Asymptotic Notation and Standard Functions Solutions for a Suggested Exercise

- 1. For each of the following functions f and g, you were asked to use asymptotic notation to express the relationship between these functions as you can assuming that k, ϵ and c are constants such that $k \ge 1$, $\epsilon > 0$, and c > 1.
 - (a) $f(n) = \log_2^k n$ and $g(n) = n^{\epsilon}$. Solution: $\log_2^k n \in o(n^{\epsilon})$.

Justification: It can be shown, by induction on k, that if $k \ge 0$ then

$$\lim_{n \to +\infty} \frac{\log_2^k n}{n^\epsilon} = 0.$$

l'Hôpital's rule is used in the inductive step.

(b) $f(n) = n^k$ and $g(n) = c^n$. Solution: $n^k \in o(c^n)$.

Justification: See the information about the relationship between polynomial functions and exponential functions included in Lecture #6.

(c) $f(n) = \sqrt{n}$ and $g(n) = n^{\sin n}$ — assuming here, that (when computing $\sin n$) n is some number of *degrees* rather than *radians*.

Solution: There is *no* relationship between these functions that can be expressed using the kinds of asymptotic notation introduced in this course!

Justification: Notice that — when n is a value given in degrees — sin(n) has value 1 infinitely often (and for arbitrarily large n). Thus g(n) = n infinitely often, so that $g(n) = f(n)^2$ infinitely often (and, again, for arbitrarily large n). If we restricted attention to the values of n such that this is the case then it would seem that $f(n) \in o(g(n))$.

On the other hand, $\sin(n)$ has value -1 infinitely often (and for arbitrarily large n). If we restricted attention to the values of n that this is the case then it would seem like f(n) was *increasing* with n while g(n) was *decreasing* with n, and approaching zero, so that $f(n) \in \omega(g(n))$ instead.

Indeed, an examination of the relationships between f and g included in the definitions for O(g), $\Omega(g)$, $\Theta(g)$, o(g) and $\omega(g)$ confirms that none of them are satisfied.

(d) $f(n) = 2^n$ and $g(n) = 2^{n/2}$ Solution: $2^n \in \omega(2^{n/2})$.

Justification: See the information about the relationship between exponential functions included in Lecture #6.

(e) $f(n) = n^{\log_2 c}$ and $g(n) = c^{\log_2 n}$ Solution: $f \in \Theta(q)$.

Justification

$$f(n) = n^{\log_2 c} = 2^{(\log_2 n) \cdot (\log_2 c)} = c^{\log_2 n} = g(n)$$

so that, in fact, f(n) = g(n) — these are just two different ways to write the same function!

- 2. Let $f(n) = 3n^3 + 2n + 1$ and let $g(n) = n^3$.
 - (a) You were asked to use the *definition* of O(g) to prove that $f \in O(g)$.

Solution:

Claim: $3n^3 + 2n + 1 \in O(n^3)$.

Proof: It follows by the definition of " $O(n^3)$ " that it suffices to show that *there exist* constants c > 0 and $N_0 \ge 0$ such that, for all n in the domain of f and g such that $n \ge N_0$, $n^3 + 2n + 1 \le c \cdot n^3$.

Let c = 6 and N_0 . Then c and N_0 are certainly constants such that c > 0 and $N_0 \ge 0$.

Now let x be an arbitrarily chosen real number¹ such that $x \ge N_0 = 1$. Then

$$3n^3 + 2n + 1 \le 3n^3 + 2n^3 + n^3$$
 (since $n \le n^3$ and $1 \le n^3$ if $n \ge 1$)
= $6n^3$
= $c \cdot n^3$,

as required.

Now, since x was arbitrarily chosen such that $x \le N_0 = 1$, it follows that $n^3 + 3n + 1 \le c \cdot n^3$ for all n in the domain of f such that $n \ge N_0$.

Thus, there exist constants c > 0 and $N_0 \ge 0$ such that $n^3 + 3n + 1 \le c \cdot n^3$ for all n in the domain of f such that $n \ge N_0$.

It follows by the definition of " $O(n^3)$ " that $n^3 + 3n + 1 \in O(n^3)$.

(b) You were asked to use a *limit test* to prove that $f \in O(g)$. Solution: Note that

$$\lim_{n \to +\infty} \frac{n^3 + 3 + 1}{n^3} = \lim_{n \to +\infty} \left(1 + \frac{3}{n^2} + \frac{1}{n^3} \right) = 3.$$

¹or natural number: The argument is the same, either way.

Since the limit of this ratio exists and is a constant — not equal to $+\infty$ — it follows by the "Limit Test for O(g)" that $n^3 + n + 1 \in O(n^3)$.

(c) Now that you have computed the limit needed to answer the previous part of this question, you were asked to consider the other "limit tests" for asymptotic notation. What *else* can concluded, about the relationship between f and g, based on the limit that you have computed?

Solution: Since the above limit is a *positive* constant — not equal to 0 — it follows by the "Limit Test for $\Omega(g)$ " that $n^3 + 3n + 1 \in \Omega(n^3)$ as well.

This implies that $n^3 + 3n + 1 \in \Theta(n^3)$.

Since the limit is neither equal to $0 \text{ or } +\infty$, the "Limit Test for o(g)" and the "Limit Test for $\omega(g)$ " can be applied to conclude that $n^3 + 3n + 1 \notin o(n^3)$ and $n^3 + 3n + 1 \notin \omega(n^3)$.