current position, where RC is the
communication radius. It is assumed that RC ≥ 2 ·RS.

2) Mixed Sensor Network: A mixed sensor network
MSN(N,RS, RC,M,RM) is a wireless sensor network
WSN(N +M,RS, RC) consisting of N stationary sensors
and M mobile sensors. A stationary sensor is a sensor with
no movement capability, while a mobile sensor can move
a maximum distance RM from its initial position. RM is
called the movement radius. Let the set of N stationary
sensors be denoted by VS and the set of M mobile sensors
be denoted by VM. Let s denote the source sensor and t
denote the destination sensor. s and t are virtual sensor nodes
representing the left boundary and the right boundary of the
region, respectively.

3) Deployment Area: A deployment area D(MSN, l, w)
is a rectangular area of length l and width w, upon which
the sensors of MSN are uniformly and independently dis-
tributed. The deployment area is devoid of obstacles. That is,
sensors within distance RC of each other can communicate
with each other without any transmission errors.

4) Random Deployment Model: The random deployment
model is a physical deployment model that can be modeled
by a two-dimensional Poisson point process. Let the density
of the underlying Poisson process be λ. In this model, the
number of sensors, N(R), located in a region R follows a
Poisson distribution with parameter λ · A(R), where A(R)
is the area of the deployment region R. Specifically,

P (N(R) = k) =
e−λ·A(R)(λ ·A(R))k

k!

5) Binary Sensing Model: We use the standard Binary
Sensing Model from the WSN literature. In this model,
a sensor at position P1 can detect an event at position
P2 if the Euclidean distance between the two positions
satisfies d(P1, P2) ≤ RS. Specifically, the coverage area for
a sensor is a circular area of radius RS around the sensor.
Corresponding definitions apply for the communication area
(with radius RC) and the movement area (with radius RM).

B. Preliminaries

We provide formal definitions of the key terms and
concepts used in our problem formulation, and its solution.
Figure 1 shows an example scenario illustrating several of
these definitions. In this diagram, a set of sensor nodes (e.g.,
u, v) are scattered in a rectangular region. For notational
convenience, we assume a virtual sensor node s (source) to
the left of the region, and a virtual sensor node t (target
destination) to the right of the region.

Definition 1 (Inter-sensor Distance δ(u, v)): The distance
between two (stationary, mobile, or virtual) sensors u, v
located at points pu(xu, yu) and pv(xv, yv) is:

δ(u, v) =


d(pu, pv) if u, v ∈ VS ∪ VM
xv if u = s and v ∈ VS ∪ VM
l − xu if u ∈ VS ∪ VM and v = t
l if u = s and v = t

Definition 2 (Communication Connectivity): A type of
connectivity that exists between two sensors, u and v, if
their communication areas overlap, i.e., δ(u, v) ≤ RC.

Definition 3 (Sensing Connectivity): A type of connectiv-
ity that exists between two sensors, u and v, if:

δ(u, v) ≤

 2 ·RS if u, v ∈ VS ∪ VM
RS if u = s and v ∈ VS ∪ VM
RS if u ∈ VS ∪ VM and v = t

Definition 4 (Coverage Gap): An area that is not covered
by the coverage area of a sensor.

Definition 5 (Barrier): A chain of sensors with shared
sensing connectivity such that their aggregate sensing area
covers the entire length of the area of interest without any
coverage gaps.

Definition 6 (Crossing Path): A path in the area of interest
that crosses the entire width of the area (i.e., from top to
bottom) without touching the coverage area of any sensor.

Definition 7 (Strong Barrier): A barrier for which no
crossing path exists. That is, the barrier is guaranteed to
detect intruders moving along any attempted crossing path.

Definition 8 (Connectivity Graph GC = (VC, EC)): A
graph whose vertex set consists of all stationary sensors
VS , all mobile sensors VM, the source sensor s, and the
destination sensor t, and whose edge set consists of all pairs
of sensors that can communicate directly with each other.

Definition 9 (Sensing Graph GS = (VS, ES)): A graph
whose vertex set consists of all stationary sensors VS , the
source sensor s, and the destination sensor t, and whose
edge set consists of the following:
• All pairs of stationary sensors that share sensing con-

nectivity with each other.



• The source s and a stationary sensor if the coverage
area of the stationary sensor reaches the left boundary.

• A stationary sensor and the destination t if the coverage
area of the stationary sensor reaches the right boundary.

Definition 10 (Component): A set of stationary sensors
such that for any two sensors u, v in the set, there exists a
path in the sensing graph from u to v. The component set
C is the set of all components.

Definition 11 (Gateway Sensor): A stationary sensor that
has communication connectivity with a stationary sensor
from another component. H is the set of all gateway sensors.

Definition 12 (Virtual Edge): An edge that can be created
with the assistance of at most k unique mobile sensors
between any of the following:
• Two stationary sensors
• The source sensor s and a stationary sensor
• A stationary sensor and the destination sensor t
• The source sensor s and the destination sensor t

Definition 13 (LP Graph Gklp = (V klp, E
k
lp)): A graph

whose vertex set consists of all stationary sensors VS , the
source sensor s, and the destination sensor t, and whose
edge set consists of all the edges in the sensing graph Gs,
plus the virtual edge set (i.e., the set of all virtual edges).

Definition 14 (Flow Network): A directed graph in which
each edge has a capacity and each edge receives a flow
governed by the following constraints:
• Capacity Constraint: The amount of flow on an edge

cannot exceed the capacity of the edge.
• Flow Conservation Constraint: The amount of incom-

ing flow into a vertex equals the amount of its outgoing
flow, except for the source (which has more outgoing
flow) and the sink (which has more incoming flow).

• Mobility Constraint: A mobile sensor can be used in
at most one of its candidate virtual edges in the MSN.

C. Problem Definition
The k-connect barrier count problem is to find the

maximum number (say η) of strong barriers in an MSN,
where at most k unique mobile sensors can be used to
construct any given virtual edge used in a barrier. An intruder
crossing the area of interest is detected by at least η sensors.

We focus on small values of k (i.e., k ∈ {0, 1, 2})
for three reasons. First, mobile sensors are assumed to be
an expensive and scarce resource in an MSN, and should
be used judiciously when constructing virtual edges. For
example, using five mobile sensors to build five virtual edges
is usually more effective than building one virtual edge
that requires all five mobile sensors. Second, the state-space
complexity of the problem grows as the value of k increases,
since the number of virtual edges grows rapidly. Third, there
is a diminishing returns effect as k increases, which does not
merit the extra complexity associated with larger k.

IV. PROPOSED K-CONNECT BARRIER COUNT SOLUTION

A. Overview

The solution for the k-connect Barrier Count Problem for
k ∈ {0, 1, 2} can be summarized in the following steps:
• First, the LP Graph is built.
• We formulate a network flow problem by constructing

a flow network from the LP Graph. This network flow
problem is a variation of the Maximum Flow (max
flow) problem. The objective of the max flow problem
is to find the maximum feasible flow through a single-
source, single-destination flow network.

• The network flow problem is solved using an Integer
Linear Program (ILP) formulation.

• The solution to the ILP gives us the maximum number
of concurrent edge-disjoint and vertex-disjoint flows.
These disjoint flows correspond to disjoint paths in the
LP Graph. One disjoint path, in turn, corresponds to
one barrier. Hence, we obtain the maximum number of
concurrent barriers that can be formed.

In the 0-connect Barrier Count Problem, the LP Graph is
equivalent to the sensing graph GS, since no mobile sensors
are allowed to be used in barrier formation.

The construction of the LP Graph for the 1-connect
Barrier Count Problem, denoted by G1

lp = (V 1
lp, E

1
lp), is as

follows. For every edge {u, v} ∈ ES (i.e., for every edge in
the sensing graph GS), we add an edge to E1

lp denoted by
({u, v}, (r)). Here, r is a character constant indicating that
the edge is a real edge (i.e., between two stationary sensors,
or between s and a stationary sensor, or between a stationary
sensor and t) rather than a virtual edge (i.e., using a mobile
sensor). The virtual edge set is the set of all virtual edges that
can be created with the assistance of a single mobile sensor.
Each virtual edge is denoted by ({u, v}, (m)), where u and
v are either gateway sensors in different components that can
be connected via the mobile sensor m, or stationary sensors
belonging to the same component that can be connected via
m. While there may be many candidate virtual edges, at most
M of them can be instantiated in barrier formation, with
each such edge requiring one (i.e., k = 1) of the available
mobile nodes.

In the next section, we present the detailed solution for
the 2-connect Barrier Count Problem.

B. Solution Details

In the 2-connect barrier count problem, at most two
distinct mobile sensors can be used together to connect
two stationary sensors. In this problem, the virtual edge set
consists of all virtual edges that can be created with either
one or two mobile sensors. We build this virtual edge set
using information from two data structures constructed for
the k = 1 case: the component set C, and the LP graph G1

lp.
The algorithm for the construction of the LP Graph

G2
lp = (V 2

lp, E
2
lp) is presented in Algorithm 1. The inputs



Algorithm 1 LP Graph Construction
1: V 2

lp ← VS ∪ {s, t} . Assume u.x ≤ v.x
2: Em ← { ({u, v}, (m,n)) | u, v ∈ VS ∪ {s, t} ∧ m,n ∈ VM ∧ u, v /∈ Ci ∧ TwoConnect(u, v,m, n,RM, RS) }
3: E∗m ← { ({u, v}, (m,n)) | u, v ∈ VS ∧ m,n ∈ VM ∧ u, v ∈ Ci ∧ {u, v} /∈ ES ∧ TwoConnect(u, v,m, n,RM, RS) }
4: E′lp ← {({u, v}, (a, l)) | ({u, v}, (a)) ∈ E1

lp} . Let l be a unique character identifier
5: E2

lp ← Em ∪ E∗m ∪ E′lp
6: G2

lp ← (V 2
lp, E

2
lp)

to this algorithm are the component set C, and G1
lp from

the 1-connect Barrier Count Problem. The explanation of
the algorithm is as follows. The vertex set V 2

lp in line 1 is
initialized to include all stationary sensors VS , the source
sensor s, and the destination sensor t. In lines 2 and 3,
we construct the edge sets Em and E∗m. Combined, they
constitute the virtual edge set. In line 2, we consider every
tuple (u, v,m, n), where u and v are in VS ∪ {s, t}, u is
located to the left of v, and they do not belong to the
same connected component. m and n are two arbitrary
mobile sensors. In line 3, we consider the possibility of pairs
of sensors within the same connected component that can
be connected via a mobile sensor. We consider all tuples
(u, v,m, n), where u and v belong to the same component,
and there exists no edge between u and v in the sensing
graph GS. Again, m and n are two arbitrary mobile sensors.

We also define a function TwoConnect(), presented in
Algorithm 2, to check if u and v can be connected using
m and n. If this function returns True, then an undirected
edge denoted by ({u, v}, (m,n)) is added to the edge set
Em. Here, the notation m,n is used as a unique identifier
to indicate that the virtual edge between the two stationary
sensors u and v is created by the mobile sensors m and n.
To ensure compatibility with the previous edge set, we add
a character constant l to the tuples representing the edges
belonging to E1

lp in line 4, and create a new edge set E′lp. In
line 5, the edge set E2

lp becomes the union of Em, E∗m, and
E′lp. Finally, in line 6, the graph G2

lp is constructed from V 2
lp

and E2
lp.

In the function TwoConnect(), we first check if it is
possible for u and v to be connected to each other using two
mobile sensors. We also define a boolean variable flag.
The following cases are possible:

• If u and v are both stationary sensors, they can be
connected via two mobile sensors only if the distance,
δ(u, v), between them satisfies 4RS < δ(u, v) ≤ 6RS

(see line 18). If δ(u, v) ≤ 4RS, then u and v are eligible
to be connected using a single mobile sensor.

• If u is the source sensor s, and v is an arbitrary
stationary sensor, then we are trying to connect v to
the left boundary. In this case (line 9), u and v can be
connected using a mobile sensor only if the distance,
δ(u, v), between them satisfies 3RS < δ(u, v) ≤ 5RS.
If so, the (x, y) coordinates of u are set to (0, v.y).

Algorithm 2 TwoConnect(u,v,m,n,RM,RS)
1: function TWOCONNECT(u,v,m,n,RM,RS)
2: Bool flag ← False
3: if (u = s ∧ v = t) then
4: if (δ(u, v) > 2 ·RS ∧ δ(u, v) ≤ 4 ·RS) then
5: u.x = 0; u.y = m.y
6: v.x = l; v.y = n.y
7: flag ← True
8: end if
9: else if (u = s) then

10: if (δ(u, v) > 3 ·RS ∧ δ(u, v) ≤ 5 ·RS) then
11: u.x = 0; u.y = v.y; flag ← True
12: end if
13: else if (v = t) then
14: if (δ(u, v) > 3 ·RS ∧ δ(u, v) ≤ 5 ·RS) then
15: v.x = l; v.y = u.y; flag ← True
16: end if
17: else
18: if (δ(u, v) > 4 ·RS ∧ δ(u, v) ≤ 6 ·RS) then
19: flag ← True
20: end if
21: end if
22: if flag then
23: C1.x← u.x+ 1

3 (v.x− u.x)
24: C1.y ← u.y + 1

3 (v.y − u.y)
25: C2.x← u.x+ 2

3 (v.x− u.x)
26: C2.y ← u.y + 2

3 (v.y − u.y)
27: Return Feasible(u,v,m,n,RM,RS,C1,C2)
28: else
29: Return False
30: end if
31: end function

• By a symmetry argument, the previous case also applies
when u is an arbitrary stationary sensor and v is the
destination sensor t (see line 13). That is, we are trying
to connect u to the right boundary, and the (x, y)
coordinates of v are set to (l, u.y).

• When u is the source sensor and v is the destination
sensor, they can be connected only if the distance
between them satisfies 2RS < δ(u, v) ≤ 4RS (line 3).
In this case, we are trying to connect the left boundary
to the right boundary using two mobile sensors. As a



Algorithm 3 Feasible(u,v,m,n,RM,RS,C1, C2)
1: function FEASIBLE(u,v,m,n,RM,RS,C1, C2)
2: Float checku ← 0.0, checkv ← 0.0
3: if (u = s ∧ v = t) then
4: checku ← RS; checkv ← RS

5: else if (u = s) then
6: checku ← RS; checkv ← 2 ·RS

7: else if (v = t) then
8: checku ← 2 ·RS; checkv ← RS

9: else
10: checku ← 2 ·RS; checkv ← 2 ·RS

11: end if
12: if (δ(u,m), δ(v, n) ≤ 2 ·RS +RM) then
13: if (d(m,C1) ≤ RM) then
14: C3.x← C1.x; C3.y ← C1.y
15: else
16: C3.x← m.x+ RM

d(m,C1)
· (m.x− C1.x)

17: C3.y ← m.y + RM

d(m,C1)
· (m.y − C1.y)

18: end if
19: if (d(n,C2) ≤ RM) then
20: C4.x← C2.x; C4.y ← C2.y
21: else
22: C4.x← n.x+ RM

d(n,C2)
· (n.x− C2.x)

23: C4.y ← n.y + RM

d(n,C2)
· (n.y − C2.y)

24: end if
25: if (d(u,C3) ≤ checku ∧ d(C4, v) ≤ checkv ∧

d(C3, C4) ≤ 2 ·RS) then
26: Return True
27: else
28: Return False
29: end if
30: end if
31: Return False
32: end function

result, the (x, y) coordinates of u are set to (0,m.y)
and the (x, y) coordinates of v are set to (l, n.y).

If none of these conditions are satisfied, then flag is
set to False. If flag is set to False, we know that
the sensors u and v cannot be connected using two mobile
sensors, and the function TwoConnect() returns False.

If any of the foregoing conditions are satisfied, then flag
is set to True. If flag is set to True, we calculate where
to relocate the mobile sensors m and n in order to connect
u and v. These locations are called candidate locations, and
are denoted by C1 and C2, respectively. Each candidate
location has a location (x, y). The locations of C1 and C2

are determined such that they split the line joining u and v
into three equal segments. See Figure 2. We then call the
function Feasible(), presented in Algorithm 3.

The function Feasible() takes the stationary sensors u
and v, the mobile sensors m and n, the movement radius RM,

C1 C2
vu

m

u

n

Figure 2. d(m, C1), d(n, C2) ≤ RM

the sensing radius RS, and the candidate locations C1 and C2

as its parameters. It determines whether it is geometrically
possible to connect the two stationary sensors with the
two mobile sensors. If so, then the function returns True.
Otherwise, it returns False.

In the function Feasible(), we check the proximity
of m to u, and the proximity of n to v, to ensure that
connectivity is possible using these mobile sensors (see line
12). The maximum reach of the coverage area of a mobile
sensor is RS + RM. For the boundary of a mobile sensor’s
coverage area to touch the boundary of a stationary sensor’s
coverage area, the maximum distance between them can be
2 ·RS +RM. For m to be able to re-locate itself to the right
of u such that its coverage area overlaps with that of u, we
need δ(u,m) ≤ 2 · RS + RM. A similar condition applies
for n and v. If these conditions are not met, then it is not
feasible to connect u and v using m and n, so the function
returns False.

In line 13, we next check if the distance, d(m,C1),
between m and C1 is less than or equal to RM. If this
condition is satisfied, then m can move to the candidate
location on the line joining u and v, as shown in Figure 2.
Otherwise, in lines 16-17, a new candidate location C3 is
determined. This candidate location is determined such that
the mobile sensor moves as close as possible to C1. That
is, it moves to the boundary of its movement radius in the
direction of C1, as shown in Figure 3. In line 19, we make
the corresponding check between n and C2, and calculate a
new candidate location C4 if necessary.

In line 25, we check for the following conditions:
• We check if the Euclidean distance between C3 and C4

satisfies d(C3, C4) ≤ 2 ·RS.
• We check if d(u,C3) ≤ checku, where checku is

either RS if u = s, or 2 ·RS otherwise.
• We check if d(C4, v) ≤ checkv where checkv is RS

if v = t, and 2 ·RS otherwise.
If these conditions are satisfied, then the mobile sensors have
successfully connected the two stationary sensors, and the



C1 C2 vu

m

C3 C4

n

Figure 3. d(m, C1), d(n, C2) > RM

function Feasible() returns True. If these conditions
are not satisfied, then the mobile sensors have failed at
connecting u and v. Hence, it is not feasible to connect
u and v using m and n, and the function Feasible()
returns False.

C. Integer Linear Program Formulation

We now construct a network flow problem, which when
solved will give us the maximum number of disjoint flows
for the 2-connect barrier count problem. The translation
to the ILP formulation is relatively straightforward. Con-
sider a flow network in the form of a directed graph
G2
fn = (V 2

fn, E
2
fn). The vertex set of this graph is set to

V 2
lp. For every undirected edge ({u, v}, (a, b)) ∈ E2

lp, we
add two directed edges (u, v, a, b) and (v, u, a, b) to E2

fn.
The capacity of every edge in E2

fn is constrained to 1, to
guarantee that the flows found by the ILP are edge-disjoint.
Given a source s ∈ V 2

fn and a sink t ∈ V 2
fn, we aim to find

flow assignments, denoted by xuv , through every edge in
the flow network such that the unit capacity constraint (for
edge-disjoint flows) and flow conservation constraints at all
vertices are satisfied, and the total flow through the network
from s to t is maximized. In addition, we add the following
extra constraints:
• Vertex Capacity Constraint: In addition to being

edge-disjoint, we require all flows between s and t to
be vertex-disjoint. A set of flows in G2

fn are vertex-
disjoint if each vertex in G2

fn appears in at most one
of the flows. In order to do so, we require that for any
vertex v belonging to the set of all stationary sensors
VS , the total incoming flow is at most 1.

• Mobility Constraint: The mobility constraint is intro-
duced to guarantee that a mobile sensor can assist in
connecting at most one pair of stationary sensors, since
it can ultimately move to only one location.

We now formulate the ILP for the flow network as follows:

Max
∑

(s,j,a,b)∈E2
fn

xsjab −
∑

(j,s,a,b)∈E2
fn

xjsab (1)

s. t.
∑

(s,j,a,b)∈E2
fn

xsjab −
∑

(j,s,a,b)∈E2
fn

xjsab ≥ 0 (2)

∑
(i,j,a,b)∈E2

fn

xijab −
∑

(j,i,a,b)∈E2
fn

xjiab = 0 (3)

∑
(t,j,a,b)∈E2

fn

xtjab −
∑

(j,t,a,b)∈E2
fn

xjtab ≤ 0 (4)

∑
(i,j,a,b)∈E2

fn

xijab ≤ 1, ∀a ∈ VM (5)

∑
(i,j,a,b)∈E2

fn

xijab ≤ 1, ∀b ∈ VM (6)

∑
(i,j,a,b)∈E2

fn

xijab ≤ 1, ∀j ∈ VS (7)

xijab ∈ {0, 1}, ∀(i, j, a, b) ∈ E2
fn (8)

In the ILP formulation, we maximize the net flow from
the source (line 1). Lines 2, 3, and 4 denote the flow
conservation constraint: in (2), the constraint is restricted to
the source sensor s, which only has outgoing flow; in (4),
the constraint is restricted to the destination sensor t, which
only has incoming flow; and (3) is the general case for all
other stationary sensors i in VS . Lines 5 and 6 express the
mobility constraint for the cases where a and b are mobile
sensors. Line 7 denotes the vertex capacity constraint. Line 8
states the unit capacity constraint. In our ILP, the only valid
flow values that can be assigned are 0 and 1. Furthermore,
summing the end-to-end flow volume is logically equivalent
to counting the number of barriers formed.

The solution to this ILP gives the maximum number of
edge-disjoint and vertex-disjoint paths in the graph G2

fn,
which represents the maximum number of strong barriers.

V. SIMULATION RESULTS

A. Simulator Overview

Figure 4(a) shows a structural overview of our MSN
simulator [10]. The simulator has a GUI to enter MSN con-
figuration parameters, and separate modules to do random
sensor deployment, graph algorithms, and LP formulation.
The LP itself is solved by invoking glpsol externally, and
then parsing and displaying the results. Figure 4(b) shows
an example of the three barriers found on a random MSN
topology using our simulator.

In our simulations, sensors are deployed according to a
Poisson point process in a 50 x 500 rectangular deployment
area. We carefully constructed a set of 10 test scenarios to
verify the correctness of our barrier formation algorithms,
including scenarios with and without possible barriers [10].
These tests have confirmed the correctness of our solution.



(a) Simulator overview (b) Barrier coverage example with three barriers

Figure 4. Simulation example for barrier coverage in mixed sensor networks

We used our simulator to generate and test a large set
of randomly generated topologies, to assess the benefits of
mobile sensors. In particular, we consider the prevalence of
MSN topologies for which no barrier is possible, compared
to those for which (one or more) barriers are possible. We
express our results as barrier coverage probability.

B. Simulation Methodology

Our simulation experiments are structured using a one-
factor-at-a-time experimental design. We study the effects of
sensing radius, movement radius, and the number of mobile
sensors on the barrier coverage probability for k ∈ {0, 1, 2}.
According to percolation theory, when sensors are deployed
according to a Poisson point process with density λ, there
exists a critical density, λc, above which an arbitrarily large
sensor cluster is formed. Above this critical density, the
probability of finding a barrier approaches 1. Hence, barrier
coverage probability is related to the percolation threshold.

The factors and levels used in our simulation experiments
are summarized in Table I. The default parameter values are
shown in bold font. In each graph of simulation results, each
data point represents the average from 50 replications, each
with a different seed for the random number generator.

Table I
FACTORS AND LEVELS IN SIMULATION EXPERIMENTS

Factor Description Levels
N Network Size (Sensors) 0, 10, 20, . . . 200
p Mobile Sensor Percentage 0%, 10%, 30%, 50%
k Virtual edge constraint 0, 1, 2

RS Sensing Radius 20, 75
RM Movement Radius 25, 50, 75

C. Effect of Sensing Radius

In our first set of results, we study the effect of the sensing
radius, RS, on barrier formation as a function of network
size. For RS ∈ {20, 75}, we observe the barrier coverage
probability for different values of k. The communication

radius, RC, for each sensor is 50. Mobile sensors constitute
30% of the network nodes, and their movement radius, RM,
is 50. The network size ranges from 0 to 200 in steps of 10.

In Figure 5(a), each curve represents the value of barrier
coverage probability obtained for a different k value, as the
network size is varied. For each curve, there exists a phase
transition behavior where the barrier coverage probability
rises sharply and becomes 1. For k = 2, this occurs at a
smaller network size compared to k = 1. Mobile sensors
assist in joining disconnected clusters of sensors. Since two
mobile sensors can assist in such connections when k =
2, the phase transition occurs at a much smaller network
size compared to k = 1. For k = 0, this transition occurs
at a much larger network size. In this particular simulation
scenario, the critical density is roughly halved (compared to
k = 0) when k = 2, even though only 30% of the sensor
nodes are mobile.

In Figure 5(b), when RS is set to 75, we observe that
all three curves align very closely. This result makes sense
intuitively because the sensing radius is much larger with
respect to the length of the deployment area. In most
MSN instances, there invariably exists one large component
that has sensing connectivity to the source as well as the
destination, so the results for k ∈ {0, 1, 2} are similar.
In other words, the benefits of mobile sensors are more
apparent when RS is small relative to the length of the
deployment area.

D. Effect of Movement Radius

In our second set of results, we study the effect of the
movement radius, RM. For RM ∈ {25, 75}, we observe the
barrier coverage probability for k ∈ {1, 2}. (We do not plot
the barrier coverage probability for k = 0 because RM is
irrelevant in this case.) The other parameters remain at their
default settings.

Figure 6(a) shows the barrier coverage probability attained
for each value of k as the network size is increased. In each



(a) Barrier coverage probability vs network size at RS = 20 (b) Barrier coverage probability vs network size at RS = 75

Figure 5. Effect of sensing radius

(a) Barrier coverage probability vs network size at RM = 25 (b) Barrier coverage probability vs network size at RM = 75

Figure 6. Effect of movement radius

(a) Barrier coverage probability vs network size (10% mobile) (b) Barrier coverage probability vs network size (50% mobile)

Figure 7. Effect of percentage of mobile sensors



curve, there still exists a phase transition behavior, though
it seems more gradual than in the previous scenario. That
is, the sensing radius RS seems to have greater impact than
the movement radius RM, though both do have an effect. As
expected, the phase transition for k = 2 occurs at a smaller
network size compared to k = 1. This behavior is consistent
when RM is increased to 75 as shown in Figure 6(b). As RM

increases, we see a decrease in percolation threshold for
k = 1 as well as k = 2, since the mobile sensors can move
farther distances to bridge coverage gaps. There is slightly
greater separation between the two curves when RM is larger,
implying greater advantages for using k > 1 mobile sensors
when their movement is less constrained.

E. Effect of Number of Mobile Sensors

In our final set of results, we study the effect of the per-
centage of mobile sensors. We vary this parameter between
10% and 50%, and observe the barrier coverage probability
for k ∈ {1, 2}. The other parameters retain their defaults.

In Figure 7(a), each curve shows the barrier coverage
probability obtained for each k value when the network
size is increased. Here, the percentage of mobile sensors
is set to 10%. Again, we observe a phase transition at some
point, when the barrier coverage probability becomes 1. This
transition occurs at a lower density for k = 2 compared to
k = 1. This behavior is consistent when the percentage of
mobile sensors is 50%, as shown in Figure 7(b). However,
we also observe greater separation between the two curves
when the percentage of sensors increases. There are two
underlying reasons for this phenomenon. First, for a given
fixed network size (N+M ), there are fewer stationary sensor
nodes that can be used to build the initial sensing graph. As
a result, the connected components are (on average) sparser
and further apart, making them less likely to be connectable
using a single mobile sensor. Second, there are more mobile
sensors available to fill coverage gaps. In this scenario,
with 50% mobile sensors, allowing up to k = 2 mobile
sensors per virtual edge reduces the percolation threshold
dramatically compared to k = 1.

VI. CONCLUSIONS

This paper introduces the k-connect barrier count prob-
lem, which involves finding the maximum number of distinct
barriers in an arbitrary MSN. A specific goal behind this
problem is to provide fault-tolerant barrier coverage using
mobile sensors. A key constraint, though, is that at most k
unique mobile sensors can be used to construct any given
virtual edge in a barrier.

The solutions to the k-connect barrier count problem for
k ∈ {0, 1, 2} are provided through Integer Linear Program
formulations. Through simulation experiments, we show that
as k increases, the network size at which barrier coverage
is achieved decreases. That is, mobile sensors are effective
in healing coverage gaps, and their benefits are quantified.

However, the benefits of mobile sensors depend on many
factors, including the sensing radius, movement radius, and
the number of mobile sensors available.

For future work, the next logical step is solving the
k-connect barrier count problem for general k. Another
interesting problem to consider is building the maximum
number of barriers while minimizing power consumption.

ACKNOWLEDGEMENTS

The authors thank the anonymous IEEE MASCOTS 2012
reviewers for their constructive feedback on this paper,
which helped to improve the clarity of the final version. Fi-
nancial support for this work was provided by Canada’s Nat-
ural Sciences and Engineering Research Council (NSERC).

REFERENCES

[1] P. Balister, B. Bollobas, A. Sarkar, and S. Kumar, “Reliable
Density Estimates for Coverage and Connectivity in Thin
Strips of Finite Length”, Proceedings of ACM Mobicom, Mon-
treal, QC, pp. 75–86, September 2007.

[2] A. Chen, S. Kumar, and T. Lai, “Designing Localized Algo-
rithms for Barrier Coverage”, Proceedings of ACM Mobicom,
Montreal, QC, pp. 63–74, September 2007.

[3] D. Gage, “Command Control for Many-robot Systems”, Un-
manned Systems, Vol. 10, pp. 28–34, June 1992.

[4] S. Kumar, T. Lai, and A. Arora, “Barrier Coverage with
Wireless Sensors” Proceedings of ACM Mobicom, Cologne,
Germany, pp. 284–298, August 2005.

[5] X. Li, P. Wan, and O. Frieder, “Coverage in Wireless Ad-
hoc Sensor Networks”, IEEE Trans. on Computers, Vol. 52,
pp. 753–763, June 2003.

[6] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong Barrier
Coverage of Wireless Sensor Networks”, Proceedings of ACM
MobiHoc, Hong Kong, China, pp. 411–420, May 2008.

[7] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkon-
jak, “Exposure in Wireless Sensor Networks: Theory and
Practical Solutions”, Wireless Networks, Vol. 8, pp. 443–454,
2002.

[8] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Sri-
vastava, “Coverage Problems in Wireless Ad-hoc Sensor Net-
works”, Proceedings of IEEE INFOCOM, Anchorage, AK,
pp. 1380–1387, April 2001.

[9] A. Saipulla, B. Liu, G. Xing, X. Fu, and J. Wang, “Barrier
Coverage with Sensors of Limited Mobility”, Proceedings of
ACM MobiHoc, Chicago, IL, pp. 201–210, September 2010.

[10] S. Srinivasa, Barrier Coverage in Mixed Sensor Networks,
M.Sc. Thesis, University of Calgary, December 2011.

[11] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak, “Minimal and
Maximal Exposure Path Algorithms for Wireless Embedded
Sensor Networks”, Proceedings of ACM SenSys, Los Angeles,
CA, pp. 40–50, November 2003.


