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Abstract

We present CoLe, a cooperative data mining approach for
discovering hybrid knowledge. It employs multiple dif-
ferent data mining algorithms, and combines results from
them to enhance the mined knowledge. For our medical ap-
plication area, we analyse several focusing strategies that
allowed us to gain medically significant results.

1. Introduction

Data mining is facing a challenging situation where
large, heterogeneous and complex data sets are to be mined.
We have developed CoLe (Cooperative Learning) to handle
data of this kind. It uses a multi-agent framework to run
multiple data mining algorithms simultaneously and coop-
eratively. Results from these algorithms are combined into
hybrid knowledge. Partial results are exchanged during the
process of mining to maximize the synergetic effects in the
cooperation. Other existing distributed/cooperative mining
approaches, like [4, 6] and others, emphasize handling al-
ready distributed data sources flexibly and efficiently, while
CoLe concentrates more on getting hybrid knowledge that
cannot be generated by a single data mining algorithm.

2. Our Cooperative Mining Approach

The CoLe model employs a multi-agent system frame-
work (see Figure 1). It works on a data set D using a mining
agent (miner) set M and a combination agent AgCBN. An
individual miner mi contains a data mining algorithm. Each
mi works on a dedicated sub data set Di split from D to fit
mi’s algorithm. Miners are synchronized to work in itera-
tions. In each iteration, mi creates a knowledge set Ki and
sends it to AgCBN for combination. AgCBN puts good com-
bined hybrid results in a final knowledge set K, and sends
feedback (summary of discoveries in this iteration) to each
mi to help their later work. AgCBN also controls how Di’s
are created for the next iteration. [3] described the CoLe
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Figure 1. CoLe model
model and its cooperation schemes in detail.

The most important aspect of CoLe is the cooperation
of miners, coordinated by AgCBN: it instructs how Di’s are
generated from D; it receives results Ki from the miners; the
final result K is produced by AgCBN. AgCBN also synchro-
nizes the iterative mining process. AgCBN collects useful
information from each miner’s results in one iteration and
sends feedback to all miners to help them improve their
mining in the next iteration — so, miners influence each
others’ work indirectly via AgCBN.

3. A Mining Problem and Our Mining Agents

We applied CoLe to a problem occurring at the Calgary
Health Region: Patients have their health harmed before
laboratory tests can detect diabetes. Data mining may help
to diagnose diabetes earlier. The diabetes data set contains
patients’ (both diabetics, called cases, and non-diabetics,
called controls) basic information and their time-stamped
medical record (diagnostic codes). The records are win-
dowed by a 5-year monitoring period. Medical researchers
are expecting rules showing both static conditions influenc-
ing diabetes and the development of the disease.

We instantiate CoLe for this medical mining problem
with two miners and one AgCBN. One miner (mS) uses a
sequence mining algorithm to observe the development of
diagnoses. The other (mC) uses a classification algorithm
to get rules with conjunctions of diagnoses. Their discov-
ered rule sets are RS and RC respectively. Correspondingly,



we split D into two sub sets. They are DS, which contains
temporal data suitable for mS, and DC, a flattened D with
timestamps removed, for mC. The AgCBN takes RS and RC,
validates them against D, and uses combination strategies
to combine them into hybrid rules (as rule set R) that con-
tain both sequence and conjunctive conditions.

3.1. Sequence Mining by mS

Our mS uses a genetic algorithm for sequence mining.
A sequence contains ordered events (diagnosis sets), which
do not need to be consecutive in a matched record. The
goal is to discover sequences to discriminate cases from
controls. We do not use the well-known Apriori-based al-
gorithms from [1] because our data amount is huge and the
sequences can be long. With a GA, we also gain easy con-
trol of iterative mining and integration of feedbacks.

In the GA implementation, we use single sequences as
individuals. The fitness is calculated by:

fitness = 10×
(

tp
tp+ fp

)x
×

ln(tp)

ln(case num)
(1)

Here tp and fp are the counts of true (case) and false (con-
trol) positives respectively, case num is the total number of
cases in the data set, and x is a real-number parameter to
control the weight of the two factors. This considers both
the accuracy and significance of a sequence. It is also used
globally as an evaluation of rules’ quality.

In our GA, we use not only standard mutation and
crossover but also two knowledge-based genetic operators:
knowledge-based mutation and IntelliCut. In knowledge-
based mutation, new events are chosen from sequence seg-
ments that frequently occur in cases. IntelliCut cuts off the
“bad tail” of a sequence: for a sequence, each possible tail-
cut is checked to find the “right” cut-point to maximize its
fitness. This can remove low-quality parts from a poten-
tially good sequence.

3.2. Conjunctive Rule Mining by mC

In mC we use a classification algorithm to discover con-
junctive rules. There are quite a few efficient algorithms
for this. We use an existing implementation, namely PART
(see [2]). The PART algorithm is very suitable for mC be-
cause it output results in our targeted format directly. And
PART does not have global optimization. So we can inter-
rupt it to suit out in our iterative CoLe mining process.

3.3. Combination Strategies in AgCBN

AgCBN uses both the data set and the already-discovered
rules by the two miners in its tasks. The output is a hybrid
rule set R. “Byproducts” are the feedbacks to the miners
and instructions for generating the next DS and DC. The

combination is done in 3 stages, namely direct combina-
tion, cross combination and rule pruning:

In direct combination we try to put a rule from RS and
one from RC directly together. The new rule’s condition is
the conjunction of the two old ones. If the new one is a
good rule according to Equation (1), we will put it into R.

The cross combination is to check if we can use seg-
ments of sequence (classification) rules to combine with
classification (sequence) rules and get good hybrid rules.
For each event e in a sequence rule, we convert it to a pred-
icate e = true, and add it to each existing rule’s condition
to see if we can gain good new rules. This process is done
repeatedly until no more new good rules can be obtained.
We also try converting predicates to events.

We also prune rules in R to remove redundant parts. The
following is done: 1) convert a single-event sequence con-
dition to a predicate; 2) remove a predicate that also occurs
in the sequence condition; 3) remove duplicate rules.

AgCBN also generates feedback for mS and mC, accord-
ing to the results of the combination. For mS, AgCBN
mainly gathers diagnoses from RC, and enumerates their
permutations. These permutations can then be used by mS
as good sequence segments. For mC, events from RS are
sent, to be used for mC to focus its DC (see Section 4.3).

4. Data Reduction and Focusing of the Mining

Due to the large size and sparseness of the diabetes data,
we have used several focusing strategies, including feature
aggregation, feature selection and instance reduction.

4.1. Feature Aggregation

Feature aggregation is a static step before our CoLe sys-
tem starts its work. We reduce the number of possible di-
agnostic codes in the aggregation. The over 17000 possible
diagnostic codes are aggregated into 307 disease groups.
We also have a temporal aggregation to put all diagnoses in
a given period (e.g. a week) into the same event.

4.2. Instance Reduction

To make the miners focus on the instances we are inter-
ested in and to prevent miners from discovering the same
set of rules over and over again in their iterations, we dy-
namically do instance reduction to get DS and DC, to give
the miners a smaller and focused work data set. In each
iteration, DS and DC use the same group of patients, so that
it is meaningful to combine RS and RC.

The core work is to decide on a set of patients I in each
iteration. For an instance set Ii in iteration i, it is generated
based on Ii−1 and the results of iteration (i− 1). We take
from Ii−1 patients that are not covered by any rules in iter-



ation (i−1), together with randomly chosen patients from
D, to form Ii. This makes miners focus more on patients
without covering rules.

4.3. Feature Selection

In mC, we also do a feature selection to further reduce
the search space. The features are selected by their rele-
vance factors against the case/control class label. We use
Equation 2, inspired by the work in [5], to calculate each
feature’s relevance factor.

RF(A) = Pr(A)× log
(

Pr(A|case)
Pr(A|control)

)

(2)

A is a feature, and probabilities are estimated by frequen-
cies. The absolute value of RF(A) reflects the relevance of
A. Positive value means an indication of cases, while an
indicator of controls gets a negative value. When we se-
lect the relevant features, a dynamic threshold tRF is used.
This suits our situation better because DC is dynamically
generated, thus we can not presume an arbitrary threshold.
The use of feedbacks in mS can also be taken as a feature
selection strategy.

5. Experiments

We conducted several experiments with our implemen-
tation of CoLe. The focus is to evaluate the advantages of
our new cooperative model over the individual algorithms,
the effect of our focusing strategies, and the significance of
the results for medical research. Run time is not a test fo-
cus here, because it is acceptable to have a run time as long
as 2–3 days in the public health data mining with large data
sets (and all our single tests finished within 12 hours, which
is quite acceptable).

5.1. Effects of Cooperation

To evaluate the effects of cooperation, we have run CoLe
with different fitness thresholds, while all other parame-
ters are kept the same. The fitness values listed in Table 1
show that not only the average fitness of hybrid rules is
higher, but also the maximum fitness value of hybrid rules
is higher. But when we have too high a fitness threshold,
the hybrid rule quality decreases, because this results in less
candidates from miners for later combination stages, and
consequently limits the possibilities for combination.

Table 2 presents the detailed fitness values over itera-
tions in one of the tests. We also list the average fitness of
the top 10 fittest rules. Most importantly, the average fit-
ness of the top hybrid rules is significantly higher than the
average fitness of the top rules from the individual miners.
This shows that combination plays a key role in enhancing
the quality of knowledge discovered by individual miners.

Table 1. Individual algorithm vs. cooperation
Test No. 1 2 3 4

Fitness threshold 3.6 3.7 3.8 3.9
Average fitness from mS 3.10 2.86 3.24 3.05
Average fitness from mC 2.58 2.51 2.62 2.44

Average hybrid rule fitness 3.72 3.82 3.89 3.91
Max fitness from mS 3.72 3.74 3.74 3.72
Max fitness from mC 3.72 3.78 3.72 3.72

Max hybrid rule fitness 4.29 4.33 4.12 3.91

Table 2. Average fitness over iterations in Test 2
A: Average fitness of all rules in an iteration;

T: Average fitness of top 10 (all if less than 10) rules in an iteration;
(S): Rules from mS; (C): Rules from mC; (H): Hybrid rules

Iter. A(S) A(C) A(H) T(S) T(C) T(H)
1 0.78 2.74 3.71 2.40 3.39 3.71
2 3.25 2.45 3.73 3.65 3.22 3.74
3 2.54 2.38 3.72 3.52 3.20 3.72
4 3.49 2.73 3.72 3.65 3.27 3.73
5 3.22 2.20 3.73 3.64 3.42 3.73
6 3.22 2.17 3.72 3.62 3.28 3.72
7 3.08 2.09 3.75 3.59 3.31 3.78
8 2.48 2.48 3.75 3.60 3.44 3.75
9 3.08 2.61 3.72 3.62 3.21 3.72
10 3.41 2.62 3.72 3.65 3.34 3.73
11 3.43 2.57 3.73 3.64 3.33 3.73
12 3.39 2.05 3.76 3.66 3.50 3.81
13 2.78 2.76 3.88 3.64 3.57 4.23
14 2.57 2.93 3.80 3.53 3.57 3.89
15 2.69 2.51 3.72 3.61 3.21 3.72
16 2.81 2.94 3.80 3.60 3.28 3.90
17 2.41 2.46 3.81 3.52 3.20 4.00
18 2.51 2.63 3.72 3.57 3.33 3.72
19 2.60 2.73 3.72 3.56 3.27 3.72
20 3.51 2.20 3.73 3.65 3.30 3.73

5.2. Effects of Focusing

While the help of feature aggregation is obvious, we
performed detailed tests on the instance reduction (IR) and
feature selection (FS).

Our experiment with IR is a comparison between a nor-
mal CoLe implementation (with IR) and an implementation
without IR, i.e., mS and mC run on the entire data set in-
stead of DS and DC. All other parameters are the same. The
run times in Table 3(a) show that the implementation with
IR ran much faster than the one without. The maximum
and average fitness values in Table 3(b) are comparable.

In mS, FS is used to get feedback (hints) from AgCBN,
and use those sequence segments as good materials to con-
struct sequence rule individuals. We ran two experiments,
one with FS and the other without it. The average fitness
values of the first 10 generations are plotted in Figure 2. It
is obvious that the mS with hints has a faster increase in
average fitness.

In mC, FS is to select relevant features into DC. Our ex-
periments consist of several test runs with two implementa-
tions, one with FS and the other without it. Table 4 reports
5 test runs for each implementation. The mC without FS
runs 30-100 times longer than mC with it. This proves that
our FS strategies help eliminate irrelevant data and let mC
focus on the rules that we are interested in.



Table 3. Test on instance reduction (IR)
(a) Run time comparison (seconds)

With IR Without IR
Overall 18098 42606

Average run time per iteration
mS 269.85 2334.90
mC 83.20 1759.25

AgCBN 622.90 1924.90
(b) Mining result quality comparison (fitness)

S: Rules from mS; C: Rules from mC; H: Hybrid rules
With IR Without IR

S rules average 2.86 2.91
C rules average 2.51 2.81
H rules average 3.82 3.85

S rules max 3.74 3.72
C rules max 3.78 3.72
H rules max 4.33 4.36
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Figure 2. Average fitness of individuals over gen-
erations in mS (with and without hints)
5.3. Medical Significance

An example for a discovered rule is in Table 5: A patient
is likely to have diabetes if he/she was born after 1939,
has “other diseases of the respiratory system”, has “dis-
eases of skin and subcutaneous tissue”, and diagnoses in
the temporal order: repeatedly hypertension diagnoses, and
some general uncomfortable symptoms in between. We
presented the results to medical experts for their opinion
and got very positive feedbacks. The medical significance
is mainly in the following aspects.

Firstly, in our hybrid rules, almost 100% of them con-
tain “hypertensive disease” conditions. This confirms an
already known fact that hypertension has a very tight re-
lation with diabetes. There are also many other diabetes-
related diagnoses, e.g. diseases of skin and subcutaneous
tissue. This is a strong indication that CoLe is able to pro-
duce knowledge valid to medical research. However, hy-
pertension alone is not a good indicator for diabetes, show-
ing the need for complex rules like our hybrid rules.

Secondly, there are phenomena new to medical experts.
The diagnosis “other diseases of the respiratory system”
is one example. It appears frequently in the hybrid rules.
Medical experts could not recall immediately how it is re-
lated to diabetes. But it seems interesting to them, and there
seem to be some explanations.

Thirdly, our results urge the public health services to im-
prove their quality. There are quite a few conditions like

Table 4. Run time (seconds) of PART algorithm in
mC (with and without feature selection(FS))

Test With FS Without FS
1 19.416 1855.356
2 49.304 1638.292
3 32.436 1704.105
4 29.663 2205.108
5 40.456 1877.903

Average 34.255 1856.153

Table 5. A representative rule
Part Condition Description

yofb> 1939 Year of Birth
Conj. {466,480-519}=1 Other diseases of the respiratory system

{680-686}=1 Diseases of skin and subcutaneous tissue
{401-405} Hypertensive disease
{780-799} Signs, symptoms and ill-defined conditionsSeq.
{401-405} Hypertensive disease
{401-405} Hypertensive disease

“signs, symptoms and ill-defined conditions”. This can
only indicate that the patient has uncomfortable feelings,
which are indicators of diseases. Therefore we should im-
prove them to be more specific. They also reveal the poten-
tial of diagnosing diabetes earlier.

6. Conclusion

We proposed the CoLe cooperative data mining ap-
proach. It is a multi-agent system framework with multi-
ple miner agents and a combination agent. The main goal
of CoLe is to get hybrid knowledge that can describe given
data from multiple aspects. Our application of CoLe was
mining medical data on diabetes. The results prove that our
CoLe approach and our combination and focusing strate-
gies are efficient and promising. And we have discovered
some rules that are of interest to the medical researchers.
Future work will be aimed at using CoLe in other areas and
enhancing the diabetes application.
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