Fully Documented Version of the Algorithm arrayMax

A (reasonably) fully documented version of the algorithm arrayMax - including the precondition and postcondition for the problem being solved, loop invariant and bound function for the while loop in this algorithm, and various other assertions that help to document a proof of the correctness of this algorithm, is as follows.
// Precondition: An integer array A, with some positive length n, is given as input.
// Postcondition: The largest element in the set
//
// is returned as output.
integer arrayMax (integer [] A) \{
$/ /$ Assertion: A is an input integer array with some positive length n.

1. if (A.length $==1$) \{ $/ /$ Assertion: A is an input integer array with length $n=1$.
2. return $A[0]$
// Assertion:
$/ / 1$. A is an input integer array with length $n=1$.
$/ / 2$. The largest element in the set
// $\quad\{\mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[n-1]=\{\mathrm{A}[0]\}$
// has been returned as output.
\} else \{
// Assertion: A is an integer array with length $n \geq 2$.
3. integer i := 0
4. integer maxSoFar := A [0]
// Loop Invariant:
$/ / 1$. A is an input integer array with some length n such that $n \geq 2$.
$/ / 2$. i is an integer variable such that $0 \leq \mathrm{i} \leq n-1$.
// 3. maxSoFar is an integer variable such that
// $\quad \operatorname{maxSoFar}=\max (\mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[\mathrm{i}])$.
// Bound Function: $n-i$, that is, A.length - i
// Assertion:
// 1. The loop invariant for this while loop is satisfied.
$/ / 2$. $\mathbf{i}=0$.
5. while (i <A.length - 1) \{
// Assertion:
// 1. The loop invariant for this while loop is satisfied.
// 2. $0 \leq \mathrm{i} \leq$ A. length -2
6. i := i + 1
7. if (maxSoFar < A[i]) \{
8. $\operatorname{maxSoFar}:=\mathrm{A}[\mathrm{i}]$
\}
// Assertion: The loop invariant for this while loop is satisfied.
\}
// Assertion:
// 1. The loop invariant for this while loop is satisfied.
// 2. $i=A . l e n g t h-1$
9. return maxSoFar
// Assertion:
// 1. A is an input integer array with some length n such that $n \geq 2$.
$/ / 2$. The largest element in the set
// $\{\mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[n-1]\}$
// has been returned as output.
\}
// Assertion:
// 1. A is an input integer array with some positive length n.
$/ / 2$. The largest element in the set
// \quad A $[0], \mathrm{A}[1], \ldots, \mathrm{A}[n-1]\}$
// has been returned as output.
\}
