Reading \#6

Asymptotic Notation and Standard Functions

Asymptotic Notation

Asymptotic Notation provides information about the relative rates of growth of a pair of functions (each functions of a single integer or real variable), but ignores or hides other details, including

- behaviour on small inputs - because results are generally most significant or meaningful when inputs are extremely large - and
- multiplicative constants and lower-order terms - which can be implementation- or platformdependent anyway.

This provides the classification of algorithms into classes (such as linear-time, quadratic-time, polynomial-time or exponential-time, etc.), and is useful for stating bounds on the running times of algorithms.

Asymptotically Positive Functions

Consider either a total or partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ or $f: \mathbb{R} \rightarrow \mathbb{R}$.
Definition 1. f is asymptotically positive (or "eventually positive") if there exists a constant c such that

- when $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)$ is defined and $f(n)>0$ for all $n \in \mathbb{N}$ such that $n \geq c$;
- when $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$ is defined and $f(x)>0$ for all $x \in \mathbb{R}$ such that $x \geq c$.

Asymptotically positive functions are the only functions that will be considered in this course as (bounds for) the running times or storage requirements for algorithms.

Most of the time, functions $f: \mathbb{N} \rightarrow \mathbb{N}$ will be considered - but real-valued functions arise as bounds for the running times and storage requirements too.

Big-Oh Notation

Definition

Definition 2. Suppose that either $f, g: \mathbb{N} \rightarrow \mathbb{N}$ or $f: \mathbb{R} \rightarrow \mathbb{R}$, and that f and g are both asymptotically positive. Then $\boldsymbol{f} \in \boldsymbol{O}(\boldsymbol{g})$ if there exist constants $c>0$ and $N_{0} \geq 0$ such that

$$
f(n) \leq c \cdot g(n)
$$

for all n (in the domain of f) such that $n \geq N_{0}$.
In essence, this means that the rate of growth of f is, to within a multiplicative constant, at most that of g. This is sometimes written " $f=O(g)$ " instead of " $f \in O(g)$ ", even though the above definition effectively defines a set of functions f that are in the emphset $O(g)$.

One Way To Prove That $f \in O(g)$

Consider, for example, the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=4 x^{2}+2$ and $g(x)=x^{2}$ for all $x \in \mathbb{R}$.
Claim 3. $4 x^{2}+2 \in O\left(x^{2}\right)$.
Proof. By the definition of " $O\left(x^{2}\right)$ ", it suffices to show that there exist constants $c>0$ and $N_{0} \geq 0$ such $4^{2}+2 \leq c x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
Let $c=5$ and let $N_{0}=2$.
Now let x be arbitrarily chosen in \mathbb{R} such that $x \geq N_{0}=2$. Then

$$
4 x^{2}+2 \leq 4 x^{2}+x^{2}=5 x^{2}
$$

since $2 \leq 4 \leq x^{2}$ whenever $n \geq 2$.
Since x was arbitrarily chosen from \mathbb{R} it now follows that $4 x^{2}+2 \leq 5 x^{2}=c x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq 2=N_{0}$ and, since $c=5$ and $N_{0}=2$ are constants such that $c>0$ and $N_{0} \geq 0$, this establishes the claim.

This can also be seen by an examination of the graph in Figure 1 on page 3.

How This Was Proved: The definition of " $O\left(x^{2}\right)$ " was applied as follows:

1. This asks for a proof of a claim in which constants $c>0$ and $N_{0} \geq 0$ are existentially quantified - so one can start by choosing values for c and N_{0} - and clearly stating the values for these constants that are chosen.

Figure 1: $4 x^{2}+2 \in O\left(x^{2}\right)$
2. This leaves us with a claim in which a value x is universally quantified - it must hold for all x in the range of f such that $x \geq N_{0}$.
One must therefore let x be an arbitrarily chosen element of the range of f such $x \geq N_{0}$ and prove that the claim holds for this choice of x - without assuming anything more about x, at all.
3. Once we have done this, we have proved the claim in which n is universally quantified. In particular, we have proved a result for all x in the range of f such that $x \geq N_{0}$ (and it is a good idea to say so, in the proof).
4. This proves the claim in which the constants c and N_{0} are existentially quantified as needed to conclude that $f \in O(g)$.

Note: You do not need to choose c or N_{0} to be as small as possible when you do this! Sometimes choosing constants that are a bit larger than necessary makes the proof easier to write down - and to read, as well.

Another Way To Prove That $f \in O(g)$ - Sometimes!

Theorem 4 (Limit Test for $O(g)$). Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or that $f, g: \mathbb{N} \rightarrow \mathbb{N}$ and that f and g are asymptotically positive. If

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}
$$

exists and is a real constant, so that, in particular, it is not equal to $+\infty$, then $f \in O(g)$.

The proof of this will not be given here - but it is a straightforward consequence of "the $\epsilon-\delta$ definition of a limit", which you might have seen in a sufficiently advanced (or rigorous) calculus course.

Note: This gives a sufficient condition, but not a "necessary" one: Sometimes $f \in O(g)$ even though the above limit does not exist at all, and the above theorem cannot be applied.
So you should know how to prove that $f \in O(g)$ "by application of the definition" too, even if you want to use the limit test whenever you can.

Alternate Proof of Claim 3. Let $f(x)=4 x^{2}+2$ and let $g(x)=x^{2}$. Then, by the Limit Test for $O(g)$, it is sufficient for us to prove that

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}
$$

exists, and is a nonnegative constant, in order to prove the claim. Now

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow+\infty} \frac{4 x^{2}+2}{x^{2}}=\lim _{x \rightarrow+\infty}\left(4+\frac{2}{x^{2}}\right)=4
$$

and, since 4 is a real constant, this suffices to establish the claim.

L'Hôpital's Rule

Consider the functions $f(x)=\ln x$ and $g(x)=x$. These are both asymptotically positive, since their values are defined and positive when $x \geq 2$.
If we wished to show that $f \in O(g)$ using the Limit Test for $O(g)$ we would need to compute

$$
\lim _{x \rightarrow+\infty} \frac{\ln x}{x} .
$$

Unfortunately, $\lim _{x \rightarrow+\infty} \ln x=\lim _{x \rightarrow+\infty} x=+\infty$, and there is no clear way to cancel terms in order to see the value of the above limit.

L'Hôpital's Rule is a classical result from calculus (whose proof, again, will not be given in these notes) that can be often applied in order to overcome this type of problem.

Theorem 5 (l'Hôpital's Rule). Suppose that f and g are both asymptotically positive and differentiable at x, for $x \in \mathbb{R}$, when $x \geq c$ for some constant c. Suppose, as well, that

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} g(x)=+\infty
$$

Then

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Note, now, that the functions $f(x)=\ln x$ and $g(x)=x$ are both asymptotically positive, and differentiable at x when $x \geq 2$. Furthermore, $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=1$. This allows us to prove the following.

Claim 6. $\ln x \in O(x)$.
Proof. Note that the functions $f(x)=\ln x$ and $g(x)=x$ are asymptotically positive, and differentiable at x when $x>0$. Furthermore, $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} g(x)=+\infty$. It therefore follows that

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{\ln x}{x} & =\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)} \\
& =\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& =\lim _{x \rightarrow+\infty} \frac{(1 / x)}{1} \\
& =0 .
\end{aligned}
$$

It now follows by the Limit Test for $O(g)$ that $\ln x \in O(x)$.

Big-Omega Notation

Definition

Definition 7. Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$, and that f and g are asymptotically positive. Then $\boldsymbol{f} \in \boldsymbol{\Omega}(\boldsymbol{g})$ if there exist constants $c>0$ and $N_{0} \geq 0$ such that

$$
f(n) \geq c \cdot g(n)
$$

for all n (in the domain of f) such that $n \geq N_{0}$.
In essence this means that the rate of growth of f is, to within a positive multiplicative factor, at least that of g.

One Way To Prove That $f \in \Omega(g)$

Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$ and $g(x)=4 x^{2}+2$.
Claim 8. $x^{2} \in \Omega\left(4 x^{2}+2\right)$.

Figure 2: $x^{2} \in \Omega\left(4 x^{2}+2\right)$

Proof. By the definition of $\Omega\left(4 x^{2}+2\right)$, it suffices to show that there exist constants $c>0$ and $N_{0} \geq 0$ such that $x^{2} \geq c \cdot\left(4 x^{2}+2\right)$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
Let $c=\frac{1}{5}$ and $N_{0}=2$.
Now let x be arbitrarily chosen in \mathbb{R} such that $x \geq N_{0}=2$. Then

$$
x^{2}=\frac{1}{5} \cdot 5 x^{2} \geq \frac{1}{5} \cdot\left(4 x^{2}+2\right)=c \cdot\left(4 x^{2}+2\right),
$$

since $x^{2} \geq 4 \geq 2$ whenever $x \geq 2=N_{0}$.
Since x was arbitrarily chosen from \mathbb{R} such that $x \geq N_{0}$ it now follows that $x^{2} \geq c \cdot\left(4 x^{2}+2\right)$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$ and, since $c=\frac{1}{5}$ and $N_{0}=2$ are constants such that $c>0$ and $N_{0} \geq 0$, this establishes the claim.

This can also be seen by an examination of the graph in Figure 2.

A second example will be useful later.
Claim 9. $4 x^{2}+2 \in \Omega\left(x^{2}\right)$.
Proof. By the definition of $\Omega\left(x^{2}\right)$, it suffices to show that there exist constants $c>0$ and $N_{0} \geq 0$ such that $4 x^{2}+2 \geq c \cdot x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.

Let $c=4$ and $N_{0}=0$.
Now let x be arbitrarily chosen in \mathbb{R} such that $x \geq N_{0}=0$. Then

$$
4 x^{2}+2 \geq 4 x^{2}=c \cdot x^{2}
$$

Since x was arbitrarily chosen from \mathbb{R} such that $x \geq N_{0}$ it now follows that $4 x^{2}+2 \geq c \cdot x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$ and, since $c=4$ and $N_{0}=0$ are constants such that $c>0$ and $N_{0} \geq 0$, this establishes the claim.

How These Were Proved: The definition of " $\Omega\left(4 x^{2}+2\right)$ " was applied in the first proof, and the definition of " $\Omega\left(x^{2}\right)$ " was applied in the second.
Note that the structure of the definition of $\Omega(g)$ is identical to that of the definition of $O(g)$ only an inequality with " \geq " appears instead of an inequality with " \leq."

So the structure of a proof (by application of the definition) that $f \in \Omega(g)$ will generally be identical to the structure of a proof (by application of the definition) of $f \in O(g)$ - except that you will be working with inequalities including " \geq " instead of inequalities including " \leq ".
Exercise: Compare the structure of the proof of Claims 3 and 8 in order to confirm that this is the case.

Another Way To Prove That $f \in \Omega(g)$ - Sometimes!

Theorem 10 (Limit Test for $\Omega(g)$). Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or that $f, g: \mathbb{N} \rightarrow \mathbb{N}$, and that f and g are asymptotically positive. If

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}
$$

exists and is greater than zero, so that it is either a positive real constant or $+\infty$, then $f \in \Omega(g)$.
Once again, the proof involves the " $\epsilon-\delta$ definition of a limit" and is not included in these notes.
Note: Once again, this gives a sufficient condition, but not a "necessary" one: Sometimes $f \in \Omega(g)$ even though the above limit does not exist at all, and the above theorem cannot be applied.
Exercise: Use the above Limit Test to write another proof that $x^{2} \in \Omega\left(4 x^{2}+2\right)$.

Yet Another Way To Prove That $f \in \Omega(g)$

Theorem 11 (Transpose Symmetry for big-Oh and big-Omega). Suppose that either f, g : $\mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$ and that f and g are asymptotically positive. Then $f \in O(g)$ if and only if $g \in \Omega(f)$.

The proof of this is easy - it follows from the definitions of $O(g)$ and $\Omega(f)$ - and is left as an exercise.

This gives us yet another way to prove that $f \in \Omega(g)$, namely, by proving that $g \in O(f)$ instead.
Exercise: Confirm that - now that you know Theorem 11 - Claim 8 can be seen to be a corollary (that is, "straightforward consequence") of Claim 3.

Big-Theta Notation

Definition

Definition 12. Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$, and that f and g are asymptotically positive. Then $\boldsymbol{f} \in \boldsymbol{\Theta}(\boldsymbol{g})$ if there exist constants $c_{L}, c_{U}>0$ and $N_{0} \geq 0$ such that

$$
c_{L} \cdot g(n) \leq f(n) \leq c_{U} \cdot g(n)
$$

for all n in the domain of f such that $n \geq N_{0}$.

In essence this means that - up to positive multiplicative constants - the rate of growth of f is the same as the rate of growth of g.

One Way To Prove That $f \in \Theta(g)$

Once again, consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=4 x^{2}+2$ and $g(x)=x^{2}$.
Claim 13. $4 x^{2}+2 \in \Theta\left(x^{2}\right)$.
Proof. By the definition of " $\Theta\left(x^{2}\right)$ ", it suffices to show that there exist constants $c_{L}>0, c_{U}>0$ and $N_{0} \geq 0$ such that $c_{L} \cdot x^{2} \leq 4 x^{2}+2 \leq c_{U} \cdot x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
Let $c_{L}=4, c_{U}=5$, and $N_{0}=2$.
Now let x be arbitrarily chosen in \mathbb{R} such that $x \geq N_{0}=2$. Then

$$
c_{L} \cdot x^{2}=4 x^{2} \leq 4 x^{2}+2
$$

and

$$
\begin{array}{rlrl}
4 x^{2}+2 & \leq 4 x^{2}+x^{2} & & \left(\text { since } 2 \leq 4=2^{2} \leq x^{2}\right) \\
& =5 x^{2}=c_{U} \cdot x^{2} . &
\end{array}
$$

Thus

$$
c_{L} \cdot x^{2} \leq 4 x^{2}+2 \leq c_{U} \cdot x^{2}
$$

Figure 3: $4 x^{2}+2 \in \Theta\left(x^{2}\right)$

Since x was arbitrarily chosen from \mathbb{R} such that $x \geq N_{0}$ it now follows that

$$
c_{L} \cdot x^{2} \leq 4 x^{2}+2 \leq c_{U} \cdot x^{2}
$$

for all $x \in \mathbb{R}$ such that $x \geq N_{0}$ and, since $c_{L}=4, c_{U}=5$ and $N_{0}=2$ are constants such that $c_{L}, c_{U}>0$ and $N_{0} \geq 0$, this establishes the claim.

This can also be seen by an examination of the graph in Figure 3 on page 9.

Exercise: Modify the description of a process that can be followed to prove that $f \in O(g)$, using the definition of " $O(g)$ ", that is given above, to describe a process that can be followed to prove that $f \in \Theta(g)$ using the definition of " $\Theta(g)$ ". Ideally, you should then be able to confirm that the above proof is following the process you have described.

An Equivalent Definition - and Another Way To Prove that $f \in \Theta(g)$

Theorem 14. Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$ and that f and g are asymptotically positive. Then $f \in \Theta(g)$ if and only if $f \in O(g)$ and $f \in \Omega(g)$.

The proof of this follows (easily) from the definitions of $O(g), \Omega(g)$ and $\Theta(g)$ - Definitions 2, 7 and 12 , respectively - and is also left as an exercise.

This provides another way to prove that $f \in \Theta(g)$:

1. Prove that $f \in O(g)$... either by
(a) an application of the definition of $O(g)$, or
(b) using the limit text for $O(g)$.
2. Prove that $f \in \Omega(g)$ - either
(a) by an application of the definition of $\Omega(g)$,
(b) using the limit test for $\Omega(g)$, or
(c) by using transpose symmetry - that is, by proving that $g \in O(f)$, instead.

Note: One might apply by this, by observing that Claim 13 is now a corollary of Claims 3 and 9 .

A Common Mistake

People sometimes write " f is $O(g)$ " (which is yet another way to write " $f \in O(g)$ " or " $f=O(g)$ ") when they actually mean " $f \in \Theta(g)$."

You may even notice this in some textbooks and mathematical papers.
Please note that if $f \in O(g)$ then it is not necessarily true that $f \in \Theta(g)$ as well

- For example, as functions of $n, n \in O\left(n^{2}\right)$ but $n \notin \Theta\left(n^{2}\right)$.

So: If you want people to understand that " $f \in \Theta(g)$ " then this is what you should write!

Little-oh Notation

This, and the next, type of asymptotic notation, might not have been introduced before. However, they are both also extremely useful.

Definition

Definition 15. Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$, and that f and g are asymptotically positive. Then $\boldsymbol{f} \in \boldsymbol{o}(\boldsymbol{g})$ if it is true that for every constant $c>0$ there exists a constant $N_{0} \geq 0$ such that

$$
f(n) \leq c \cdot g(n)
$$

for all n in the domain of f such that $n \geq N_{0}$.
In essence, this means that the rate of growth of f is strictly less than that of g - regardless of any multiplicative constants.

One Way To Prove That $f \in o(g)$

Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x$ and $g(x)=x^{2}$.
Claim 16. $x \in o\left(x^{2}\right)$.
Proof. It follows by the definition of " $O\left(x^{2}\right)$ " that it is sufficient to show that for every constant $c>0$ there exists a constant N_{0} (which may depend on c), such that

$$
x \leq c \cdot x^{2}
$$

for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
With that noted, let c be an arbitrary real constant such that $c>0$.
Let N_{0} be the constant $1 / c$. (Since c now has a fixed positive value, $N_{0}=1 / c$ is a constant such that $N_{0} \geq 0$, as required here.)
Now let x be an arbitrarily chosen real number such that $x \geq N_{0}$. Then, since $c>0$ and $x \geq N_{0}=1 / c, c x \geq c N_{0}=1$. That is, $1 \leq c x$.

Thus (since $x \geq 0$ as well)

$$
\begin{aligned}
x & =1 \cdot x \\
& \leq(c x) . \\
& =c x^{2} .
\end{aligned}
$$

$$
\leq(c x) \cdot x \quad(\text { by the above })
$$

Now, since x was an arbitrarily chosen real number such that $x \geq N_{0}$, it follows that $x \leq c x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
It follows from that that there exists a constant $N_{0} \geq 0$ such that $x \leq c x^{2}$ for all $x \leq N_{0}$.
Finally, since c was an arbitrarily chosen real constant such that $c>0$, it follows that for all $c>0$, there exists a constant $N_{0} \geq 0$ such that $x \leq c x^{2}$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
It therefore follows by the definition of $o\left(x^{2}\right)$ that $x \in o\left(x^{2}\right)$.

This can also be seen by an examination of the graph in Figure 4 on page 12.

How Was This Proved?

The definition of " $O\left(x^{2}\right)$ " as applied:

1. The value c was set to be an arbitrarily chosen real constant such that $c>0$.

Figure 4: $x \in o\left(x^{2}\right)$
2. A value was then given for a constant N_{0} such that $N_{0} \geq 0$ and $f(x) \leq c g(x)$ for all n in the domain of f such that $x \geq N_{0}$.
Note that - as above, the value of N_{0} can (and virtually always must) depend on the value of c (now that c is "fixed" but unknown).
3. One should then set x to be an arbitrarily chosen element of the domain of f such that $x \geq N_{0}$.
4. One should then prove that $f(x) \leq c g(x)$ - without assuming anything more about x, N_{0}, or c.
5. One can then conclude that - since x was arbitrarily chosen - $f(x) \leq c g(x)$ for all x in the domain of f such that $x \geq N_{0}$.
6. One can conclude, from this, that there exists a constant $N_{0} \geq 0$ such that $f(x) \leq c g(x)$ for all x in the domain of f such that $x \geq N_{0}$.
7. Finally, since c was an arbitrarily chosen real constant such that $c>0$ one can conclude, from that, that for all $c>0$ there exists a constant N_{0} such that $f(x) \leq c g(x)$ for all x in the domain of f such that $x \geq N_{0}$.
8. It now follows by the definition of " $o(g)$ " that $f \in o(g)$.

Another Way To Prove That $f \in o(g)$ - Always!

Theorem 17 (Limit Test for $o(g)$). Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or that $f, g: \mathbb{N} \rightarrow \mathbb{N}$, and that f and g are asymptotically positive. Then $f \in o(g)$ if and only if

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=0 .
$$

Once again, the proof of this depends on the " $\epsilon-\delta$ definition of a limit", and is not included in these notes.

Note that this limit test can always be used if $f \in o(g)$ — provided that you are able to compute the limit in the theorem!

Alternate proof for Claim 16. Note that

$$
\lim _{x \rightarrow+\infty} \frac{x}{x^{2}}=\lim _{x \rightarrow+\infty} \frac{1}{x}=0
$$

If follows by the limit test for $o\left(x^{2}\right)$ that $x \in o\left(x^{2}\right)$

An Occasional Misunderstanding

Students sometimes believe that you can convert a proof that $f \in O(g)$ into a proof that $f \in o(g)$ by changing the inequality in the argument from " \leq " to " $<$."

This does not work.

This simply produces another proof that $f \in O(g)$. It is the quantification of the constant c (" \forall " instead of " \exists ") that is important here!

Little omega Notation

Definition

Definition 18. Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$, and that f and g are asymptotically positive. Then $f \in \omega(\boldsymbol{g})$ if it is true that for every constant $c>0$ there exists a constant $N_{0} \geq 0$ such that

$$
f(n) \geq c \cdot g(n)
$$

for all n in the domain of f such that $n \geq N_{0}$.

In essence, this means that the rate of growth of f is strictly greater than that of g - regardless of any multiplicative constants.

One Way To Prove That $f \in \omega(g)$

Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$ and $g(x)=x$.
Claim 19. $x^{2} \in \omega(x)$.
Proof. It follows by the definition of " $\omega(x)$ " that it is sufficient to show that for every constant $c>0$ there exists a constant N_{0} (which may depend on c), such that

$$
x^{2} \geq c \cdot x
$$

for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.
With that noted, let c be an arbitrary real constant such that $c>0$.
Let N_{0} be the constant c. (Since c now has a fixed positive value, $N_{0}=c$ is a constant such that $N_{0} \geq 0$, as required here.)
Now let x be an arbitrarily chosen real number such that $x \geq N_{0}$. Then, since $x \geq N_{0}=c>0$,

$$
\begin{array}{rlr}
x^{2} & =x \cdot x & \\
& \geq N_{0} \cdot x & \text { (since } \left.x \geq N_{0} \text { and } x>0\right) \\
& =c \cdot x & \left(\text { since } N_{0}=c\right) .
\end{array}
$$

Now, since x was an arbitrarily chosen real number such that $x \geq N_{0}$, it follows that $x^{2} \geq c \cdot x$ for all $x \in \mathbb{R}$ such that $x \geq N_{0}$.

It follows from that that there exists a constant $N_{0} \geq 0$ such that $x^{2} \geq c \cdot x$ for all $x \geq N_{0}$.
Finally, since c was an arbitrarily chosen real constant such that $c>0$, it follows that for all $c>0$, there exists a constant $N_{0} \geq 0$ such that $x^{2} \geq c \cdot x$ for all $x \in \mathbb{R}$ such that $x^{2} \geq c \cdot x$.
It therefore follows by the definition of " $\omega(x)$ " that $x^{2} \in \omega(x)$.
This can also be seen by an examination of the graph in Figure 5 on page 15.

How Was This Proved?

The structure of the definition of $\omega(g)$ is identical to that of the definition of $o(g)$ - only an inequality with " \geq " appears instead of an inequality with " \leq.

Figure 5: $x^{2} \in \omega(x)$

So the structure of a proof (by application of the definition) that $f \in \omega(g)$ will be identical to the structure of a proof (by application of the definition) of $f \in o(g)$ - except that you will be working with inequalities including " \geq " instead of inequalities including " \leq ".

Exercise: Compare the proofs of Claims 16 and 19 in order to confirm that the structures of these proofs really are the same.

Another Way To Prove That $f \in \omega(g)$ - Always!

Theorem 20 (Limit Test for $\omega(g)$). Suppose that either $f, g: \mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$ and that f and g are asymptotically positive. Then $f \in \omega(g)$ if and only if

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=+\infty
$$

Once again, a proof of this depends on the " $\epsilon-\delta$ definition of a limit" and is not included in these notes.

Note: Like the limit test for $o(g)$, this limit test can always be used if $f \in \omega(g)$ - provided that you are able to compute the limit in the theorem!

Exercise: Use Theorem 20 to provide a different proof for Claim 19.

Yet Another Way To Prove That $f \in \omega(g)$

Theorem 21 (Transpose Symmetry for little-oh and little-omega). Suppose that either f, g : $\mathbb{R} \rightarrow \mathbb{R}$ or $f, g: \mathbb{N} \rightarrow \mathbb{N}$ and that f and g are asymptotically positive. Then $f \in o(g)$ if and only if $g \in \omega(f)$.

Once again, a proof of this is easily obtained using the definitions of little-oh and little-omega (Definitions 15 and 18, respectively) and is left as an exercise.

Exercise: Use this to confirm that Claim 19 is just a corollary (or "straightforward consequence") of Claim 16.

Standard Functions

Polynomial Functions

Definition 22. Let $d \in \mathbb{N}$. A polynomial function with degree d is a function

$$
p(n)=a_{d} n^{d}+a_{d-1} n^{d-1}+\cdots+a_{1} n+a_{0}
$$

where $a_{d}, a_{d-1}, \ldots, a_{1}, a_{0} \in \mathbb{R}$ and $a_{d} \neq 0$.

- If $a_{d}>0$ then $p(n) \in \Theta\left(n^{d}\right)$.
- If $a_{d}>0$ then $p(n) \in o\left(n^{e}\right)$ for all $e \in \mathbb{R}$ such that $e>d$, and $p(n) \in \omega\left(n^{f}\right)$ for all $f \in \mathbb{R}$ such that $f<d$.

You should take advantage of the above, when using asymptotic notation to write down information about the worst case running times of algorithms, when these functions are polynomials functions (with some degree d) of the input size n.

Exponential Functions

Definition 23. An exponential function of n is a function $e(n)=a^{n}$ for some value $a \in \mathbb{R}$ such that $a>0$.

- If $a>1$ then $e(n) \in \omega(p(n))$ for every polynomial function p of n - no matter how high the degree of p is!
- If $a=1$ then $a(n)=1$, so $a(n) \in \Theta(1)$.
- If $a<1$ then $a(n) \in o(1)$.

Furthermore, if $a, b \in R, a, b>0, e_{a}(n)=a^{n}$ and $e_{b}(n)=b^{n}$, then

- $e_{a}(n) \in o\left(e_{b}(n)\right)$ if $a<b$,
- $e_{a}(n) \in \Theta\left(e_{b}(n)\right)$ if $a=b$, and
- $e_{a}(n) \in \omega\left(e_{b}(n)\right)$ if $a>b$.

Exponential functions also arise as the (worst case) running times of algorithms.

Logarithmic Functions

Definition 24. A logarithmic function is a function $\ell(n)=\log _{a} n$ for $a \in R$ such that $a>1$.

- If $a, b \in \mathbb{R}$ such that $a>1$ and $b>1, \ell_{a}(n)=\log _{a} n$ and $\ell_{b}(n)=\log _{b} n$, then $\ell_{a}(n) \in \Theta\left(\ell_{b}(n)\right)$.
- If $a \in \mathbb{R}$ such that $a>1, \ell_{a}(n)=\log _{a} n$, and p is a polynomial function with degree $d \geq 1$ whose leading coefficient is positive, then $\ell_{a}(n) \in o(p(n))$.

Logarithmic functions can arise as the worst case running times of algorithms (or as factors of these running times) too.

For Further Reading

Most of the material on asymptotic notation and standard functions, given above, can be found (with different examples) in Chapter 3 of the text Introduction to Algorithms [1]. This also includes information about other kinds of functions that can arise as running times for algorithms.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, third edition, 2009.

