Asymptotic Notation and Standard Functions Solutions for a Suggested Exercise

1. For each of the following functions f and g, you were asked to use asymptotic notation to express the relationship between these functions as you can - assuming that k, ϵ and c are constants such that $k \geq 1, \epsilon>0$, and $c>1$.
(a) $f(n)=\log _{2}^{k} n$ and $g(n)=n^{\epsilon}$.

Solution: $\log _{2}^{k} n \in o\left(n^{\epsilon}\right)$.
Justification: It can be shown, by induction on k, that if $k \geq 0$ then

$$
\lim _{n \rightarrow+\infty} \frac{\log _{2}^{k} n}{n^{\epsilon}}=0 .
$$

l'Hôpital's rule is used in the inductive step.
(b) $f(n)=n^{k}$ and $g(n)=c^{n}$.

Solution: $n^{k} \in o\left(c^{n}\right)$.
Justification: See the information about the relationship between polynomial functions and exponential functions included in Lecture \#6.
(c) $f(n)=\sqrt{n}$ and $g(n)=n^{\sin n}$ - assuming here, that (when computing $\sin n$) n is some number of degrees rather than radians.
Solution: There is no relationship between these functions that can be expressed using the kinds of asymptotic notation introduced in this course!
Justification: Notice that - when n is a value given in degrees $-\sin (n)$ has value 1 infinitely often (and for arbitrarily large n). Thus $g(n)=n$ infinitely often, so that $g(n)=f(n)^{2}$ infinitely often (and, again, for arbitrarily large n). If we restricted attention to the values of n such that this is the case then it would seem that $f(n) \in o(g(n))$.
On the other hand, $\sin (n)$ has value -1 infinitely often (and for arbitrarily large n). If we restricted attention to the values of n that this is the case then it would seem like $f(n)$ was increasing with n while $g(n)$ was decreasing with n, and approaching zero, so that $f(n) \in \omega(g(n))$ instead.
Indeed, an examination of the relationships between f and g included in the definitions for $O(g), \Omega(g), \Theta(g), o(g)$ and $\omega(g)$ confirms that none of them are satisfied.
(d) $f(n)=2^{n}$ and $g(n)=2^{n / 2}$

Solution: $2^{n} \in \omega\left(2^{n / 2}\right)$.
Justification: See the information about the relationship between exponential functions included in Lecture \#6.
(e) $f(n)=n^{\log _{2} c}$ and $g(n)=c^{\log _{2} n}$

Solution: $f \in \Theta(g)$.
Justification

$$
f(n)=n^{\log _{2} c}=2^{\left(\log _{2} n\right) \cdot\left(\log _{2} c\right)}=c^{\log _{2} n}=g(n)
$$

so that, in fact, $f(n)=g(n)$ - these are just two different ways to write the same function!
2. Let $f(n)=3 n^{3}+2 n+1$ and let $g(n)=n^{3}$.
(a) You were asked to use the definition of $O(g)$ to prove that $f \in O(g)$.

Solution:

Claim: $3 n^{3}+2 n+1 \in O\left(n^{3}\right)$.
Proof: It follows by the definition of " $O\left(n^{3}\right)$ " that it suffices to show that there exist constants $c>0$ and $N_{0} \geq 0$ such that, for all n in the domain of f and g such that $n \geq N_{0}, n^{3}+2 n+1 \leq c \cdot n^{3}$.
Let $c=6$ and N_{0}. Then c and N_{0} are certainly constants such that $c>0$ and $N_{0} \geq 0$.
Now let x be an arbitrarily chosen real number ${ }^{1}$ such that $x \geq N_{0}=1$. Then

$$
\begin{aligned}
3 n^{3}+2 n+1 & \leq 3 n^{3}+2 n^{3}+n^{3} \quad\left(\text { since } n \leq n^{3} \text { and } 1 \leq n^{3} \text { if } n \geq 1\right) \\
& =6 n^{3} \\
& =c \cdot n^{3},
\end{aligned}
$$

as required.
Now, since x was arbitrarily chosen such that $x \leq N_{0}=1$, it follows that $n^{3}+3 n+$ $1 \leq c \cdot n^{3}$ for all n in the domain of f such that $n \geq N_{0}$.
Thus, there exist constants $c>0$ and $N_{0} \geq 0$ such that $n^{3}+3 n+1 \leq c \cdot n^{3}$ for all n in the domain of f such that $n \geq N_{0}$.
It follows by the definition of " $O\left(n^{3}\right)$ " that $n^{3}+3 n+1 \in O\left(n^{3}\right)$.
(b) You were asked to use a limit test to prove that $f \in O(g)$.

Solution: Note that

$$
\lim _{n \rightarrow+\infty} \frac{n^{3}+3+1}{n^{3}}=\lim _{n \rightarrow+\infty}\left(1+\frac{3}{n^{2}}+\frac{1}{n^{3}}\right)=3 .
$$

[^0]Since the limit of this ratio exists and is a constant - not equal to $+\infty$ - it follows by the "Limit Test for $O(g)$ " that $n^{3}+n+1 \in O\left(n^{3}\right)$.
(c) Now that you have computed the limit needed to answer the previous part of this question, you were asked to consider the other "limit tests" for asymptotic notation. What else can concluded, about the relationship between f and g, based on the limit that you have computed?
Solution: Since the above limit is a positive constant - not equal to 0 - it follows by the "Limit Test for $\Omega(g)$ " that $n^{3}+3 n+1 \in \Omega\left(n^{3}\right)$ as well.
This implies that $n^{3}+3 n+1 \in \Theta\left(n^{3}\right)$.
Since the limit is neither equal to 0 or $+\infty$, the "Limit Test for $o(g)$ " and the "Limit Test for $\omega(g)$ " can be applied to conclude that $n^{3}+3 n+1 \notin o\left(n^{3}\right)$ and $n^{3}+3 n+1 \notin$ $\omega\left(n^{3}\right)$.

[^0]: ${ }^{1}$ or natural number: The argument is the same, either way.

