Readings on the Analysis of Algorithms Fully Documented Version of the Algorithm maxInRange

A fully documented version of the algorithm maxInRange - including the precondition and postcondition for the problem being solved, a bound function for the algorithms, and assertions that document a proof of the correctness of the algorithm, is as follows.
Indeed, there is too much documentation here! For example, it is not necessary to include the fact that " A is an input integer array with positive length n " at every point. The assertions listed here are being provided because there is a formal method that can be applied, to prove that they hold, if they are given this completely. However, this is beyond the scope of these notes.
// Precondition: An integer array A, with positive length n , and integers high and low
// such that $0 \leq$ low \leq high $\leq n-1$, are given as input.
// Postcondition: The largest element in the set
//
$\{\mathrm{A}[$ low], $\mathrm{A}[$ low +1$], \ldots, \mathrm{A}[$ high $]\}$
// is returned as output.
integer maxInRange (integer [] A, integer low, integer high) \{
// Bound Function: high - low
// Assertion:
// 1. A is an input integer array with positive length n .
// 2. low and high are integer inputs such that $0 \leq$ low \leq high $\leq \mathrm{n}-1$.

1. if (low == high) \{
// Assertion:
// 1. A is an input integer array with positive length n .
// 2. low and high are integer inputs such that $0 \leq$ low $=$ high $\leq \mathrm{n}-1$.
2. return A[low]
// Assertion:
// 1. A is an input integer array with positive length n .
// 2. low and high are integer inputs such that $0 \leq$ low $=$ high $\leq \mathrm{n}-1$.
$/ / 3$. The value $\mathrm{A}[$ low $]=\max (\mathrm{A}[$ low] $, \mathrm{A}[$ low +1$], \ldots, \mathrm{A}[\mathrm{high}])$ has been returned as output.
\} else \{
```
// Assertion:
// 1. A is an input integer array with positive length n .
\(/ / 2\). low and high are integer inputs such that \(0 \leq\) low \(<\) high \(\leq \mathrm{n}-1\).
3. integer mid := floor((low + high)/2)
// Assertion:
// 1. A is an input integer array with positive length n .
// 2. low and high are integer inputs such that \(0 \leq\) low \(<\) high \(\leq \mathrm{n}-1\).
\(/ / 3\). mid is an integer variable such that low \(\leq \operatorname{mid} \leq\) high -1 .
4. return max (maxInRange(A, low, mid), maxInRange(A, mid+1, high))
// Assertion:
// 1. A is an input integer array with positive length n .
// 2. low and high are integer inputs such that \(0 \leq\) low \(<\) high \(\leq \mathrm{n}-1\).
\(/ / 3\). The value \(\max (\mathrm{A}[\mathrm{low}], \mathrm{A}[\mathrm{low}+1], \ldots, \mathrm{A}\) [high] \()\) has been returned as output.
\}
// Assertion:
// 1. A is an input integer array with positive length n .
// 2. low and high are integer inputs such that \(0 \leq\) low \(\leq\) high \(\leq n-1\).
\(/ / 3\). The value \(\max (\mathrm{A}[\mathrm{low}], \mathrm{A}[\mathrm{low}+1], \ldots, \mathrm{A}[\mathrm{high}])\) has been returned as output.
\}
```

