Analyzing the Running Time of a Simple Recursive Algorithm Solutions for a Suggested Exercise

This exercise concerned the "Maximal Element in Part of an Integer Array" problem, considered in Reading #2, as well as the following algorithm — which was proved to correctly solve this problem in the exercise for that reading.

```
maxInRange2 ( integer[] A, integer low, integer high ) {
1. if (low == high) {
2. return A[low]
    } else {
3. return max(maxInRange2(A, low, high - 1), A[high])
    }
}
```

1. You were first asked to used the uniform cost criterion to write a *recurrence* for the number $T_{\max}(k)$ of steps used by this algorithm when $0 \le low \le high \le A.length - 1$ and $high - low + 1 = k \ge 1$.

Solution: Suppose first that k = 1. Then high $-\log + 1 = k = 1$, so that $\log + \log k$ and the test at line 1 is passed when checked (as part of an execution of the algorithm including these inputs). The algorithm then ends after a second step — at line 2 — is executed, so that $T_{max}(1) = 2$.

Suppose, instead, that $k \ge 2$. Then high $- low + 1 = k \ge 2$, so that high $\ge low + 1$, and the test at line 1 fails when checked. In this case, execution continues, and ends, with the execution of the step at line 3.

However, this includes a recursive application of this algorithm with inputs low' = low and high' = high - 1. Now

$$\begin{split} \mathtt{high}' - \mathtt{low}' + 1 &= (\mathtt{high} - 1) - \mathtt{low} + 1 \\ &= (\mathtt{high} - \mathtt{low} + 1) - 1 \\ &= k - 1 \end{split} \label{eq:high} \end{split} \mbox{(reordering and grouping terms)}$$

so that the recursive application of the algorithm at line 3 uses $T_{\max}(k-1)$. steps. Thus a *recurrence* for $T_{\max}(k)$ is as follows: If k is a positive integer then

$$T_{\max}(k) = \begin{cases} 2 & \text{if } k = 1, \\ T_{\max}(k-1) + 2 & \text{if } k \ge 2. \end{cases}$$

2. You were next asked to guess a *solution* for this recurrence — that is, guess an expression for $T_{max}(k)$ that is not in the form of a recurrence.

Solution: Notice that

- $T_{\max}(1) = 2$,
- $T_{\max}(2) = T_{\max}(1) + 2 = 2 + 2 = 4$,
- $T_{\max}(3) = T_{\max}(2) + 2 = 4 + 2 = 6$, and
- $T_{\max}(4) = T_{\max}(3) + 2 = 6 + 2 = 8.$

Thus after checking the value of $T_{\max}(k)$ for small positive values of k it might be reasonable to **guess** that $T_{\max}(k) = 2k$ for every positive integer k.

3. Finally you were asked to prove that your guess is correct.

Solution:

Claim: Suppose that $T_{\max} : \mathbb{N} \to \mathbb{N}$ such that, for every positive integer k,

$$T_{\max}(k) = \begin{cases} 2 & \text{if } k = 1, \\ T_{\max}(k-1) + 2 & \text{if } k \ge 2. \end{cases}$$

Then $T_{\max}(k) = 2k$ for every positive integer k.

Proof: By induction on k. The standard form of mathematical induction will be used. *Basis:* If k = 1 then

$$T_{\max}(k) = T_{\max}(1)$$

= 2 (by the given recurrence for $T_{\max}(k)$)
= 2 \cdot 1 = 2k

as required to establish the claim in this case.

Inductive Step: Let h be an integer such that $h \ge 1$. It is necessary and sufficient to use the following

Inductive Hypothesis: $T_{\max}(h) = 2h$.

to prove the following

Inductive Claim: $T_{\max}(h+1) = 2(h+1)$.

Since $h \ge 1$, $h + 1 \ge 2$. Therefore

$$\begin{split} T_{\max}(h+1) &= T_{\max}((h+1)-1)+2 & \text{(by the given recurrence for } T_{\max}(k)) \\ &= T_{\max}(h)+2 & \\ &= 2h+2 & \text{(by the Inductive Hypothesis)} \\ &= 2(h+1) & \end{split}$$

— establishing the Inductive Claim, as needed to complete the Inductive Step and complete the proof of the claim. $\hfill \Box$