Analyzing the Running Time of a Simple Recursive Algorithm A Sample Assignment

Consider the following computational problem, which was also considered in the assignment for Reading \#2:

First Nonzero Entry in Part of an Array

Precondition: An integer array A, with positive length n, and integers low and high, such that $0 \leq$ low \leq high $\leq n-1$, are given as input.
Postcondition: If at least one of

$$
\mathrm{A}[\text { low }], \mathrm{A}[\text { low }+1], \ldots, \mathrm{A}[\mathrm{high}]
$$

is nonzero, then $\mathrm{A}[i]$ is returned as output, where i is the smallest integer such that low $\leq i \leq$ high and $\mathrm{A}[i] \neq 0$. The value 0 is returned otherwise.

Consider, as well, the following recursive algorithm, which was also considered in the assignment mentioned above:

```
integer firstNonZero ( integer[] A, integer low,
                                    integer high ) {
1. if (low == high) {
2. return A[low]
    } else {
3. integer mid := floor((low + high)/2)
4. integer firstChoice := firstNonZero(A, low, mid)
5. if (firstChoice != 0) {
6. return firstChoice
        } else {
7. return firstNonZero(A, mid+1, high)
        }
    }
```

If you completed that assignment then you proved that this algorithm correctly solves the above computational problem.

1. Write a recurrence for the maximum number $T_{\text {firstNonZero }}(k)$ of steps used by the above recursive algorithm, as a function of $k=$ high - low +1 , for $k \geq 1$ - using the uniform cost criterion when doing so.
2. Guess a solution for this recurrence, that is, an expression for $T_{\text {firstNonZero }}(k)$ that is not in the form of a recurrence.
3. Prove that your guess is correct.
