Proving Correctness of a Simple Recursive Algorithm A Sample Assignment

Consider the following computational problem:

First Nonzero Entry in Part of an Array

Precondition: An integer array A, with positive length n, and integers low and high, such that $0 \leq$ low \leq high $\leq n-1$, are given as input.
Postcondition: If at least one of
A [low], A [low+1] , ..., A [high]
is nonzero, then $\mathrm{A}[i]$ is returned as output, where i is the smallest integer such that low $\leq i \leq$ high and $\mathrm{A}[i] \neq 0$. The value 0 is returned otherwise.

Consider, as well, the following recursive algorithm:

```
integer firstNonZero ( integer[] A, integer low,
                                    integer high ) {
1. if (low == high) {
2. return A[low]
    } else {
3. integer mid := floor((low + high)/2)
4. integer firstChoice := firstNonZero(A, low, mid)
5. if (firstChoice != 0) {
6. return firstChoice
        } else {
7. return firstNonZero(A, mid+1, high)
        }
    }
```

1. Give traces of executions and the recursion tree for the execution of this algorithm for an input matrix A with length 8 such that, for $0 \leq i \leq 7$,

$$
\mathrm{A}[i]= \begin{cases}1 & \text { if } i=3 \\ 0 & \text { otherwise }\end{cases}
$$

and for inputs low $=0$ and high $=7$. The information you discover and document, when doing this, might help you to solve the problems that follow.
2. Give a bound function for this recursive algorithm and show that it is correct.
3. Prove that this algorithm correctly solves the "First Nonzero Entry in Part of an Array" problem - writing this proof as carefully and as well as you can.
4. Give a set of assertions that can be used to document the correctness of this algorithm as inline code.

