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Abstract—In this paper, we develop a synthetic workload model
for the Zoom network application based on empirical Zoom
traffic measurements on a campus network. We then use this
model in a simulation study of Zoom network traffic at the
campus scale. The simulation results show that hybrid learning
places a substantial load on the campus network, especially on the
wireless network. Additional simulation experiments investigate
the potential benefits of locally-hosted Zoom infrastructure, im-
proved load balancing strategies for Zoom servers, and multicast
delivery models for Zoom network traffic. The results show that
the multicast approach offers the greatest potential benefit.

Index Terms—Zoom videoconferencing, traffic measurement,
workload modeling, network simulation, capacity planning

I. INTRODUCTION

Zoom is a highly popular network application for remote
teaching and learning. It is one of several videoconferencing
applications that have gained prominence during the COVID-
19 pandemic, with Meet, Teams, and Webex being others [2].

Our university adopted Zoom as its solution of choice for
remote work and learning during the pandemic. At our insti-
tution, remote teaching started in March 2020, and continued
for about two years. A small number of students (about 10%)
were allowed back on campus in Fall 2020, with in-person
learning offered for some small upper-year courses, while all
large courses remained online. In Fall 2021, about 50% of
students transitioned back to in-person learning on campus,
though many larger classes remained online.

Zoom worked quite well at our university during the first
year of the pandemic. However, we encountered several net-
work performance problems during the second year of the
pandemic, with a hybrid mix of in-person and online offerings.
The underlying reason was the higher load on the campus
network: many students on campus for in-person courses were
also using Zoom for their online courses, which might take
place just before or just after their in-person classes, making
it difficult to commute home for these.

This hybrid of learning modalities created a “perfect storm”
that exacerbated Zoom performance problems on the campus
network. There are several reasons for this. First, there were
lots of students on campus, with many using Zoom for their
(large) online classes. Second, many of these students were on
the wireless network, using mobile devices like laptops and
smartphones. Third, most classes used the campus-licensed
version of Zoom, which generates higher video bit rates than
the free version (e.g., 3 Mbps vs 1 Mbps). Fourth, Zoom is a
bandwidth-intensive application that does not always share the
network fairly with other applications [11], [17]. Furthermore,

Zoom triggers dynamic FEC (Forward Error Correction) when
packet losses and delays occur [11], leading to extra load on
congested networks. Last but not least, our campus Zoom
setup was configured to prefer using regional Zoom servers
in Canada, rather than the larger pool of Zoom servers in the
US and around the world. This configuration setting produces
fairly high loads on these Zoom servers [3].

The goals of this paper are to provide a better understanding
of Zoom performance on a campus network, and to explore
possible solutions for improving Zoom performance. Our prior
works have provided a macro-level view of overall campus
network traffic during the pandemic [8], as well as a micro-
level analysis of Zoom and its performance problems [3].
While these prior works have proposed several potential
improvements to Zoom, the performance benefits of these
solutions have not been evaluated quantitatively.

In this paper, we develop a synthetic workload model for
Zoom, and use it in simulation studies investigating several
different Zoom scenarios on our campus network. Specifically,
we consider the potential benefits of locally-hosted Zoom
servers, improved load balancing strategies for Zoom servers,
and the use of multicast for Zoom content delivery.

The main contributions of our paper are: (1) the design and
implementation of a synthetic workload model for campus-
level Zoom traffic; (2) a simulation study exploring the sensi-
tivity of Zoom performance to different workload parameters
and configuration settings; and (3) practical recommendations
to improve Zoom performance on a campus network.

The main insights that emerge from our work are:

• Zoom traffic has sharp spikes in its meeting and session
arrivals based on course scheduling, making load balanc-
ing a challenge;

• hybrid learning modalities can overload the campus wire-
less network when too many students are using Zoom;

• improved load balancing strategies can spread load more
robustly across Zoom servers; and

• multicast is a promising solution for Zoom delivery.

The remainder of this paper is organized as follows.
Section II provides background information on Zoom and
discusses prior related work. Section III introduces our em-
pirical dataset. Section IV describes our synthetic workload
model and its validation. Section V presents simulation results
investigating different Zoom configuration scenarios, Zoom
server load balancing, and multicast delivery models. Finally,
Section VI concludes the paper.



II. BACKGROUND AND RELATED WORK

A. Zoom

Zoom is a videoconferencing network application that has
been widely used for remote work and learning since the
COVID-19 pandemic emerged. Zoom meetings with only two
participants operate in direct peer-to-peer mode [3]. Larger
meetings operate in client-server mode, using a Zoom Multi-
Media Router (MMR) server in the cloud (e.g., AWS).

A Zoom meeting consists of multiple Zoom sessions, with
one session for each participating user. A Zoom session in-
volves one TCP connection for the control and management of
the session, and three UDP1 connections: one for transmitting
audio, one for video, and one for screensharing data. The
Zoom application is highly resilient, and can adapt video
bitrates to the available bandwidth on a network. It can also
dynamically restore sessions that experience failure at the UDP
or TCP connection level [3].

A free Zoom account has some limitations, such as a
40-minute limit on meetings, and limited video bitrates. A
license is required to remove the limitations. Therefore, many
enterprises purchase Zoom licenses for their members to use
Zoom without limitations.

There are multiple ways to deploy and use Zoom within
enterprise networks. The first and most straightforward is using
Zoom cloud servers to manage meetings. Those servers are
maintained and administered by Zoom or Amazon in their data
centers. Another is the on-premise solution for organizations
to host a Zoom Meeting Zone that contains servers to manage
Zoom meetings. In this paper, we explore the performance
differences between these deployments for a campus network.

B. Related Work

The impacts of the COVID-19 pandemic on the Internet
were significant. Many research works have tried to identify,
measure, and characterize the changes caused by sudden global
lockdowns in various contexts [1], [2], [5], [6], [12], [13].

Initial reports showed a substantial increase in Internet traf-
fic, with weekday peaks 45% higher than pre-lockdown levels,
and weekend/evening peaks 20%-40% higher [9]. Despite the
rise in traffic and service demand, the Internet showed high
resilience and adaptability with limited reports of problems [7].

The changes, however, varied across network types. ISPs
and IXPs experienced larger downstream increases, since
more people accessed the Internet from their residential net-
works [6]. Mobile networks saw reduced mobility, specifically
in crowded municipal areas [10]. Educational organizations
such as university campus networks, on the other hand, ex-
perienced decreases in downstream traffic, since fewer people
remained on campus after the lockdowns. In contrast, these
networks experienced growth in upstream traffic, from remote
users accessing internal infrastructure [5], [8].

1Even though UDP is a connectionless protocol, we use the term
connection to refer to the sustained bidirectional flow of streaming media
traffic on each of the three UDP ports used by clients.

Several studies have reported the rise of videoconferencing
applications and online learning platforms [15], [16]. MacMil-
lan et al.. [11] compared Zoom, Meet, and Teams using an
experimental testbed. They investigated how these applications
perform under different network conditions and showed that
the answers heavily rely on the application. For example,
Zoom can consume more than 75% of the available bandwidth
when competing with Meet and Teams.

Chang et al. [2] developed a cloud-based framework to eval-
uate Zoom, Webex, and Meet in terms of QoE metrics. They
used 48 hours of emulated videoconferencing sessions, and
compared the applications based on geographically-distributed
clients, media bitrates, and other evaluation metrics.

Our prior work [8] took a longitudinal view of Zoom,
Teams, and Meet as three prominent videoconferencing ap-
plications. We provided evidence of issues with Zoom TCP
connections and session management on our campus network
when the network is congested, and too many users share a
relatively small subset of Zoom servers during peak hours.

In [3], we developed tools to analyze Zoom connections to
identify Zoom sessions and meetings, providing an in-depth
analysis of Zoom traffic. We showed that this traffic could
stress the campus network due to many concurrent meetings,
temporally correlated arrivals, high video bit rates, and long-
lasting sessions. Observed anomalies included congested WiFi
networks, excessive FEC traffic, disrupted TCP connections,
and sluggish TLS handshakes at Zoom servers. A key insight
is that unstable WiFi on a home network disrupts only a single
user, while on a campus network it disrupts hundreds of users,
all of whom need to reconnect to Zoom at the same time.

In this paper, we introduce strategies that could mitigate
these issues by reducing the load on the client-side network as
well as the Zoom servers. We discuss how multicast could be
a promising solution to ameliorate Zoom performance issues
on our campus network.

III. EMPIRICAL MEASUREMENT DATA

In this paper, we study Zoom usage on the University of
Calgary network, as an example of a typical campus edge net-
work. Our network is used by 32,000 undergraduate/graduate
students and 3,000 faculty/staff.

Our data was collected from a mirrored stream of all
Internet traffic passing through the edge routers on our cam-
pus network. This traffic was processed into connection-level
summaries using Zeek (formerly known as Bro [14]). Each
connection summary represents communication between a
sending host (originator) and a receiving host (responder),
where one of the hosts is on the campus network, and the other
elsewhere on the Internet. Relevant fields from the connection-
level data were then loaded into Vertica2, which is a big data
analytics platform that we used for traffic analysis.

We have over two years of Zoom traffic data that we also
used in our prior works [3], [8], but for the purposes of this
paper we focus on a small subset of the data from the Fall

2https://www.vertica.com/

https://www.vertica.com/


(a) Connection counts (b) Data rate in Gbps
Fig. 1. Per-hour connection counts and bandwidth consumption by Zoom traffic for one week in Fall 2021 (September 19-25, 2021).

(a) Meeting arrival counts (b) Meeting duration (c) Meeting participants
Fig. 2. Empirical measurement results for Zoom traffic on UCalgary network (Wed, Sept 22, 2021).

2021 semester. Figure 1 illustrates Zoom traffic during the
week of September 19-25, 2021. Hybrid teaching and learning
started in September 2021, and we picked this week to ensure
that all online classes were well underway. Figure 1(a) shows
the hourly count for TCP and UDP connections to Zoom for
the chosen week, while Figure 1(b) shows the corresponding
average hourly data rate in Gbps. The diurnal pattern on
working days is evident in these graphs, with two major peaks,
one in the morning and the other in the early afternoon, and
a small peak in the late evening, especially on the data rate
plot. The peak bandwidth consumption for Zoom is almost 1
Gbps, which places a substantial load on our (already busy) 6
Gbps external link for commercial Internet traffic. These plots
show that Zoom usage is quite consistent on weekdays, and we
subsequently chose the Wednesday of this week for detailed
fine-grain analysis. We tested our methodology on other days
to ensure that the chosen day (Sept 22, 2021) is representative
of the daily Zoom traffic on our network.

Figure 2 shows three important characteristics of
empirically-observed Zoom network traffic. First, Zoom
usage has a diurnal pattern, with distinct spikes in Zoom
meetings initiated on an hourly basis due to the course
scheduling for lectures. Figure 2(a) shows these pronounced
peaks, along with smaller secondary peaks that occur at half-
hour intervals for other meetings. Second, Zoom meetings
have widely varying durations, ranging from a few minutes
to a few hours. Figure 2(b) shows the empirical distribution,
with a median duration near one hour. Third, Zoom meetings

have wide-ranging numbers of participants. Most meetings
are small, with only a few participants, but meetings with
several hundred participants also occur. Figure 2(c) shows the
empirical distribution, which exhibits a power-law structure.

IV. WORKLOAD MODELING

This section discusses our approach to modeling Zoom
traffic based on our empirical data. We focus on modeling
a single day of Zoom traffic, and build a synthetic workload
model for this purpose. Our model is implemented with about
200 lines of C code. Table I summarizes the key parameters
in the model, which we explain and justify next.

TABLE I
DEFAULT PARAMETER SETTINGS FOR ZOOM WORKLOAD MODEL

Item Setting
Number of Zoom meetings 3500

Meeting arrival process Poisson, time-varying rate
P2P Zoom probability 0.2
Meeting participants 2 + Geometric(10)

Meeting duration Exponential(1800)
Lecture duration 3600 + Normal(0,300)

Session join latency Normal(0,120)
Prob(lecture) 0.9
Prob(home) 0.5
Prob(WiFi) 0.8

Server load balancing RAND

Our synthetic workload model starts at the meeting level,
which we subsequently extend to the session level and the



connection level. At the meeting level, we use a Poisson arrival
process, but with time-varying rates. The background level
of Zoom meetings is very low in the early morning hours
(midnight to 8:00am), higher during the working day (8:00am
to 5:00pm), and low in the evening (6:00pm to midnight).
On top of this background load, we induce impulses in the
meeting arrival process during the 10-minute interval prior to
each hourly lecture slot. We also add softer impulses at the
half-hour intervals.

Figure 3 shows the arrival count process for the synthetic
Zoom traffic generated using our model. This traffic pattern
is structurally similar to the empirical traffic shown in Fig-
ure 2(a). Most notably, the overall meeting counts are similar,
and the synthetic workload captures the diurnal patterns,
including the primary and secondary spikes.

Fig. 3. Synthetically generated Zoom meeting traffic using workload model.

Additional details of the workload model are as fol-
lows. Meeting durations are generated conditionally based on
whether the meeting is for a lecture class or not. Lectures have
durations near one hour, while other meetings have durations
drawn from an exponential distribution. Session arrivals to a
meeting are staggered randomly using a Gaussian distribution,
to reflect students arriving early or late for class (as observed
in the empirical data). About 20% of the meetings are peer-to-
peer meetings with exactly two participants. All other meetings
have a number of participants drawn from a shifted geometric
distribution. We have parameters to represent the probability
of a Zoom user being on their home residential network rather
than on campus, and a parameter to represent the probability
of being on WiFi when on the campus network.

In terms of model validation, one important property is the
number of concurrent Zoom meetings that occur, since this
reflects the interactions between the arrival process, meeting
duration, number of participants, and network resource usage.
Figure 4 provides a comparison between the synthetic and
empirical traffic, showing that the primary structure and the
overall volume of Zoom activity are well represented. The
main limitation in the model is the inability of the exponential
distribution to model heavy-tailed meeting durations. This
weakness is most evident in the evening traffic, since we do

Fig. 4. Concurrent Zoom meeting profile on UCalgary network.

not explicitly model the longer lectures in evening classes,
nor lengthy personal Zoom calls that take place in off-peak
hours. Nonetheless, we find the workload model suitable for
our simulation purposes.

V. SIMULATION RESULTS

This section describes the simulation experiments conducted
using our Zoom traffic model.

A. Simulation Scenario

We have built our own discrete-event simulation model
for Zoom traffic studies. The simulator is also written in C,
and involves about 700 lines of code, including routing, load
balancing, and instrumentation.

The simulator operates at the flow level (i.e., Zoom meet-
ings, sessions, or connections) and not the packet level. The
primary events in the simulator are the arrivals and departures
of Zoom meetings, each with randomly generated participants
and durations. The simulation model tracks the location and
type of each Zoom user, as well as the network resource usage
for each user session during the Zoom meeting. We model a
single day of Zoom traffic, with about 3500 Zoom meetings.

Figure 5 shows the network model used in our simulations.
The three main entities are the campus network, the ISP
network, and the Zoom cloud infrastructure. A router (R)
connects the university network (U) to the Zoom network
(Z) and the ISP network. Within the campus network, we
distinguish between mobile users on the WiFi network, and
desktop users on Ethernet LANs. We also represent possible
P2P Zoom users using P1 and P2. Inside the ISP network,
we model home (H) users (i.e., faculty, staff, or students)
using Zoom, including possible P2P users P3 and P4. For the
Zoom infrastructure, we represent the regional data centers
in Toronto and Vancouver, which handle 90% of our campus
Zoom traffic.

B. User Location

Our first simulation experiment is a one-factor experiment
focusing on the sensitivity to the location of Zoom users. We
use the home probability parameter for this purpose, which



Fig. 5. Network model for Zoom traffic simulation.

determines the likelihood of a Zoom participant being on their
home ISP network rather than on campus. The default setting
for this parameter is 50%, but we consider settings with either
more or fewer users on their home networks.

Fig. 6. Simulation results for different P(home) with remote Zoom servers.

Figure 6 shows the results of this simulation experiment.
The graph shows the number of concurrent Zoom meetings
traversing the network link between U and R in Figure 5,
with one line for each of our three parameter settings. In the
default setting with 50% of the users at home, there are about
130 concurrent Zoom meetings during the busy part of the day.
When 75% of the users are at home, this Zoom traffic drops
by about half, since it routes directly between the ISP and the
Zoom data centers. When only 25% of the users are at home,
more Zoom traffic traverses the campus network. These results
are as expected, and help explain why the Zoom performance
problems on our campus network were much worse in Fall
2021 than in Fall 2020, since many more students were on
campus in Fall 2021, and 85% of them were using WiFi.

C. Local Zoom Meeting Zone

Rather than relying on Zoom infrastructure in the cloud,
one possible configuration option with Zoom is to deploy local
Zoom infrastructure (i.e., controller, data center) on campus.
This option is intuitively appealing, since it reduces the net-
work round-trip time to the Zoom servers, and should reduce
the volume of external Zoom traffic generated. However, it
might be an expensive solution to deploy, so we use simulation
to investigate its performance benefits.

Figure 7 presents the simulation results for this locally-
hosted Zoom solution (shown as “Local” in Figure 5). The
results show that the effectiveness of this solution is highly
dependent on the location of Zoom users. In the middle graph
(Figure 7(b)), which shows the default setting with 50% of the
users at home, there is really no benefit. That is, since half of
the users are on campus, and half are at home, the external
Zoom traffic volume remains the same, regardless of where
the Zoom servers are located.

When more users are on campus (see Figure 7(a)), the
benefits of local Zoom hosting are clear. However, one could
also argue that in-person teaching might make more sense in
this case, rather than Zoom, so the cost-benefit tradeoff may
not be worthwhile. Furthermore, when more users are at home
(see Figure 7(c)), the traffic trends reverse, with even greater
demand on the campus network infrastructure. In short, there
does not seem to be much rationale for investing in locally-
hosted Zoom infrastructure (a counter-intuitive result).

D. Load Balancing

Our next simulation experiment takes a closer look at load
balancing strategies for Zoom servers, as suggested in prior
work [3]. The crux of the issue here is that the selection of a
Zoom MMR server must be made dynamically when a meeting
is first initiated, before knowing how many participants it will
have, or how long it will last. Furthermore, this decision is
often made during the sharp impulses in the workloads, when
load levels are rapidly changing. As such, it is not uncommon
for Zoom servers to have very different loads, in terms of
meetings or users. The latter scenario occurs often in our own
campus Zoom usage, since preference is given to the limited
pool of regional Zoom servers in Canada.

We consider three possible load balancing strategies. First,
we consider the RAND policy, which chooses Zoom servers
uniformly at random. We do not know what policy Zoom
controllers actually use to select MMR servers, but the RAND
policy serves as a simple baseline point to approximate their
empirically-observed behaviours [3]. We then consider two
load-aware policies: one based on the number of Zoom meet-
ings (MTG) currently hosted, and one based on the number of
Zoom participants (USERS) currently hosted. We believe that
such policies should be implementable in practice, particularly
for recurring Zoom meetings (the common case), which can
use past history as a hint about participants and duration.

For this simulation, we focus solely on the Zoom traffic to
the Vancouver data center (about 1400 meetings). For these
experiments, we artificially constrain the number of Zoom



(a) P[home] = 0.25 (b) P[home] = 0.5 P[home] = 0.75
Fig. 7. Simulation results for different P(home) with local Zoom servers.

(a) Meetings (RAND policy) (b) Meetings (MTG policy) (c) Meetings (USERS policy)

(d) Users (RAND policy) (e) Users (MTG policy) (e) Users (USERS policy)

Fig. 8. Simulation results for different load balancing policies with N = 10 Zoom MMR servers.

servers to N = 10 to highlight the key trends in our results.
Note that each Zoom meeting is an atomic unit from a load
balancing point of view; it is not possible to split a large Zoom
meeting across multiple servers.

Figure 8 shows the results from this simulation experiment.
Each column of graphs presents a different load balancing
policy (RAND, MTG, USERS), while the rows represent two
different load balancing metrics: concurrent Zoom meeting
count on the top row, and concurrent Zoom users supported
on the bottom row. On each graph, the upper line shows the
busiest Zoom server (out of N = 10), while the lower line
shows the least busy Zoom server. A vertical gap between the
two lines indicates load imbalance.

Figure 8 shows (as expected) that load-aware policies are
better than load-oblivious ones. For RAND, the number of
concurrent Zoom meetings hosted by different Zoom servers
can differ by up to a factor of two on this workload, and the

number of users by 3-4x.

The two load-based policies keep the number of meetings
and/or users much more consistent across the Zoom servers.
The MTG policy assigns each new Zoom meeting to the least
busy server (in terms of meetings), keeping these counts nicely
balanced, though small differences can occur when meetings
terminate, since no rebalancing is done then. User counts
can still differ by a factor of 2x, since meetings have highly
heterogeneous sizes. The USERS policy improves upon the
latter metric, by assigning each new Zoom meeting to the
least busy server (in terms of users). Load balancing is never
perfect, since meetings have different sizes, and terminate
at different times. However, load-aware policies do improve
greatly upon the load-oblivious policies.

We also considered Round Robin (RR) as another load-
unaware policy, which assigns Zoom meetings across the
available Zoom servers in a cyclic fashion. Although using



(a) P[home] = 0.25 (b) P[home] = 0.5 (c) P[home] = 0.75

(d) P[P2P] = 0.2 (e) P[P2P] = 0.4 (f) P[P2P] = 0.8
Fig. 9. Simulation results for multicast Zoom with different home probabilities (top) and different P2P Zoom probabilities (bottom).

RR improves upon RAND, particularly in meeting counts, it
still differs a lot in user counts since meetings have widely
varying sizes. For space reasons, we do not present the RR
results here.

In summary, there is always an inherent tradeoff between
meetings and users, since balancing one of these often unbal-
ances the other. Such tradeoffs are not uncommon in network-
based systems with heterogeneous workloads [4], [18]. In
our Zoom context, load-aware policies greatly reduce the
overall load on the busiest servers, and spread the load more
evenly across all servers. Improved load distribution also
helps mitigate risk if any particular server or meeting should
experience a network disruption.

E. Multicast Model

The final simulation experiment explores the possible use
of multicast for Zoom content delivery. The key insight here
is that for cloud-hosted Zoom meetings, there is no need
to send separate copies of the same audio, video, and data
streams from the Zoom data center to each collocated user
on the campus network. Rather, a single multicast stream can
traverse the Internet to reach the campus network, at which
point it is replicated for local delivery to the individual users at
different locations on campus. Whether the multicast support
is provided at the application layer (in Zoom or a proxy), or
natively at the network layer (i.e., IPv4, IPv6), is irrelevant
in our simulation model. We simply assume its existence, and
focus on the potential savings in the campus network3 traffic.

3A similar argument applies for ISP traffic, though multiple ISPs (e.g.,
Rogers, Shaw, Telus) would need to be involved.

Figure 9 shows the results from this multicast Zoom model.
Note that the results in these graphs are for Zoom session
counts, not Zoom meeting counts as in the earlier graphs. The
results confirm the intuitively obvious, namely that the benefits
of multicast reduce the Zoom session count dramatically.

The benefits of multicast support for Zoom increase when
more users are on campus (see top row of graphs in Figure 9).
Furthermore, the performance advantages of multicast support
for Zoom are quite robust across this range of Zoom workload
parameter settings.

The benefits of multicast Zoom would decrease if small P2P
Zoom calls4 were more prevalent, as illustrated in the bottom
row of graphs in Figure 9. P2P Zoom calls do not benefit from
multicast, since they are point-to-point. Their prevalence in
the workload also reduces the number of lecture-based Zoom
meetings generated, and hence the session counts observed.
Multicast is still useful for the larger meetings with multiple
collocated participants, but the overall benefits are smaller.

VI. CONCLUSIONS

In this paper, we provide a modeling methodology for the
simulation and analysis of Zoom network traffic on a campus
network. Our approach relies upon a synthetic workload model
for campus-level Zoom traffic developed from empirical Zoom
measurement data. However, the same methodology could be
generalized to other types of networks when empirical data is
available to calibrate and validate the model.

4Note that 25% of P2P Zoom calls in our model remain internal to the
campus network (P1 to P2), 25% remain internal to the ISP network (P3 to
P4), so only 50% of the P2P calls traverse the U-R-ISP links (P1/P2 to P3/P4).



The main conclusions from our work are as follows. First,
the cost-benefit tradeoff of the on-premise solution to deploy
local Zoom Meeting Zones at the campus networks may not
be worthwhile. While there are workload parameter settings
where this solution makes sense, other settings can actually in-
crease the load on the campus network when a large proportion
of users are off-campus. In an era of transition to hybrid work
models, managers of enterprise networks similar to our campus
network might need to rethink on-premise network solutions,
such as the Zoom infrastructure considered in this paper.
Second, despite the tradeoff between balancing the number
of meetings or users on Zoom servers, the load-aware policies
better distribute the load across the servers, reducing the high
loads on the busy servers. We showed how these methods
could reduce the risk of disruptions that users experience dur-
ing the meetings due to highly loaded servers and could greatly
mitigate the performance issues with Zoom connections that
users experience on our network. Finally, with hybrid learning
modalities, many collocated students on campus may connect
to the same Zoom meetings. Multicast support for Zoom is a
promising solution for enterprise networks like our campus.
It dramatically lowers the Zoom session count, reducing the
incoming load on the campus network.

Our future work will study the dynamics of Zoom’s video
bit rate adaptation, and its FEC strategies, on congested and
lossy WiFi networks.
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