## Analyzing the Running Time of a Simple Recursive Algorithm Solutions for a Suggested Exercise

This exercise concerned the "Maximal Element in Part of an Integer Array" problem, considered in Reading \#2, as well as the following algorithm - which was proved to correctly solve this problem in the exercise for that reading.

```
maxInRange2 ( integer[] A, integer low, integer high ) {
1. if (low == high) {
2. return A[low]
    } else {
3. return max(maxInRange2(A, low, high - 1), A[high])
    }
}
```

1. You were first asked to used the uniform cost criterion to write a recurrence for the number $T_{\max }(k)$ of steps used by this algorithm when $0 \leq$ low $\leq$ high $\leq$ A. length -1 and high - low $+1=k \geq 1$.
Solution: Suppose first that $k=1$. Then high - low $+1=k=1$, so that low $=$ high and the test at line 1 is passed when checked (as part of an execution of the algorithm including these inputs). The algorithm then ends after a second step - at line 2 - is executed, so that $T_{\max }(1)=2$.

Suppose, instead, that $k \geq 2$. Then high - low $+1=k \geq 2$, so that high $\geq$ low +1 , and the test at line 1 fails when checked. In this case, execution continues, and ends, with the execution of the step at line 3 .

However, this includes a recursive application of this algorithm with inputs low $=$ low and high $^{\prime}=$ high -1 . Now

$$
\begin{aligned}
\text { high }^{\prime}-\text { low }^{\prime}+1 & =(\text { high }-1)-\text { low }+1 \\
& =(\text { high }- \text { low }+1)-1 \quad \text { (reordering and grouping terms) } \\
& =k-1
\end{aligned}
$$

so that the recursive application of the algorithm at line 3 uses $T_{\max }(k-1)$. steps.
Thus a recurrence for $T_{\max }(k)$ is as follows: If $k$ is a positive integer then

$$
T_{\max }(k)= \begin{cases}2 & \text { if } k=1 \\ T_{\max }(k-1)+2 & \text { if } k \geq 2\end{cases}
$$

2. You were next asked to guess a solution for this recurrence - that is, guess an expression for $T_{\max }(k)$ that is not in the form of a recurrence.
Solution: Notice that

- $T_{\max }(1)=2$,
- $T_{\max }(2)=T_{\max }(1)+2=2+2=4$,
- $T_{\max }(3)=T_{\max }(2)+2=4+2=6$, and
- $T_{\max }(4)=T_{\max }(3)+2=6+2=8$.

Thus after checking the value of $T_{\max }(k)$ for small positive values of $k$ it might be reasonable to guess that $T_{\max }(k)=2 k$ for every positive integer $k$.
3. Finally you were asked to prove that your guess is correct.

## Solution:

Claim: Suppose that $T_{\text {max }}: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every positive integer $k$,

$$
T_{\max }(k)= \begin{cases}2 & \text { if } k=1, \\ T_{\max }(k-1)+2 & \text { if } k \geq 2 .\end{cases}
$$

Then $T_{\max }(k)=2 k$ for every positive integer $k$.
Proof: By induction on $k$. The standard form of mathematical induction will be used.
Basis: If $k=1$ then

$$
\begin{aligned}
T_{\max }(k) & =T_{\max }(1) \\
& =2 \\
& \left.=2 \cdot 1=2 k \quad \text { (by the given recurrence for } T_{\max }(k)\right)
\end{aligned}
$$

as required to establish the claim in this case.
Inductive Step: Let $h$ be an integer such that $h \geq 1$. It is necessary and sufficient to use the following

Inductive Hypothesis: $T_{\text {max }}(h)=2 h$.
to prove the following
Inductive Claim: $T_{\max }(h+1)=2(h+1)$.
Since $h \geq 1, h+1 \geq 2$. Therefore

$$
\begin{array}{rlrl}
T_{\max }(h+1) & \left.=T_{\max }((h+1)-1)+2 \quad \text { (by the given recurrence for } T_{\max }(k)\right) \\
& =T_{\max }(h)+2 \\
& =2 h+2 \\
& =2(h+1) & \\
\text { (by the Inductive Hypothesis) }
\end{array}
$$

- establishing the Inductive Claim, as needed to complete the Inductive Step and complete the proof of the claim.

