

Computer Science
for
Visitants

Jalal Kawash

CPSC 203 Course Notes

© Jalal Kawash 2009

2

 Computer Science for Visitants

3

Contents

Chapter 1

FFiirrsstt TThhiinnggss FFiirrsstt:: LLooggiicc aanndd SSeett TThheeoorryy ... 5

 I – Propositional Logic ... 5

 II – Naïve Set Theory ... 14

 Exercises ... 19

Chapter 2

MMaakkiinngg CCoommppuutteerrss TThhiinnkk:: PPrrooggrraammss ... 19

 I –Algorithms and Programs .. 20

 II – Programming in Jython .. 21

 III – Searching and Sorting ... 35

 Exercises ... 41

Chapter 3

OOrrggaanniizzeedd TThhoouugghhtt:: GGrraapphhss aanndd TTrreeeess .. 41

 I – Graphs.. 42

 II – Graph Coloring .. 46

 III – Finite State Machines ... 50

 IV – Trees .. 53

 V – Huffman’s Coding .. 56

 Exercises .. 62

Chapter 4

LLeeaavveerrss aanndd GGeeaarrss:: HHooww DDoo CCoommppuutteerrss WWoorrkk??... 62

 I – The Big Picture .. 63

 II – Binary Numbers.. 70

 III –Boolean Logic Circuits... 77

 IV – Finite State Machines as Logic Circuits .. 91

 V – Relationship Between HL and LL Programs ... 93

 Exercises ... 95

4

Chapter 5

TTaammiinngg DDaattaa DDiinnaassoouurrss:: DDaattaabbaasseess... 94

 I – Data Modeling ... 96

 II– Mapping ERD to a Schema ... 101

 III– Design Principles ... 107

 IV– Tables and Relations ... 110

 V– Querying the Database .. 111

 Exercises .. 121

Chapter 6

MMiinngglliinngg CCoommppuutteerrss:: NNeettwwoorrkkiinngg ... 120

 I – Basics of Networking ... 122

 II – Secure Communication .. 128

 Exercises .. 131

Chapter 1
FFiirrsstt TThhiinnggss FFiirrsstt::
LLooggiicc aanndd SSeett TThheeoorryy

Logic and sets are central to understanding Computer Science. Logic aims at helping us give formal
unambiguous statements and the rules of logic provide us with a very important tool: reasoning.
Mathematics is crucial for computers and logic is at the heart of Mathematics. Logic is the basis of
designing computing devices and formulating computer programs.

Much of Computer Science is devoted to the study of objects and set theory comes in handy for the
representation of objects and their relationships. A set is simply a collection of unordered objects and a
relation is a set of ordered pairs. Graphs, trees, and finite state machines (which will be studied later)
are founded on set theory.

This chapter serves as a required background for the coming chapters. It must be carefully studied
before attempting subsequent chapters.

I – Propositional Logic

A proposition is a declarative sentence which must be true or false, but not both. True and false are
called truth values. The area of logic that studies propositions is called propositional logic (or calculus).

EXAMPLE 1 – Propositions

1. Calgary is the capital of Canada
2. British Columbia is a province of Canada
3. 6 + 5 < 3
4. 6 + 5 > 3

All of these statements are propositions; each has a truth value which is either true or false. For instance
propositions 1 and 3 are false, but 2 and 4 are true. The following statements are not propositions:

5. Do you like CPSC 203?
6. Study hard for this course
7. 2x > 12

Statement 7 is worth a little more explanation. It is not possible to determine the truth value of
statement 7, if the value of x is unknown. The statement may be true (for instance when x is 10 or 11)
and could be false as well (when x is 1 or 5). This statement can be converted to a proposition if the
value of x is fixed. However, we will see later how to convert it to a proposition without fixing the value
of the variable x, using predicate logic.

6

Compound propositions: Compound propositions can be built by combining one or more propositions,
using logical operators. There are three major logical operators:

1. Negation, the not operator
2. Conjunction, the and operator
3. Disjunction, the or operator

EXAMPLE 2 – Compound propositions

The following are compound propositions:
1. It is raining today AND it is very warm
2. At 12:00 today, I will be eating OR I will be home
3. I will NOT be home at 6

If P is a proposition, then NOT P is also a proposition. NOT P is true when P is false and it is false when P
is true. This is typically defined using a truth table, which simply displays all the combinations of truth
values of propositions.

Truth table for negation

P NOT P

F T

T F

If P and Q are propositions, then P AND Q is also a proposition. P AND Q is true when both P and Q are
true, otherwise (at least one of P or Q is false) it is false.

Truth table for conjunction

P Q P AND Q

F F F

F T F

T F F

T T T

If P and Q are propositions, then P OR Q is also a proposition. P OR Q is false when both P and Q are
false, otherwise (at least one of P or Q is true) it is true.

Truth table for disjunction

P Q P OR Q

F F F

F T T

T F T

T T T

 Computer Science for Visitants

7

The or operator is inclusive. P OR Q simply states that the compound proposition is true if P is true, Q is
true, or both are true. Often, we use an exclusive version of or in our daily logic. The proposition:
Tonight, I will be at home or at school does not admit inclusion. That is, if I am at home, then definitely I
am not at school and vice-versa. The proposition I will be at home and the proposition I will be at school
mutually exclude each other. In other words, both cannot be true at the same time. This gives rise to a
fourth logic operator exclusive or (abbreviated XOR).

If P and Q are propositions, then P XOR Q is also a proposition. P XOR Q is true when exactly one of P or
Q is true, otherwise it is false.

Truth table for exclusive or

P Q P XOR Q

F F F

F T T

T F T

T T F

Logical equivalence: Two compound propositions are said to be logically equivalent, if they have the
same truth values in all possible cases. A truth table is a handy tool in showing logical equivalence.

EXAMPLE 3 – XOR

The XOR operation is redundant in the sense that it can be expressed using the three core operators:
not, and , and or. The proposition P XOR Q is equivalent to (P OR Q) AND NOT (P AND Q) as is
demonstrated by the following truth table. It can be verified from this table that the truth values in
columns 3 and 7 are the same.

P Q P XOR Q P OR Q P AND Q NOT
(P AND Q)

(P OR Q)
AND

NOT (P AND Q)

F F F F F T F

F T T T F T T

T F T T F T T

T T F T T F F

EXAMPLE 4 – De Morgan’s rules

1. The proposition NOT (A AND B) is equivalent to (NOT A) OR (NOT B)
2. The proposition NOT (A OR B) is equivalent to (NOT A) AND (NOT B)
Verification of these logical equivalences can be done using truth tables and is left as an exercise.

8

Implication: Often compound propositions can be constructed using an if-then structure. We have used
this structure in defining compound propositions: If P is a proposition, then NOT P is also a proposition …
This form is captured in logic using the implication operator, denoted P → Q and read “P implies Q” or
“If P then Q”.

If P and Q are propositions, then P → Q is also a proposition. P → Q is false when P is true but Q is false,
otherwise it is true.

Truth table for implication

P Q P → Q

F F T

F T T

T F F

T T T

The definition of implication is intriguing. It states that you can start from a false premise and arrive at
any conclusion (true or false), but starting from a true premise, you can only arrive at true conclusions.

EXAMPLE 5 – Implication

Consider the proposition: If you have a Canadian passport, then you are a Canadian citizen. If we let P =
“You have a Canadian passport” and Q = “You are a Canadian citizen”, then it is clear that this
proposition is P → Q.

If both P and Q are false, then P → Q is simply true. There is nothing wrong in not having a Canadian
passport while you are not a Canadian citizen. In fact, all those who are not Canadian citizens do not
have a Canadian passport. Isn’t this the way it should be?

When P is false and Q is true, then P → Q is also true. If you do not have a Canadian passport, you can
still be a Canadian citizen. Not all Canadian citizens have Canadian passports; they only obtain one if
they need to.

When both P and Q are true, then P → Q is also true. This does not require much explanation. If
someone has a Canadian passport and is a Canadian citizen then the statement is true.

The last case is when P is true and Q is false. Here, P → Q is false. It can never be the case that someone
has a Canadian passport, yet s/he is not a Canadian citizen. This is impossible and hence the proposition
P → Q is false in this case.

Just like XOR, implication is redundant and can be expressed using the core logical operators: not, and,
and or. The proposition P → Q is logically equivalent to (NOT P) OR Q. Verification using a truth table is
left as an exercise.

 Computer Science for Visitants

9

Contrapositive: an implication P → Q is always equivalent to (NOT Q) → (NOT P); the latter is called the
contrapositive of P → Q. This equivalence can be verified using a truth table and is left as an exercise.

Precedence of logical operators: If a complex proposition does not have brackets such as NOT Q AND B,
we have to specify precedence rules so that the meaning of the proposition does not result in confusion.
For instance does NOT Q AND B mean NOT (Q AND B) or does it mean (NOT Q) AND B. When there are
no brackets, the operators are applied in the following order:

1. NOT
2. AND, OR, or XOR
3. Implication

That is, NOT Q AND B means (NOT Q) AND B because NOT has a higher precedence over AND and is
applied first. When operators have equal precedence, they should be applied left-to-right as they
appear in the proposition. For example, A AND B OR C is the same as (A AND B) OR C. The AND is applied
first because it occurs first in the proposition.

To avoid such confusions, it is always a good idea to use brackets as we have been doing throughout our
examples.

Tautologies and Contradictions: A tautology is a proposition that is always true. A contradiction is a
proposition that is always false. A proposition that is neither a tautology nor a contradiction is called a
contingency.

The simplest tautology is P OR (NOT P). This is going to be always true regardless of what the value of P
is, as evident from the following truth table:

P NOT P P OR (NOT P)

F T T

T F T

The simplest contradiction is P AND (NOT P). This is going to be always false regardless of what the value
of P is, as evident from the following truth table:

P NOT P P AND (NOT P)

F T F

T F F

Logical Inference: Inference is the process of building arguments and making valid conclusions starting
from some hypotheses. We use inference all the time in our daily logic. If some knows that you have to
pass a required course to graduate; and we also know that Mr. X did not pass a required course; then we
can conclude that Mr. X is not graduating.

10

We do not intend to have a comprehensive coverage of inference rules here. Instead, we limit
discussion to 3 famous examples of inference rules.

Modus Ponens:

A → B
A

B

Before explaining Modus Ponens, let’s explain the notation being used. An argument consists of some
propositions, written each on a separate line and a conclusion, written under the “-------“. The Modus
Ponens rule is read as follows: If we know that A implies B and we also know that A is true, then B must
be true.

EXAMPLE 6 – Modus Ponens

Assume that P = “Alice has a Canadian passport” and Q = “Alice is a Canadian citizen”.
P → Q : If Alice has a Canadian passport, then Alice is a Canadian citizen
P : Alice has a Canadian passport

Q : We can conclude that Alice must be a Canadian citizen

Note that in a rule of inference, such as Modus Ponens, the conclusion is true as long as the premises
are true. In fact, Modus Ponens is based on the following tautology: *(A → B) AND A+ → B. The
verification is left as an exercise.

Modus Tollens:

A → B
NOT B

NOT A

The Modus Tollens rule is read as follows: If we know that A implies B and we also know that B is false
(alternatively, NOT B is true), then A must be false. Modus Tollens is based on the following tautology:
*(A → B) AND NOT B+ → NOT A. The verification is left as an exercise.

EXAMPLE 7 – Modus Tollens

Assume that P = “Alice has a Canadian passport” and Q = “Alice is a Canadian citizen”.
P → Q : If Alice has a Canadian passport, then Alice is a Canadian citizen
NOT Q : Alice is not a Canadian citizen

NOT P : We can conclude that Alice does not have a Canadian passport

 Computer Science for Visitants

11

Hypothetical Syllogism:

A → B
B → C

A → C

The Hypothetical Syllogism rule is read as follows: If we know that A implies B and we also know that B
implies C, then A implies C. Hypothetical Syllogism is based on the following tautology: *(A → B) AND (B
→ C)+ → (A → C). The verification is also left as an exercise.

EXAMPLE 8 – Hypothetical Syllogism

Assume that P = “You have more than two drinks”, Q = “You’re unable to drive”, and R = “You need a
ride”.
P → Q : If you have more than two drinks, then you’re unable to drive
Q → R : If you’re unable to drive, then you need a ride

P → R : We can conclude that if you have more than two drinks, then you need a ride

EXAMPLE 9 – Logical inference

Given the hypotheses:
1. If you send me your part of the project, I will finish the project
2. If you do not send me your part of the project, I will go out drinking
3. If I go out drinking, I will sleep in
4. If I sleep in, I will miss my Computer Science class
5. You did not send me your part of the project
We can conclude that: “I will miss my Computer Science class”.

Let S = “you send me your part of the project”, F=” I will finish the project”, D=”I will go out drinking”, I =
“I will sleep in” and M = “I will miss my Computer Science class”. Here is an argument:

12

Predicate logic: We have argued earlier that statements involving variables are not propositions, if the
value of the variable is unknown. For example, x > 0 is not a proposition. A statement of this form is
called a predicate. A predicate has two parts: the variables involved and the statement about the
variables.

EXAMPLE 10 – Predicates

 Let Positive(x) denote the statement x > 0. Positive(1) is true, but Positive(-6) is false.

 Let Greater(x,y) denote the statement x > y. Greater(1,2) is false, but Greater(2,1) is true.

Predicates can be made propositions by fixing the value of the variable, such as Positive(1). However,
quantification is a very powerful way by which predicates are converted to propositions without fixing
the variable values. There are two types of quantifiers: universal and existential. Quantification requires
a universe of discourse, the collection of values from which a variable can be fixed. With the predicate
Positive(x), the universe of discourse is assumed to be the collection of all numbers. If for instance, Fido
is a dog, the statement Positive(Fido) does not make any sense. Fido is not in our universe of discourse.

Universal quantification: Let P(x) be a predicate, then x P(x) is a proposition. x P(x) is true when P(x)
is true for all the values of x in the universe of discourse.

EXAMPLE 11 – Universal quantification

 If the universe of discourse is all numbers, then x Positive(x) is false because not all numbers are
greater than 0.

 Let RW(x) = “x can read and write” and U(x) = “x is a university student”. If the universe of discourse

is all human beings, then the following proposition is always true: x (U(x) → RW(x)). In plain
English, all humans who are university students can read and write. Note however, that the

proposition x (U(x) AND RW(x)) is always false, since it asserts that all humans are university
students and that they can read and write.

Existential quantification: Let P(x) be a predicate, x P(x) is a proposition. x P(x) is true when P(x) is
true for at least one value of x in the universe of discourse.

EXAMPLE 12 – Existential quantification

 If the universe of discourse is all numbers, then x Positive(x) is true because there is at least one
value in the universe of discourse, which is positive, say 1.

 Let RW(x) = “x can read and write” and U(x) = “x is a university student”. If the universe of discourse

is all human beings, then the following proposition is always false: x (U(x) AND NOT RW(x)). In plain
English, It is not possible to find a human who is a university student and cannot read and write (at
least you hope so).

 Computer Science for Visitants

13

EXAMPLE 13 – Quantification

Universe of discourse: all earth creatures. Let M(x)= “x is a monkey” and F(x)= “x lives in a forest”.

1. The following statement states that some monkeys live in forests: x M(x) AND F(x), and this
proposition is true.

2. How would we express in logic, the statement all monkeys live in forests? One obvious attempt is:

x M(x) AND F(x), but this is wrong. This statement says that all earth creatures are monkeys and

live in forests! The proper way is: x M(x) → F(x), meaning that from all creatures if x is a monkey,

then x lives in a forest. Since not all monkeys live in forests, the proposition x M(x) → F(x) is false.

Quantifier equivalence:

 x P(x) is equivalent to NOT x NOT P(x)
Saying all monkeys are black is the same as saying there is no one monkey which is not black

 x P(x) is equivalent to NOT x NOT P(x)
The statement there is at least one student who likes the course is logically the same as it is not
the case that all students do not like the course

14

II – Naïve Set Theory

A set is an unordered collection of unique objects. The objects of a set are called elements or members
of the set. Order of objects in a set is irrelevant. Also, the objects must be unique, that is, in a set an
element cannot be repeated.

EXAMPLE 14 – Set notation

Small sets can be represented by listing its members
 A = {paper, scissors, rock}

A is the set of all possible choices in the game
 B = {pawn, rook, knight, bishop, queen, king}

B is the set of all chess pieces
 C = {1, 2, 3, 4, 5}
C is the set all positive integers less than or equal to 5

It is not always possible to list all members of a set. Some sets are very large (and some are infinite).
Large sets can be represented using the set builder notation
 A = {x | x is a current student at UofC}

A is the set of all current students at UofC
 B = {x | x is an even number}

B is the set of all even numbers; this is an infinite set

EXAMPLE 15 – Duplicate elements

The set {paper, scissors, rock} is the same as the set {paper, scissors, rock, rock}. We should not repeat
elements in a set.

EXAMPLE 16 – Order of elements

The order of members in a set is immaterial: {paper, scissors, rock}, {scissors, rock, paper}, and {rock,
scissors, paper} all represent the same set.

Ordered tuples: We use curly brackets (braces) to represent sets, for instance {rock, paper} which is the
same set as {paper, rock}. If the order of members is important we use ordered tuples. Ordered tuples
are listed between parentheses. An example order pair (tuple of two members) is : (rock, paper). Note
that (rock, paper) ≠ (paper, rock). Here the order of elements is important. These pairs could be
representing the move choices in the paper-scissors-rock game of two players. (rock, paper) would
mean that player 1’s choice is rock, and player 2’s choice is paper, while (paper,rock) would mean the
opposite.

A tuple of size n has the general form: (v1, v2, v3, … vn). In tuples, repetition of elements is allowed. The
tuple (90, 85, 90, 80, 95) could be the grades corresponding to the project grades of a team of 5
students. Students 1 and 3 have the same grade.

 Computer Science for Visitants

15

Set inclusion: A set A is said to be a subset of set B, written A  B, if all the elements of A are also
elements of B.

EXAMPLE 17 – Set inclusion

 {1,2}  {1,2,7}

 {a}  {x | x is a letter in the English alphabet}

 {H,I,T}  {H,I,T}

Note that element membership in a set is denoted differently: H  {H,I,T} signifies that H is an element

of the set {H,I,T}, but the set notation {H}  {H,I,T} says that the set containing the single element H is a
subset of {H,I,T}.

Venn Diagrams are a pictorial way of representing sets. A set is drawn as an ellipse and the member
elements are indicated inside the ellipse.

EXAMPLE 18 – Venn diagrams (inclusion)

The following Venn diagram shows the set of English alphabets (in red) and the letter of the word HIT for
another set which is simply a subset of the English alphabets.

Venn diagram showing the set of English
alphabets and the set {H,I,T}

16

EXAMPLE 19 – Venn diagrams (inclusion)

This partial example of the set of mammals group humans as a subset of mammals. Elephants are also a
subset of mammals. Humans can be further portioned into men and women.

Venn diagram showing the relationship
between mammals, humans, and elephants

Set intersection: The set A  B = set of all elements that are common between sets A and B. More

formally, A  B = { x | x  A AND x  B}.

EXAMPLE 20 – Set intersection

Let A = {1, 6, 8}, B = {1, 3, 5, 7}, C = {3, 5, 7}

A  B = {1}

B  C = {3, 5, 7} = C

A  C = {}, the empty set, also denoted 

EXAMPLE 21 – Venn diagrams (intersection)

Lions belong to the intersection of carnivorous creatures and objects with four legs, Hawks and cows do
not

Venn diagram showing partial relationship
between carnivorous creatures and four-legged objects

 Computer Science for Visitants

17

Set union: The set A  B = set of all elements that are in A plus these that are in B. More formally, A  B

= { x | x  A OR x  B}.

EXAMPLE 22 – Set union

Let A = {1, 6, 8}, B = {1, 3, 5, 7}, C = {3, 5, 7}

A  B = {1, 3, 5, 6, 7, 8}

B  C = {1, 3, 5, 7} = B

A  C = {1, 3, 5, 6, 7, 8}

Set difference: The set A – B = set of all elements that are in A minus these that are in B. More formally,

A - B = { x | x  A AND x  B} (note that NOT (x  B) is denoted x  B).

EXAMPLE 23 – Set difference

Let A = {1, 6, 8}, B = {1, 3, 5, 7}, C = {3, 5, 7}
A = {1, 6, 8}, B = {1, 3, 5, 7}, C = {3, 5, 7}
A – B = {6, 8}
B – C = {1}

C – B = {} = 
C – A = C

EXAMPLE 24 – Venn diagrams (difference)

Given that some countries are Francophone and also part of the Common Wealth, such as Canada, The
set of Common Wealth countries that are not Francophone is simply the former set minus the latter
(indicated in Orange)

Venn diagram showing set difference

Set multiplication: The set A × B = { (a,b) | a  A AND b  B}. In general A1 x A2 x … x An = {(a1,a2,…, an) |
a1 is in A1 and a2 is in A2 … an is in An}

18

EXAMPLE 25 – Set multiplication

1. Let A = {a} and B = {1, 2}
A × B = {(a,1), (a,2)}
2. Let A = {player1, player2} and B = {paper, scissors, rock}
A × B = {(player1, paper), (player1, scissors), (player1, rock),

 (player2, paper), (player2, scissors), (player2, rock)}

Relations: A relation from A to B is a subset of A × B. In general, A relation on A1 , A2 , … , An is a subset
of A1 x A2 x … x An .

EXAMPLE 26 – Relations

Let A = {x | x is a UofC student}
Let B = {y | y is a Ferrari car}
A × B = {(x,y)| x is in A and y is in B}
R = {(x,y) | x is a UofC student and x owns the Ferrari y}

 Computer Science for Visitants

19

Exercises

1. Use truth tables to show that the following propositions are equivalent
a. A OR (B AND C) = (A OR B) AND (A ORC)
b. A AND (B OR C) = (A AND B) OR (A AND C)

2. What are the truth values of the following propositions?
a. If you get an A, then you pass the course
b. If you pass the course, then you get an A
c. If you’re a citizen, then you vote in the elections
d. If you do not pass the course, then you do not get an A

3. Prove the following argument
1. If I see you, I will be happy
2. If I am happy, I dance
3. I did not dance
4. Therefore, I did not see you tonight

4. Write logical expressions for the following propositions. The universe of discourse is all Human
beings
a. All men are mortal

Dictionary, M(x): x is a man, O(x): is mortal
b. Some women are immortal
Dictionary, W(x): x is a woman, O(x): is mortal
c. All monkeys live in forests or zoos
Dictionary, M(x): x is a monkey, F(x): x lives in a forest, Z(x): x lives in a zoo

Chapter 2
MMaakkiinngg CCoommppuutteerrss TThhiinnkk::
PPrrooggrraammmmiinngg

Computers, just like other machines, transform an input to an output. A washing machine transforms
dirty clothes, the input, to clean clothes, the output. Unlike other machines, computers are versatile;
they can be programmed to solve almost any problem. Computers solve problems by following concrete
instructions that outline step-by-step what needs to be done. The problems solved by computers are
called computational problems, and the concrete instructions they follow to solve these problems are
called programs. A computational problem is a specification of the relationship between the input and
output. Often, this is called the what. That is computational problems specify what needs to be done.

While the problem specifies the what, computers need specific step-by-step instructions to know how to
convert some input to some output. An algorithm is a specification of such how. Programs are a specific
implementation of algorithms, using a specific programming language. The language we will study here
is called Jython, it is based on the Python language, but is implemented in Java.

I –Algorithms and Programs

Algorithms can be specified in different ways: from pseudo-code to programs. Here, we focus on how to
implement algorithms using programs.

Computers only understand 0s and 1s and the language they understand is called machine language.
Programming in machine language is too difficult if not impossible. Instead, programmers write their
code in a high-level (HL) programming language. HL languages are much easier to program with since
they allow us to write a program using English instructions. Yet, they are formal enough to be converted
to machine language, or low-level (LL) code. Different machines may have different LL languages,
depending on the way the machine is built.

The conversion from HL to LL programs is called translation. Translators are programs that carry on the
conversion. The input to a translator is a HL program and the output is an equivalent LL program. There
are two types of translation mechanisms: Compilation and interpretation. Both do the same job,
converting HL to LL code, but they do it differently. Compilers read the whole HL program and translate
it entirely to a LL program before the LL program is executed. Interpreters read one HL instruction at a
time, translate it to LL, and execute it. There are advantages and disadvantages for each method, which
will not be discussed here. Some programming languages, such as Java, use a combination of
compilation and interpretation.

Whether a program is compiled or interpreted, it is executed one instruction at a time. The execution of
an instruction in the program does not commence until the immediately preceding instruction has been
completed. Programming languages (HL or LL) have grammars that need to be followed. Just like in
English or French, a sentence has a particular grammatical structure, programs follow grammatical rules.
The difference is that program grammars are very strict and must be followed to the letter, for the

 Computer Science for Visitants

21

program to be translated or executed. In what follows, we will study the basic parts of speech of a
simple programming language called Jython. Jython is an interpreted language.

II – Programming in Jython

Variables and assignments: One central concept in programming is the notion of a variable. Computers
need to memorize data to be able to work on them. That is computers store data in memory so that
they can process them. Variables allow us to abstract memory by giving symbolic names to memory
locations, the places where data is held. The values in these variables are set using a simple instruction
called assignment.

The names you give to variables can consist of any letters and numbers, as long as the name starts with
a letter, such as number1, num2, and name.

EXAMPLE 1 – Assignments

x = 10
x is a variable and the equal sign = is assigning 10 to x. This is read: x is assigned 10, or x gets 10. A
variable like x, defines a place holder, a location where values can be stored. The effect of the statement
x = 10 is to store in the place holder x the value 10.

y = 12
z = x+y
An assignment works by first evaluating the left hand side of =, in order to know what value needs to be
stored, and then assigning the resulting value in the variable on the left hand side. The left hand side
must be always a variable, but the right hand side can be anything that generates a value, such as x+y.
So, the value stored in variable z will be the value in x plus the value in y, which is 22

y = x
y += 5
Each time a variable is assigned a new value using =, it loses the old value. Effectively, the new value
overwrites the old one. So, y = x results in storing 10 in y. The assignment += is different. The statement
y += 5 instructs the computer to add 5 to y, instead of replacing the old value. The new value in y will be
15. This is the same as writing y = y + 5. Similarly, we can use -= to subtract a value from a variable, *= to
multiply the variable by some value, and /= to divide it by a value.

Basic data types: variables have data types. The age of a person should be of type number, but the
name should be of type string (text). There are four basic data types in Jython:

 Integer is for numbers that do not contain fractions (example values, -1, 9, 1119, and -
19191919)

 Float is for numbers that may contain fractions (such as 1.22, -100.5, -0.0001, and 1.0)

 String is for text. The string values must be enclosed with single or double quotes. (examples:
‘Hi’, “Hello There”, “Welcome player 1 …”, ‘Welcome to CPSC 203’). For consistency, we will be
always using single quotes to enclose string values.

22

 Boolean type has two values true or false. (true can be also represented by 1 and false by 0)
The type of the variable is determined by the value it stores.

Arithmetic operations: Arithmetic operations can be performed on number types (integer and float)
and include:

 Addition: y = x+1

 Subtraction: diff = num1 – num2

 Multiplication: result = interest * principal

 Division: x = y / 2

 Modular Division: x = y % 2

Example 2 – Division

y = 7
x = y / 2
The value of x will be 3.5 and x is of type float.

y = 7
x = y % 2
The modular division %, simply returns the remainder of the division of y % 2. Since y is 7, the reminder
of dividing 7 by 2 is 1 (quotient is 3 and reminder is 1). The value in x is an integer.

Conversion between data types: Jython allows us to convert a value in a given data type to another. For
instance, the value ‘12’ is a string (notice the quotes), we can convert it to an integer as follows: x =
int(‘12’). The value in x would be integer 12. As another example, the statement x = int(7/2) results in
storing 3 in x (the integer part of 3.5). Conversion to float can be used similarly. For instance, x =
float(‘12’) results in storing the floating point number 12.0 in x.

Output: programs need to communicate with the user. One way in jython to output a message to the
user is the print statement. The print statement prints a message on the screen on a separate line.

EXAMPLE 3 – print statement

print ‘hello there’
Prints the string enclosed by single-quotes as is.

print 5*4
Prints 20

print ‘5*4’
Prints 5*4

num = 12
print ‘The number is’ , num
Prints The number is 12

 Computer Science for Visitants

23

Functions: Program statements can be grouped together into a function. A typical program may consist
of several functions.

EXAMPLE 4 – Functions

An example function in Jython

The line numbers in the above listings are not part of the program; we will always include line numbers
with our example programs to allow us to reference certain statements. Line 1 is defining a function
header. The header consists of the word def, the function name, simpleExample, and a colon, :. The
word def is always used to define a function. Function names must always use brackets. The colon
indicates the end of the header or the beginning of the function body. The body of the function starts at
line 2. The statements on lines 2 to 9 are indented with a tab to indicate inclusion in the function body.

The words shown in bold blue face, def and print, are reserved words. These have special meaning to
the programming language and we must not use them (as is) to define variables or function names,
otherwise the interpreter will be confused.

This function can be executed by calling it by name, which triggers the execution of the statement at line
2, the first statement in the body. After line 2 is executed, the statement on line 3 is executed, resulting
in printing 12 on the screen. Then the statement at line 4 is executed and hence forth until the last
statement in the function is executed. When the last statement in a function finishes execution, we say
the function returns or exits.

Calling the function and its output

Keyboard input: Often programs need to collect some input from the user, such as typing something on
the keyboard. In Jython this can be done using the built in function:

raw_input(‘type in some message here’)
This is a library function, also called a built-in function. Such functions can be readily used by you. The
raw_input function creates a window through which it can collect some input from you. This function

24

returns the keyboard input, meaning that if it is used as the right hand side of an assignment statement,
it will be replaced by the value entered by the user.

EXAMPLE 5 – Raw input

The function inputExample calls raw_input at line 2, which creates the following window:

When the user enters a value and clicks ‘OK’, the function raw_input stops execution and is replaced on
line 2 by the value entered by the user. For instance, if I enter my name:

And I press ‘OK’, line 2 of the function becomes equivalent to the statement: name = ‘Jalal’. That is,
raw_input returns the value ‘Jalal’ as entered by the user. A sample output is as follows:

Conditionals: The programs we have considered so far are straight-line code. Often, programs need to
make decisions. The program of an ATM machine checks to see if you have enough money in the
account before dispensing any cash. If you have enough money to make a withdrawal, the ATM still
needs to verify that you are not exceeding your daily limit. That is, the output of the ATM depends on
making some decisions and it could be some cash or a sorry message. This kind of execution is called
branching and the statements that allow a program to behave in such a way are called conditional
statements.

If conditionals: The simplest form of conditional statements is an if statement. The general structure of
an if statement is as follows:

if Boolean condition :
Body of if

 Computer Science for Visitants

25

The Boolean condition is tested. If it is false, the body of the if will be skipped all together. If it is true,
the body of the if is performed. In either case, execution continues with the statement that immediately
follows the if.

Flow-charts: A flow-chart is a visual representation of the program flow. Flow charts can be very useful
in specifying algorithms as well. The flow charts that we will use here are very simple. Boxes indicate
statements that do not involve decisions, such as an assignment or a print statement. We use a diamond
shape to indicate a decision, with two possible outcomes, either true or false. The flow of an if
statement is depicted in the following flow-chart.

EXAMPLE 6 – If statement

This program contains two functions int_input() and check_if_5(). The int_input function collects a
number from the user as a string (since raw_input returns a string), converts it to an integer (line 3), and
returns the integer value at line 4. This is how functions return values, so that when it is called by
check_if_5 at line 7, the value stored in x will be the integer that the user entered. The if statement itself
is defined on lines 8 and 9. Line 8 is the header of the if, which contains the if keyword, followed by a
Boolean condition, followed by a colon, :. The == symbol must be differentiated from the assignment
statement, a single =. x == 5 is a Boolean condition that evaluates to true (if x is equal to 5) or false
(otherwise), depending on the value of x. An if body can contain many statements and they have to be
indented from the if header, just like the case with function bodies and headers.

26

If-Else Conditionals: An if-else statement has an if and else parts. The general structure of an if-else
statement is as follows:

if Boolean condition :
 Body of if
else:
 Body of else

The Boolean condition is tested. If it is false, the body of the if will be skipped all together, but the body
of the else will be performed. If it is true, the body of the if is performed and the body of the else is
skipped. In either case, execution continues with the statement that immediately follows the if-else. The
next flow chart depicts an if-else operation.

EXAMPLE 7 – If-else statement

The if-else statement in the above listing spans lines 4 to 9. The statement immediately preceding the if-
else is at line 3, print ‘Hi’, which will be always executed before the if-else. At line 4 a is checked to see if
it is less than or equal to 5. If this is the case, the body of the if (lines 5 and 6) is executed and the else
body (lines 8 and 9) is skipped. Otherwise (a is greater than 5), then the if (lines 5 and 6) is skipped and
the else body (lines 8 and 9) is executed. In either case the print at line 10 will be executed after the if-
else.

Output when a <= 5

Output when a > 5

 Computer Science for Visitants

27

Nested conditionals: An else statement may also need to check a condition to decide how to proceed.
This can be done by including another if-else statement inside the else, called nested if-else.

EXAMPLE 8 – Nested if-else

In this listing the grade is read as a floating point number on line 2. The rest of the function is a single if-
else statement. The else (at line 5), though, contains another if-else (lines 6 to 14). Here, also, the else
contains another if-else (lines 9 to 14), and hence forth. The following flowchart explains the operation
of this program

28

After reading the grade, if it is ≥ 90, the program prints A, Bye, and quits. Otherwise, the false branch of
Grade >= 90 is followed and takes us to another condition Grade >= 80. If this condition is satisfied, the
program prints B, Bye, and quits. Otherwise, the false branch of Grade >= 80 is followed and takes us to
another condition Grade >= 70. If this condition is satisfied, the program prints C, Bye, and quits.
Otherwise, the false branch of Grade >= 70 is followed and takes us to another condition Grade >= 60. If
this condition is satisfied, the program prints D, Bye, and quits. Otherwise, the false branch of Grade >=
60 is followed and the program prints F, Bye, and quits.

Note that When the false branch of Grade >= 90 is followed, it must be the case that Grade < 90. Hence,
it is sufficient to check if Grade >= 80 to print a B, since (according to this program, of course) a B is
between 80 (inclusive) and 90 (exclusive).

Jython offers and abbreviation to an else statement that contains an if, elif. The next example shows a
similar program.

EXAMPLE 9 – Nested if-else

The function int_input has an argument or parameter, message. This is a variable that can be used by
the function only. It is different from other variables in the sense that it is assigned a value when the
function is called, int_input(‘Enter your grade:’) (line 19). The value ‘Enter your grade’ is assigned to the
variable message used in function int_input.

 Computer Science for Visitants

29

This is also the case with function find_letter_grade; the argument here is grade, and is assigned a value
at line 20.

Note that this program accepts grades that are more than a 100. How would you disallow this?

Boolean conditions: More complex Boolean conditions can be constructed, using the logic operators
and, or, and not.

EXAMPLE 10 – Boolean Conditions

 What is the output generated by the following program?

The answer is:

Arrays and lists: An array is a list of numbered (indexed) elements. Lists in Jython have many built-in
functions that could be useful. One of these functions is len(), which returns the length of the list. The
length of a list is the number of elements it contains.

30

EXAMPLE 11 – Arrays

 Names = *‘John’, ’Frank’, ‘Alicia’, ‘Jenn’, ‘James’+
This Jython statement is assigning to Names a value which is a list of names. These names are numbered
in order, left to right. Numbering always starts at 0. So, John has the index 0, Frank has the index 1, …,
and James has the index 4.

print len(Names)
This Jython statement prints 5, since Names contains 5 values.

An array should be viewed as a collection of variables bundled together. The individual variables can be
accessed and used just like any other variable. To reference them, we need to specify their index.
Names[1] is a variable that refers to cell 1 in array Names, which contains Frank. Similarly, Names[3]
contains Jenn. The following listing shows how these can be used as regular variables

The output to this program is:

Loops: loops are programming structures that allow us to repeat some statements as many times as
required. We will discuss two loop types: for and while loops. For loops are suitable when you need to
repeat something for a known number of times. While loops are used when we need to repeat
something until a certain condition is met.

For loop: For loops in Jython can be used with lists or with the range function. The next example
entertains the first possibility

EXAMPLE 12 – For loops with lists

for i in [0,1,2,3,4,5,6,7,8,9]:
 print i
A for loop is defined by the for keyword, followed by a variable, called the index variable; after the index
variable the in construct occurs, followed by a list of elements. Logically, the for header says that for
each value in the list do the body of the for loop. Since the list [0,1,2,3,4,5,6,7,8,9] has 10 values, we
expect the body of the for loop, which is print i in our case, to be repeated 10 times. We say the loop
iterates 10 times and each time it is repeated is called an iteration. The index variable i is initially
assigned the value 0, the first value in the list. So, in the first iteration of the for loop, the value of i is 0.

 Computer Science for Visitants

31

That is, the first thing that is done is printing 0. Once the body finishes executing the first iteration, we
check to see if the value assigned to i is the last value in the list. If this is the case, the loop ends and
execution moves to the next statement in the program, the one that immediately follows the loop. In
our case, the value of i is 0 and 0 is not the last element in the list. In this case, i is assigned the next
value in the list, the value 1, and henceforth. Therefore, the above loop prints the values 0 to 9.

for i in [0,1,2,3,4,5,6,7,8,9]:
 print 2*i
In this example, the loop prints 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18, or the even numbers from 0 to 18.

for i in [9,2,7]:
 print i+1
In this example, the loop prints 10, 3, and 8.

The range(L,H) function requires two arguments L and H and works as follows. If L < H , it generates

values from L to H -1 in increments of 1. For instance, range(0,9) generates values from 0,1,2,3,4,5,6,7,

and 8. The function range(2,0) generates no values, since it is not the case that 2 < 0 .

The general form of the range function allows a third argument: range(L,H,Inc). The third argument Inc

is the increment. When the increment is omitted, such as in range(0,9), then it is understood that the

increments are of 1. The function range(0,9,2) explicitly specifies the increments to be of 2; it generates

values from 0 to 8 in increments of 2, or the list 0, 2, 4, 6, 8. In general if Inc is positive, the function

range(L,H,Inc) generates values from L to H-1 in increments of Inc, as long as L < H. The following

flowchart explains the operations of the loop for i in range(L,H,Inc), when Inc is positive:

The function can also count backwards, range(H,L,Dec). To count backwards, H > L and Dec < 0. For

instance, range(4,1,-1) generates 4, 3, and 2. A flow chart for the operation of the loop: for i in

range(H,L,Dec) is as follows:

32

EXAMPLE 13 – For loops with range

for i in range(0,5):
 print i
This loop prints 0, 1, 2, 3, and 4.

for i in range(0,5,3):
 print i
This loop prints 0, and 3. The next value would be 6, but 6 > 5.

for i in range(0,5, -1):
 print i
This loop prints nothing.

for i in range(5,0,-1):
 print i
This loop prints 5, 4, 3, 2, and 1.

for i in range(15,0,-5):
 print i
This loop prints 15, 10, and 5.

While loop: The while loop works in a similar way to an if statement. It has the following general
structure:

while Boolean-condition:
Body-of-while

The Boolean-condition is checked first. If it is true, the Body-of-while is executed. Before the beginning of
every iteration, the Boolean-condition is checked and the loop keeps iterating until the condition
becomes false. The following flowchart explains the while loop operation:

 Computer Science for Visitants

33

EXAMPLE 14 – While loop

i = 0
while i < 10:
 print i
 i+=2
Since i is initially 0, the Boolean condition i < 10 is true. So, the body of the while is executed, printing 0
and changing the value of i to 2.
Before the second iteration, the condition is checked again: i now is 2 and 2 < 10. The loop performs a
second iteration printing 2 and changing i to 4.
Before the third iteration, the condition is checked again: i now is 4 and 4 < 10. The loop performs a
third iteration printing 4 and changing i to 6.
Before the fourth iteration, the condition is checked again: i now is 6 and 6 < 10. The loop performs a
fourth iteration printing 6 and changing i to 8.
Before the fifth iteration, the condition is checked again i now is 8 and 8 < 10. The loop performs a fifth
iteration printing 28 and changing i to 10.
Before the sixth iteration, the condition is checked again i now is 10 and it is not the case that 10 < 10.
The loop ends (there is no sixth iteration).

i = 5
while i > 0:
 print i
 i-=2
This loops prints 5, 4, 3, 2, and 1.

Nested loops: Loops can contain other loops; such loop structure is called nested loops.

34

EXAMPLE 15 – Nested loops

This example listing has the loop at line 4 contained in the loop at line 2. The outer loop (line 2)
performs 9 iterations (with i ranging from 1 to 9). In each of these iterations, the inner loop (line 4)
performs 9 iterations. That is the print statement at line 5 is performed 9x9 = 81 times.
In fact, this listing prints the multiplication table. When i is 1, it prints the multiplication table for 1. The
print statement at line 5 generates the output:

In the next iteration of the outer loop, i will be 2 and the inner loop prints the multiplication table for 2
and henceforth.

 Computer Science for Visitants

35

III – Searching and Sorting

The search problem: recall that a computational problem is specified as a relationship between input

and output. The search problem is specified as follows:

Input: a list of n elements [a0, a1, a2, … , an-1] and one additional element x
Output:
YES, if x is in the list [a0, a1, a2, … , an-1]
NO, otherwise

EXAMPLE 16 – Search problem

Input: [12, 5, 6, 100, 3, 1], 12
Output: YES

Input: [12, 5, 6, 100, 3, 1], 2
Output: No

Sequential Search Algorithm: The sequential search algorithm solves the search problem by examining
each element in the list in order until it either finds the element or it goes through the whole list without
finding it. Our first version of the algorithm is as follows:

Sequential_Search_Version1

1. Found = NO
2. i = 0
3. Compare x with ai
4. If x == ai Found = YES
5. i += 1
6. Repeat steps 3 to 5 until all elements are examined
7. Print Found

Sequential_Search_Version1 in Jython

This version does not stop the loop when the element is found. It keeps on checking the rest of the list,
even though the result has already been determined. This is an unnecessary work. Version2 fixes this
problem.

36

Sequential_Search_Version2
1. Found = NO
2. i = 0
3. Compare x with ai
4. If x == ai Found = YES, Skip to step 7 (STOP the loop)
5. i += 1
6. Repeat steps 3 to 5 until all elements are examined
7. Print Found

Sequential_Search_Version2 in Jython

The above listing introduces the break statement at line 6. The break statement simply breaks the
nearest loop in which it is included. That is, when x is found in the list, the for loop is stopped.

The last (and cleanest) version of sequential search will make use of a while loop.

Sequential_Search in Jython

This version makes use of the Boolean variable more_to_search, which is intilaized at line 4 to len(list) >
i. Since i is initially 0, more_to_search will be false only if list is empty, in which case len(list) is 0.
Initially, we have elements to search if the list is not empty. The while loop on line 5 says that the search
will be carried on as long as x is not found and we have elements to search. Since found is initially false,
not found will be true. Once the element is found, found is set to true at line 7 and this will cause the
search to stop since at the beginning of the next iteration not found will be false and the while condition
will be false, regardless of the value of more_to_search. At line 8, i is incremented by 1 to examine the
next element in the list. We need to check if the list is exhausted at line 9, making sure we have more

 Computer Science for Visitants

37

elements to search. That is, when i becomes equal to or larger than the length of the list, the search
must stop. We have also replaced the print statement with a return statement, giving us a cleaner
function definition.

The sorting problem: The Sorting problem is specified as follows:
Input: a list of n elements [a0, a1, a2, … , an-1]
Output: The same list sorted in ascending order

EXAMPLE 17 – Sorting problem

Input: [12, 5, 6, 100, 3, 1]
Output: [1, 3, 5, 6, 12, 100]

Input: [James, Frank, Alicia, Bob, Alice]
Output: [Alice, Alicia, Bob, James]

BubbleSort algorithm: Given a list of n elements, BubbleSort sorts the list in n-1 rounds, or iterations. In
round 1, the smallest element in the list “bubbles” up to position 0, where it belongs. In round 2, the
second smallest element in the list “bubbles” up to position 1. In general in round i, the ith smallest
element in the list “bubbles” up to position i-1.

EXAMPLE 18 – BubbleSort rounds

The following visualizes BubbleSort’s rounds on a list of 5 elements. In the first round, Alicia, the
smallest element bubbles up to position 0. In round 2, Frank bubbles up to position 1. In round 3, James
bubbles up to position 2. In round 4, John bubbles up to position 3.

38

Of course, the crux of the algorithm is how the “bubbling” in each round is taking place. In round i
starting at the last index in the list, n-1, BubbleSort compares the element at n-1 with the element at n-
2. If list[n-1] < list[n-2], then the elements are swapped. Now the elements at index n-2 is compared
with the one at n-3 to see if a swap is needed. This is repeated until the ith smallest element is at index i-
1.

EXAMPLE 19 – BubbleSort

In the first round, Alicia bubbles up to index 0.

In the second round, Frank bubbles up to index 1

 Computer Science for Visitants

39

In the third round, James bubbles up to index 2

In the fourth round, John bubbles up to index 3

The list is sorted.

The BubbleSort algorithm is specified in Jython as follows:

Lines 6 to 8 swap the contents of list[j] and list[j-1]. This is done only if need be (list[j] > list[j-1]) ,
enforced by the if statement at line 5. The outer loop (line 3) performs size-1 rounds. The inner loop
(line 4) bubbles up an element to the appropriate position. Since this appropriate position depends on

40

the round number (ith smallest element bubbles up to position i-1 in round i), the inner loop depends on
the round number i. Bubbling up starts at position size-1 and ends at position i+1, captured by the
function range(size – 1, i, -1).

 Computer Science for Visitants

41

Exercises

1. Write a Jython function that accepts three arguments and returns their average.
2. What is the output of the following program?

3. What is the output of the following program?

4. Write a Jython function that returns the XOR of two Boolean values passed as parameters
5. What is the output of the following program

6. Look for the insertion sort algorithm, understand it, and write it in Jython

Chapter 3
OOrrggaanniizzeedd TThhoouugghhtt::
GGrraapphhss aanndd TTrreeeess

A computational problem is a specification of the relationship between the input and output. Input is
likely to be some data that the computer needs to transform to an appropriate output. Such input must
be prepared and put in an appropriate format. Graphs can represent a large class of problems. Trees are
a special (but very handy) case of graphs.

While the problem specifies the what, computers need specific step-by-step instructions to know how to
convert some input to some output. An algorithm is a specification of such how. The preparation of an
input to an appropriate format makes the how easier, if the input is represented properly. Algorithms
can be specified in different ways: from pseudo-code to programs. Some algorithms can be specified
using finite state machines (abbreviated FSM).

This chapter introduces graphs, FSMs, and trees.

I – Graphs

A graph is simply a graphical representation of a relation defined on a set. It has a set of elements, called
vertices, and a set of edges that connect these vertices. Formally a graph is a pair of sets, G = (V,E),

where V is a set of vertices and E  V×V (that is, E is a relation on V).

If the edges are one-way, the graph is called a directed graph. If the edges are two-way, the graph is
undirected. It is sometimes also possible to label edges, the resulting graph is called a labeled graph, or a
network.

EXAMPLE 1 – Undirected graph

The following graph has V = {A, B, C, D} and E = {{A,B},{A,C},{A,D},{B,C}}. The vertices are drawn as circles
and the edges are two-way (there is no indication on the edge that forces it to flow in one direction
rather than the other). Note that we have used set notation to indicate undirected edges. So, {A,B} is the
same edge as {B,A}.

Graph G1

 Computer Science for Visitants

43

EXAMPLE 2 – Directed graph

The following graph has V = {A, B, C, D, E, F} and the set of edges Ed = {(A,B), (B,A), (B,C), (A,D), (C,A),
(D,E), (C,F), (E,A), (F,A), (E,E)}. The edges are one-way, indicated by arrows. Note that in the set E, we
used order pairs to indicate one-way edges. (A,B) indicates that there is an edge from A to B, but there is
also the pair (B,A) indicating another one-way edge from B to A. Note also the edge (E,E) from E to itself.

Graph G2

Undirected graph terminology: Two vertices in an undirected graph are called adjacent if they are
connected by an edge. In graph G1, A is adjacent to B, C, and D; however, C and D are not adjacent. A
(undirected) path is a list of vertices v1, v2, …, vn, such that v1 is adjacent with v2 and v2 is adjacent with v3
and so on. In G1, there is a path from D to C: D, A, B, C. Notice that this is not the only path from D to C.
A path is called a cycle if v1 = vn, or in other words it starts and ends at the same vertex. A cycle is also
called a circuit. The following path in G1 is a cycle: A, B, C, A. The degree of a vertex is the number of
adjacent vertices it has. So the degree of A in G1 is 3 since it has three adjacent vertices. The degree of B
is 2 and that of D is 1.

Directed graph terminology: If there is a directed edge from vertex v1 to v2, v1 is said to be adjacent to
v2, or alternatively v2 is adjacent from v1. In G2, A is adjacent to D and E is adjacent from D. A (directed)
path is a list of vertices v1, v2, …, vn, such that v1 is adjacent to v2 and v2 is adjacent to v3 and so on. A
cycle (or circuit) is defined similarly to undirected graphs. The path in G2: B, C, A, D, E, B is a cycle. The
in-degree of a vertex is the number of vertices that are adjacent to it and the out-degree is the number
of vertices that are adjacent from it. In G2, A has an in-degree of 3 (3 arrows are coming in) and out-
degree of 2 (2 arrows are going out).

EXAMPLE 3 – The WWW

The Web can be modeled as a directed graph. The vertices are the Web pages and the edges are the
hyperlinks.

44

EXAMPLE 4 – Flowcharts

Flow charts can be regarded as labeled directed graphs with two types of vertices: normal and decision
vertices. The labels can be chosen from the set {none, true, false}.

Euler tour and circuit: The town of Konigsberg has two rivers passing through it with seven bridges.

Layout of Konigsberg

Land is marked with A (island), B, C, and D. The question is if there exists a tour that starts somewhere in
town, crosses all bridges, crossing each bridge exactly once, and ending up where the tour started. To
answer the question, a graph model of the town is first built.

Graph Model of Kongsberg

The vertices are land components and the edges are the bridges connecting them. So the question
amounts to finding a circuit that crosses all edges and crossing each edge once. Such a circuit is called
Euler circuit. What Leonard Euler (18th century) noticed is that if a graph has at least one vertex with an
odd degree, then a Euler circuit does not exist. Such an odd vertex, call it O, cannot be the starting and
ending point of the tour. To start from O, an edge must be used to leave and a different edge must be
used to end the tour at O. So, O has to have a degree of at least 2, which is not odd. Well what if you
come back to O during the tour to leave again, before the tour ends. In such a case, every time you visit
O, you must be coming in using a new edge (never used before) and you must leave it using another

 Computer Science for Visitants

45

new edge. Hence, each such visit uses 2 edges, leaving us with an even degree for the start vertex. The
vertex O cannot be the start/end vertex, but cannot also be any other vertex. Any other vertex would
also have an even degree because you always visit (it is not the start vertex) this vertex using a new edge
and you must leave it (it is not the end vertex) using another new edge. No matter how many times you
visit the vertex, each time you’re using an even number of edges and the degree of this vertex must be
even, if you do not want to leave uncrossed edges behind.

A simpler version of the Konigsberg problem is to find an Euler path. Such a path still needs to cross
every bridge once, but can start and end in different places. Euler Noticed that for such a path to exist a
graph must have two vertices with odd degrees only. These are the starting and ending vertices.

EXAMPLE 5 – Continuous envelope

Can you draw the following envelope shape using the following rules?

 Draw continuously, cannot lift the pen from one position to another
 Draw each line once, cannot let the pen run on top of an already drawn line

The question reduces to finding an Euler path in the following graph:

This graph has two vertices with odd degrees, namely D and E. So any Euler path must start at one and
end at the other. That is you can draw this shape if you start at D and stop at E or vice versa. There is no
third way

46

II – Graph Coloring

A computational problem specifies the relationship between input and output. One such problem is
graph coloring, which can be specified as follows:
 Input: an undirected graph

Output: a coloring of the vertices of the input graph, such that no two adjacent vertices have
the same color and the number of colors is minimized.

EXAMPLE 6 – Graph coloring
Here is a possible coloring for G1. Note that 3 colors is the minimum number of colors that can be used.

One way that comes to mind is to color each vertex with a different color; however, this violates the
specifications of the problem, requiring that the number of colors is minimized. This is especially
desirable for larger graphs. (Though in some graphs, the minimum number of colors is equal to the
number of vertices. Can you think of such a graph?)

So how do we transform the input to the required output? This is the job of the algorithm. That is an
algorithm solves a computational problem. There are different ways by which an algorithm is specified.
The most common one is to use pseudo-code, something that resembles a computer program, yet it is
mainly written in English. Pseudo-code allows us to specify an algorithm in a general way that does not
depend on a specific programming language format. Of course an algorithm can be also specified using
actual code, with a specific programming language. Sometimes, visual representation of algorithms
using flow-charts can be very useful, especially to beginners. Flowcharts themselves can be regarded as
directed graphs. There are some algorithms that can be represented in a special labeled directed graph
format, called finite state machines (abbreviated FSM). We will study FSM later in this chapter.

Graph coloring algorithm:
Repeat the following two steps until all the vertices in the input graph are colored

1. Select an uncolored vertex and color it with a new color, C
2. For each uncolored vertex,

◦ Determine if it has an edge with a vertex that is colored with color C

◦ If not, color it with color C

◦ If yes, skip it

 Computer Science for Visitants

47

Graph coloring can be very useful in scheduling problems. The items that need to be scheduled are
arranged into a graph as vertices, and the edges indicate which items are conflicting, cannot be
scheduled at the same time. Coloring the graph allows us to group the items so that the ones in the
same group (have the same color) can be scheduled at the same time.

EXAMPLE 7 – Conflicting turns

Consider the following traffic intersection. The objective is to determine which traffic flows can be run
simultaneously. Intersections are normally an expensive resource and maximizing their use is desirable.
The naïve solution of letting traffic flow in one direction is undesirable; after all, we do not do this in real
life. For instance, traffic from A to D (denoted AD), AC, and BA can all run simultaneously.

This is a scheduling problem and we can use graph coloring to determine the groups of flows that are
non-conflicting. Since the graph coloring algorithm minimizes the number of colors used, it maximizes
the traffic flow.

The following is graph model where each vertex represents a traffic flow direction. These that conflict
are connected by edges. The graph is also colored using the graph coloring algorithm. It shows that
there are three groups of traffic flow directions that can be run at the same time.

Adjacency matrix: How is the graph input to a computer? One famous format is an adjacency matrix,
which is simply a table that encodes the graph. In the case of unlabeled graphs, the matrix will have
values of 0s and 1s only. In such a 0-1 matrix a value of 1 in entry (i,j) indicates the existence of edge (i,j)
in the graph.

48

EXAMPLE 8 – Adjacency matrix (unlabeled graph)

Consider the following graph:

It can be represented using the following adjacency matrix:

A value of 1 in this matrix indicates the existence of an edge. In the first row, only the entry (A,B) is 1,
indicating the existence of the edge (A,B). There is no edge between A and C, so the entry (A,C) is 0.

If the graph is labeled, then we can use an adjacency matrix where the 1’s are replaced by the labels of
the corresponding edges

EXAMPLE 9 – Adjacency matrix (labeled graph)

Consider the following labeled graph:

It can be represented using the following adjacency matrix:

 Computer Science for Visitants

49

Advanced Topic – Graph Coloring in Jython

50

III – Finite State Machines

A finite state machine is a special kind of a directed graph with two properties: the set of vertices, called
states, is finite and the edges are labeled transitions. The labels are typically called events. FSMs are very
handy when designing hardware algorithms (controllers) as we will see shortly. Consider the following
FSM:

This FSM has two states: hungry and eat. The directed edges are labeled with events that trigger

transitions from one state to another. So, if you are in state hungry and you jog, you will still be hungry.

However, if you eat, the state changes to full. Eating while you’re full does not change the fact that

you’re full, but jogging will make you hungry again.

EXAMPLE 10 – FSM for a sliding door controller

Consider an automatic sliding door that opens when people step on the front or rear pads

An FSM that controls the door is as follows:

The events that can occur are:

 FRONT: someone steps on the front pad

 REAR: someone steps on the read pad

 BOTH: both pads have someone stepping on them

 NONE: neither pad has someone stepping on it

We allow for readability an edge to have more than one label. In fact, this is an abbreviation for having
many edges between two states with different labels. So, if the door is CLOSED and any of the events
FRONT, REAR, or BOTH takes place, the door should OPEN. It only goes back to the CLOSED state in the
case of the NONE event.

Of course, we can represent the FSM as a matrix, since it is just a graph, as follows:

 Computer Science for Visitants

51

The adjacency matrix corresponding to an FSM is often called a state table and the FSM graph is also
called a state diagram.

EXAMPLE 11 – FSM for a two-way opening door controller

This door does not slide, it opens both ways towards the pads

An FSM that controls the door is as follows:

In this version, we have to split the OPEN state to two: OPENR, open to the rear, and OPENF, open to
the front. This is necessary because if someone steps on the front pad (respectively, rear pad) it will be
unsafe to open the door to the front (respectively, the rear).

The FSM matrix is as follows:

52

EXAMPLE 12 – FSM for a simple vending machine

A simple vending machine dispenses $3 phone cards. It accepts $1 and $2 coins only. It does not give
any change. If the user exceeds the $3 amount, the machine gives the money back without dispensing
any phone cards. It can dispense one phone card at a time. The machine has two buttons: CANCEL to
cancel the transaction and COLLECT to dispense the phone card.

The machine keeps the collected coins in a coin collector, until a card is dispensed, in which case the
coins are dropped into the piggy bank and cannot be recovered by the user.

For this FSM, we need five states:

 ONE: Total in coin collector is $1

 TWO: Total in coin collector is $2

 THREE: Total in coin collector is $3

 DISP: dispenses a card, roll in coins to piggy (coin collector becomes empty)

 ZERO: return the coins in the coin collector; also serves as a start state (Initially the coin collector is
empty)

The events are:
 $1: user inserts a loonie
 $2: user inserts twonie
 CANCEL: user presses CANCEL
 COLLECT: user presses COLLECT

The FSM is:

 Computer Science for Visitants

53

IV – Trees

Trees are a special case of graphs. A tree is a (directed) graph with the properties:

 There is a designated vertex, called the root of the tree

 There is a unique directed path from the root to every other vertex in the tree

EXAMPLE 13 – Trees

A tree is drawn downwards, with the root on the top. The root of the following tree is A.

Tree T

Often, we drop the arrows from the edges, since it is always understood that the edges direction is
downwards. The following is the same tree:

 Same Tree T

54

Tree terminology: A vertex which is adjacent from some vertex V, is call a child of V. In tree T, E and F
are children of C. If a vertex V is a child of vertex P, then P is the parent of V. Note that a vertex can have
at most one parent. All vertices have exactly one parent, except the root which does not have a parent.
A vertex that does not have children is called a leaf. In tree T, the vertices B, E, F and H are leaves. An
ancestor of a vertex V is either the parent of V or an ancestor of the parent of V. A descendant of vertex
V is either a child of V or a descendent of a child of V. The distance of a vertex V from the root is the
number of edges on the path from the root to V. In tree T, B is at distance 1 from the root, and H is at
distance 3 from the root. The vertices that are at the same distance from the root are called siblings.

EXAMPLE 14 – Game trees

In games, trees explore all possibilities of a game. The root is the start of the game and the path from
the root to a leaf explores one possible outcome of the game.

Game tree for the paper-rock-scissors game

In this tree, 1S indicates that player 1 chooses scissors; 1R indicates that player 1 chooses rock; and 1P is
player’s 1 choice of paper. The notation is similar to player 2. Each path from the root to a leaf captures
on possible instance of the game.

For other more complex games, the tree can become prohibitively large such as in the game of chess.

Binary trees: A binary tree is a tree with the following properties:

 The edges are labeled with the labels left or right

 Every vertex has at most two children; if both children exist, then one edge must be labeled with
left and the other right.

 Computer Science for Visitants

55

EXAMPLE 15 – Binary trees

The following is an example binary tree.

Just as we have dropped the arrows, we can also drop the labels, if we always draw the tree in such a
way that left children are drawn on our left and the right ones on our right. The above, binary tree can
be drawn as follows, without any confusion about who’s who in the left and right world (and we are not
talking politics here!)

56

V – Huffman’s Coding

Everything in the computer is represented as 0s and 1s, including text and multimedia files. A text file is
encoded using 0s and 1s with predefined fixed-length codes. One famous way of encoding is ASCII
(American Standard Code for Information Exchange) codes. ASCII gives each symbol a code of 0s and 1s.
For instance:

 ASCII code for character A is 0100 0001

 ASCII code for B is 0100 0010

 ASCII code for C is 0100 0011

 ASCII code for D is 0100 0100

The ASCII codes are of length 8. Everything you can type on the keyboard has an ASCI representation,
including space, escape, and control.

EXAMPLE 16 – ASCII coding

The word ACE is represented in ASCII by 010000010100001101000101. To know what a code really
represents, read the first 8 digits and find out what they represents, then read the next 8 and
henceforth.

ASCII codes of length 8 can represent 28 different characters, which is 256 characters. In general, if
you’re coding characters with codes of length n and the coding uses a symbols, you can represent an
different characters. (In the case of ASCII a = 2 because the codes consist of two symbols 0 and 1, and n
= 8 because the length of the codes are 8.) If the symbols are 0s and 1s, they are called bits.

EXAMPLE 17 – Coding

Assume that we have a file that contains strings formed out of 6 characters only: A, I, C, D, E, and S (for
space). If such a file has 100 characters, how many bits are needed to code a file? First we need to
determine the length of the codes. One attempt is to use codes of length 2, but this is not enough. This
would only allow me to represent 4 distinct characters, since 22 = 4. Since 23 = 8, 3 bits is more than
enough because we have 6 characters only. Therefore, the file would require 3 x 1000 = 3000 bits.

Compression: So how does compression of files work? The idea is that if some characters are more
frequent than others, we should give them shorter codes. This gives rise to variable-length codes.

EXAMPLE 18 – Coding

Assume that we have analyzed the file of Example 17 and found the following statistics:
 35% of the characters in the file are S
 28% are A
 20% are E
 7% are I
 6% are C
 4% are D

 Computer Science for Visitants

57

If we use 2 bits to represent each of S,E, and A (the most frequent ones), 3 bits to represent I and 4 bits
for each of C and D, this should result in a coding that requires 24% fewer bits than 3000.

If we use this coding, what is the size of the file? 350 S’s (35% of 1000) require 700 bits (2 bits for each
S); 200 E’s require 400 bits; 280 A’s require 560 bits; 70 I’s require 210 bits; 60 C’s require 240 bits; 40
D’s require 160 bits; Total is 2270 bits; Recall that with fixed codes, the size is 3000 bits. The compressed
file size is about 76% of the original file size.

Non-prefix codes: Not any variable-length codes work. Assume A’s code is 0; C’s code is 1; and E’s code
is 01. The code 0101 could correspond to ACE, EAC, ACAC, or EE. Codes that work must have the
property that each code corresponds to exactly one value (it has a unique interpretation). They must
have the property: No code can be the prefix of another code. These are called non-prefix codes. 0 is a
prefix of 01, this is why our coding failed. Non-Prefix codes can be generated using a binary tree.

EXAMPLE 19 – Coding

Consider the following binary tree, where the characters are all in leaf vertices:

The left edges are labeled with 0 and right edges with 1. Recording the labels on the path from the root
to the leaves, each path corresponds to a non-prefix code. The codes are: A’s code: 00; B’s 0100; C’s
0101; D’s 011; E’s 10; and F’s 11.

The code 111010011 represents the word FEED and there is no confusion about that.

So how do we generate non-prefix codes such that the most frequent characters have shorter codes
than the least frequent characters? David Huffman’s algorithm allows us to do just this.

Variable-length coding problem: This problem is specified as follows
Input: a list of characters and their frequencies
Output: Non-prefix variable-length codes for each input character, such that the characters with higher
frequencies have shorter codes, where possible

58

Huffman’s coding algorithm:

1. Assign to each symbol its weight (frequency); each of these symbols represent a tree of one
vertex only; call this collection of trees a forest

2. Repeat step 3 until we have a single tree in the forest
3. Choose two trees that have the minimum weights

i. Replace these two trees with a new tree with new root
ii. Make the tree with the smaller weight a right child
iii. The weight of the new tree is the sum of old weights

4. Label the left edges with 0s and the right edges with 1s. Assign each leaf the labels of the edges
on the path from the root to that leaf.

EXAMPLE 20 – Huffman’s coding

Let the input be: (A,28%),(C,6%),(D,4%),E(20%),(S,35%),(I,7%). Step1 of the algorithm results in the
following forest:

There are 6 trees in this forest and each is assigned a weight. Since, we have more than one tree in the
forest we perform step 3. The two trees of minimum weights are C and D. We combine them in the tree:

The weight of this new tree is 6+4 = 10. The resulting forest is:

Since we still have more than one tree in the forest, we apply step 3 again choosing the trees of weights
7 and 10 to be replaced by:

The resulting forest is:

 Computer Science for Visitants

59

One more application of step 3 results in the forest:

The next candidate trees for step 3 are those with weights 17 and 35. This results in the following
forest?

There are only two trees left in the forest, combining these using the last application of step 3 results in
the tree:

Since the forest has a single tree, step 3 will not be applied again. Step 4 is already demonstrated in
Example 14.

60

Trees as nested lists: How do we represent trees in the computer? Since trees are graphs, we can use an
adjacency matrix. However, this is not the best way. A better way is to use nested lists.

EXAMPLE 21 – Nested lists as trees

 The list [1,2] represents the tree:

 The list [1,[2,3]] represents the tree:

 The list [f,[[[e,d],[c,a]],b]] represents the tree:

 Computer Science for Visitants

61

ADVANCED TOPIC – Huffman’s coding in Jython

62

Exercises

1. Identify problems that can be solved by graph coloring.
2. Construct an example graph consisting of at least 5 vertices, such that the minimum number of

colors required for the graph is equal to the number of vertices.
3. Design an FSM for a garage door controller. Garage doors receive signals from a remote control with

one button. If the button is pressed, the door opens when it is closed and vice versa. If the button is
pressed while the door is in motion, the door stops; when the button is pressed again, the door
starts moving but it reverses the direction it had before it was stopped.

4. Modify the vending machine FSM to allow the machine to accept two twonies and return a loonie
back

5. Design an FSM for a similar vending machine that has two types of cards: $3 and $4 cards. The
machine would have two COLLECT buttons to choose one for each type of card. The machine also
gives change

6. How many bits are required to code 10 characters (A to H) using fixed length codes. Choose the
shortest possible codes.

7. If a file contains 10000 characters from the characters (A to H), how many bits will the size of the file
be, using your coding from the previous question.

8. Apply Huffman’s algorithm to the following input:
(A,23%),(B,60%),(C,4%),(D,3%),(E,2%),(D,2%),(E,2%),(F,2%),(G,1%),(H,1%). Generate variable length
codes for the characters A to H.

9. Repeat question 6, using the codes from question 7. What is the percentage saving in the file size
from question 6.

Chapter 4
LLeeaavveerrss aanndd GGeeaarrss::
HHooww ddoo CCoommppuutteerrss WWoorrkk??

A computer is built as a complex finite state machine connected to memory, where programs and data
are stored. The fundamentals of such an FSM are the same as these studied earlier, but the FSM is much
more complex. A modern computer consists of a Central Processing Unit (CPU), primary memory,
secondary storage, and peripheral devices. We will have a look at each of these components in this
chapter.

CPU and memory are typically built using basic building blocks, called logic gates. In fact, the CPU is a
complex logic circuit. These gates operate on binary numbers, 0s and 1s, called bits. We will study the
binary number system in this chapter as well as logic gates. We will also understand how to build logic
circuits from the basic building blocks.

I – The Big Picture

A modern computer consists of a Central Processing Unit (CPU), main memory, secondary memory or
storage and peripheral devices.

The organization of a modern computer

64

The CPU, also called processor, is the brain of the computer. It consists of two components: the
Arithmetic and Logic Unit (ALU) and the Control Unit (CU). The ALU performs simple arithmetic and logic
operations, such as adding two numbers. The CU controls the operation of the ALU and other
components in the machine. CPUs execute programs and while doing so they need a scratch pad
memory to store data and intermediate results. Such a scratch pad is provided as a set of registers. Each
register can hold a data value, such as a number, or a program instruction. A register can hold few bits;
the actual size may differ from one machine to another. Nowadays, the register size is typically 32 or 64
bits. The number of registers is quite few, a dozen or so, but the actual number depends on the
underlying machine and may vary from one machine to another.

The main memory component stores data and programs needed by the CPU. Anything that the CPU
operates on must be in main memory. Main memory is typically referred to by RAM, Random Access
Memory, for historical reasons. Early computers used tapes (just like the out phased music cassettes) for
main memory. Tapes are sequential access memory; to listen to the last song on the cassette, you would
need to fast forward to the appropriate position going through the tape sequentially. There is no way to
jump directly to the needed place on the tape, but this is the case with RAM.

Main memory is volatile; it cannot hold any data without a flowing electric current. That is, if you switch
the computer off, all what is stored in RAM is lost. Hence, computers need a non-volatile storage, one
that holds data in the absence of electric power. There are different non-volatile, or permanent, storage
devices. These include hard disks and optical disks.

A hard disk makes use of electro-magnetic signals that stay in the absence of power. Optical disks, such
as music CDs and DVDs, burn holes into a thin metal layer that can be read by laser beams.

Other peripheral or Input/Output (I/O) devices include a keyboard, screen, mouse, printer, and
henceforth.

All of the computer components are connected by a bus, a bundle of thin wires each capable of carrying
one signal, representing a 0 or a 1.

Main memories are fast, but are slower than CPUs. They typically slow down the CPU’s operation. That
is why modern machine also include cache memory (cache is French for hidden). The cache is faster than
main memory but much smaller. A useful analogy here is cooking supplies. If you run out of supplies in
the kitchen (the CPU), it would be very costly (time-wise) to run to the supermarket (the main memory)
every time you require something. Instead, we typically cache a small amount of supplies in a storage
room (the cache), whose access is much faster than making a trip to the supermarket. Of course, the
cache can become obsolete (empty in the kitchen supplies analogy) and occasionally you will need to
refurbish it from main memory.

 Computer Science for Visitants

65

The Cache as part of the organization of a computer

ALU operation: There are handful operations that an ALU can perform: adding two numbers, anding and
oring two logic (truth) values, and negating a value. Any other operation, such as multiplication and
subtraction, can be performed from these basic ones. For instance, to multiply 5 and 6, the ALU can add
6 to itself 5 times. To subtract 5 from 6, the ALU can negate 5 and add 6 and negative 5.

The basic operation of the ALU is very simple. To perform a basic operation, say add, the following steps
must be followed:

Load the first number from main memory to register A
Load the second number from main memory to register B
Load the first input register of the ALU from A
Load the second input register of the ALU from B
Perform an add
Collect the output in the ALU output register (also called the accumulator)
Load the result back to a register C
Store C in main memory

66

Illustrating an ALU ADD operation

Each of these steps is called a microinstruction. A typical computer (at the time of the writing) can
perform 3 billion microinstructions per second. This speed of CPUs is measured in Hertz. Such a CPU has
a speed of 3 Giga Hertz (GHz).

CPUs have been consistently made faster over the past decades. This was mainly accomplished by
jamming more transistors (basic electronic elements that works as switch) into the CPU chip. Now days,
it is normal to combine a billion or more transistors into a chip smaller than the size of a credit card. This
is resulting in an overheating problem. With so many transistors in a very small area, the chip overheats
and this can result in malfunctioning.

Dual core machines: Processor designer resorted to an old alternative idea to make the CPUs faster. If
you’re building a brick wall, you may hire one mason to do the job. Imagine that this is the fastest mason
on earth and it needs him/her 30 days to finish the wall. Can we build the wall in a shorter period of
time? Yes, if we hire more masons. Ideally, we can hire 30 masons and finish it in one day. Of course,
there are practical limitations to the number of masons we can add, such as the size of the wall, the
space in which they are operating together, and the way they access clay and bricks. If you put too many
cooks in one kitchen, you end up having the cooks bumping to each other, arguing, moving from each
other’s way, without doing any actual work. This is called thrashing.

So the idea is simple: put more CPUs in the machine. Dual core machine have two CPUs (two cores) on
the same chip. These CPUs share the same cache and of course the rest of the components as shown in
the next sketch.

 Computer Science for Visitants

67

Dual-Core Architecture

Storage Units: a binary digit, a bit, represents a 0 or a 1. A byte is 8 bits. A Kilobyte is 1024 bytes (not a
1000, with computers everything has to be a power of two, 1024 is 210). A Megabyte = 1024 Kilobytes or
1,048,567 bytes. A Gigabyte = 1024 Megabytes or 1,073,741,824 bytes. A Terabyte = 1024 Gigabyte or
1,099,511,627,776 bytes.

Memory Hierarchy: Memory can be arranged to a hierarchy.

Memory Hierarchy

As we go up this hierarchy the price per bit becomes higher. Registers are more expensive than caches,
and caches are more expensive than main memory, which is more expensive than a hard disk, and a
hard disk is more expensive than a DVD. The same applies to speed. Things get slower as we move down
the hierarchy. For instance, registers are very fast since they are part of the CPU itself. Cache memory is
faster than main memory, but slower than registers, and henceforth. Finally, the size shrinks as we go up
the hierarchy. Registers are typically several bytes in size; the cache is several Kilobytes in size; main

68

memory is a couple of Gigabytes; a hard disk is a several tens of Gigabytes; and the pile of CDs and DVDs
you have at your desk is much larger than that.

Hard disk operation: A hard disk consists of a collection of double-sided platters, typically made from
some hard metal (thus the name). These platters are mounted on a spindle which rotates, rotating with
it the platters.

Hard disk operation

Information is stored on the surfaces of the platters as electro-magnetic signals, which are read or
written by read/write heads. There is one such head for each surface. A head comes very close to the
surface, without touching it, and it can sniff the electro-magnetic signals (reading) or spit them to the
surface (writing). The heads are attached to one arm that moves inwards and outwards in the direction
of the spindle, positioning the heads at a desired radius from the center of the platters. The spindle
moves the platters so that the required location falls underneath the read/write head.

Optical disk operation: Optical disks, such as music CDs and DVDs, do not use electro-magnetic nor
electric signals to store information. An optical disk has a thin dye layer of metal protected by a layer of
plastic.

Magnified Cross-sectional sketch of a CD-Recordable

The bits are literally burnt into this dye layer. A hot laser beam burns holes into the dye layer, resulting
in a spiral structure of pits (holes) and lands (no hole). Since each can represent a 0 or a 1, a colder laser

 Computer Science for Visitants

69

beam can read this information back, without affecting the dye. If the beam escapes the dye layer and
is reflected back by the reflective layer, this means a 1; if the dye is burnt, a dark spot results, preventing
the beam from reaching the reflective layer and reflected back this means a 0.

Reading a CD-R

How about re-writable disks? A medium hot laser beam can be used to heat the die layer so that all pits
disappear. Dual layer disks? These use two layers of different dyes so that the laser beam, if pointed at
the right angle, can get to one of the two layers as if the other layer does not exist.

70

II – Binary Numbers

Before we have a closer look at how to build logic circuits, such as a CPU, we first need to understand
the binary number system since everything inside the machine is either a 0 or a 1. In general, number
systems provide a limited number of symbols that are used to represent an infinite amount of numbers.

EXAMPLE 1 – Decimal number system

The decimal number system provides only ten symbols, 0 to 9. Yet, large numbers such as 19847473737
can be represented using these 10 symbols. We start constructing numbers using one symbol only:
0
1
2
3
4
5
6
7
8
9
When we run out single-symbol numbers, we start forming numbers with two digits
10
11
12
…
When we run out of two-symbol numbers, we start forming numbers with three digits, and henceforth.
Of course, you can always add 0s to the left of a number, without changing it.

The binary number system provides two symbols only: 0 and 1. The single-symbol numbers that can be
constructed are simply:
0 (for zero)
1 (for one)
The next number, 2, need to be constructed from two symbols:
10 (for 2)
11 (for 3)
The next number, 4, must be constructed using three bits:
100 (for 4)
101 (for 5)
110 (for 6)
111 (for 7)
8 needs four symbols and so on.

Converting binary to decimal: If you are given a large binary number such as 10101, how do we know
which decimal number it represents? Follow the algorithm:
Given a binary number of n bits

 Computer Science for Visitants

71

Number the bits in the binary number, right to left from 0 to n-1
The resulting decimal number is: [bit at index 0]×20 + [bit at index 1]×21 + [bit at index 2]×22 + [bit at
index n-1]×2n-1 .

EXAMPLE 2 – Binary to decimal

The binary number 10101 is 21 in decimal. To distinguish between 10101 (21 in binary) and one
thousand one hundred and one (10101 in decimal), we write the number system as a subscript.
(10101)2 is (21)10.

Following the algorithm, we number the bits of 10101 right to left, as follows:
1 0 1 0 1
4 3 2 1 0 (index of bits)

The decimal number is [bit at index 0]×20 + [bit at index 1]×21 + [bit at index 2]×22 + [bit at index 3]×23+
[bit at index 4]×24

= [1]×20 + [0]×21 + [1]×22 + [0]×23+ [1]×24
= [1]×20 + [1]×22 + [1]×24

= [1]×20 + [1]×22 + [1]×24
= 20 + 22 + 24
= 1 + 4 + 16
= 21

That is, (10101)2 = (21)10.

Note that the conversion algorithm could have been written as follows.

Given a binary number of n bits:
Number the bits in the binary number, right to left from 0 to n-1
Decimal number = 0
For each bit with a value of 1 at index i, add 2i to the decimal number

EXAMPLE 3 – Binary to decimal

 (11010)2 is (26)10.

Following the algorithm, we number the bits of 11010 right to left, as follows:
1 1 0 1 0
4 3 2 1 0 (index of bits)

The decimal number is 21 + 23 + 24, since only indices 1, 3 and 4 has 1s in the binary number
= 21 + 23 + 24
= 2 + 8 + 16
= 26

72

Converting decimal to binary: Given a decimal number, it is converted to an equivalent binary number
as follows:
Q = decimal number
Divide Q by 2, record the remainder and set Q to the quotient
Repeat step 2, until Q = 0
Binary number = the remainder bits, the most recent is the most significant

EXAMPLE 4 – Decimal to binary

What is (18)10 in binary? Following the algorithm:
Q = 18
Dividing 18 by 2, gives 0 remainder and 9 quotient
Q = 9
Dividing 9 by 2, gives 1 remainder and 4 quotient
Q = 4
Dividing 4 by 2, gives 0 remainder and 2 quotient
Q = 2
Dividing 2 by 2, gives 0 remainder and 1 quotient
Q = 1
Dividing 1 by 2, gives 1 remainder and 0 quotient
Q = 0, stop

Binary number is 10010

Binary addition: Addition in binary follows the same principles of addition with decimal numbers. You
only have to keep in mind that we have two symbols. Basically:
0+0 = 0
0+1 = 1
1+0 = 1
1+1 = 10 (which is two in the binary number system)

EXAMPLE 5 – Binary addition

 What is the result of adding 10011 and 00101

10011
00101 +
11000

Starting at the least significant bits (from the right),

 1
1 0 0 1 1
0 0 1 0 1 +
 0
1+1 is 10 or 0 and a carry of 1

 Computer Science for Visitants

73

 1 1
1 0 0 1 1
0 0 1 0 1 +
 0 0

Then,

 1 1 1
1 0 0 1 1
0 0 1 0 1 +
 0 0 0

Next,

 1 1 1
1 0 0 1 1
0 0 1 0 1 +
 1 0 0 0

Finally,

 1 1 1
1 0 0 1 1
0 0 1 0 1 +
1 1 0 0 0

It is left as an exercise to verify that (10011)2 is (19)10, (101)2 is (5)10 , and (11000)2 is (24)10

74

ADVANCED TOPIC – Converting between Decimal and binary in Jython

Alternatively,

 Computer Science for Visitants

75

Negative binary numbers: One famous way to represent negative numbers in binary is called the 2’s
complement, and the algorithm works as follows.

Given a (positive) binary number N:
Toggle each bit in N (a 1 becomes a 0 and a 0 becomes a 1), this is called the 1’s complement
Add 1 to the 1’s complement representation
Chuck out the last carry, if there is one

EXAMPLE 6 – Negative binary numbers

 (101)2 is (5)10
-(5)10 is constructed in binary as follows:
Toggle each bit of 101, the 1’s complement is 010
Then add 1 to 010, resulting in 011
That is (-5)10 is -(011)2

Binary subtraction: To perform subtraction in binary, the algorithm is simple.

Given two binary numbers A and B, to calculate A – B:
Convert B into the 2’s complement form
Add A and the 2’s complement of B
Chuck out the carry resulting from the adding the most significant bits, if it exists

EXAMPLE 7 – Binary number subtraction

 Since 5 – 5 is 0, we expect 101 + 011 to be also 0 (recall that 011 is negative 5 in 2’s complement)

1 0 1
0 1 1 +
0 0 0

 (Note that the last carry resulting from adding the most significant bits is chucked out)

Binary multiplication: As we mentioned earlier, multiplication in any number system can be done using
addition. The algorithm is given next.

Given two (binary) numbers A and B, the multiplication of A and B is calculated as follows:
If A < B, then add B to itself A times
Else add A to itself B times

The if statement tries to minimize the number of iterations in the algorithm. However, in general, it does
not really matter whether we add A to itself B times or B to itself A times, the result is always the same.

76

EXAMPLE 8 – multiplication by addition

 To calculate 2×3, we can either:
Add 2 to itself 3 times, or
Add 3 to itself 2 times

The first option gives us: 2+2+2 = 6
The second: 3+3 = 6

Our algorithm chooses option 2, since this will take less time to execute by the computer (one fewer
step). In general when the numbers are much larger, savings would be much larger. For instance, to
multiply 2 and 100, the first option would require us to add 2 to itself 100 times; this is 100 addition
operations. Option 2, only requires two addition operations, adding 100 to 100.

 Computer Science for Visitants

77

III –Boolean Logic Circuits

Now we are ready to have finer look at how computer hardware is built. Computer hardware can be
built using any number system. The reason the binary system is always used is that it makes the design
simpler and simpler designs are less prone to error. Furthermore, building a computer using the binary
number system can be done electronically, mechanically (using levers and gears), or even
thermodynamically (using fluids and pistons). The choice of electronics to build computers results in a
much smaller machine.

Representing signals: A signal in a single wire can represent a 1, so that the absence of a signal is
interpreted as a 0. Computers use two levels of voltages to represent 1s and 0s. A small voltage
corresponds to a 0 and a high voltage corresponds to a 1. It is always more convenient to think about it
as present or absence signal.

Abstraction of presence/absence of signals as 1s and 0s

Parallel and serial signals: The basic building blocks of a computer are based on the logic operations:
and, or, and not. Everything else can be built from these as we shall see later. A circuit with output
signal generated from two input signals can be built in one of two ways: parallel or serial.

Parallel combination of input signals

This circuit can light the lamp if any of the switches A or B is closed. This will allow the input current to
flow to the output, causing the lamp to go on. However, if both switches are open, the lamp remains off.
It should be obvious that this can be abstracted by an or function. If each input switch is represented by
a 0 (for open) and 1 (for closed), the output is 1(lit lamp) when at least one of the inputs is 1; the output
is 0 (off lamp) as long as both switches are open (0). We reproduce the or truth table here, replacing T
with 1 and F with 0.

78

Truth table for or

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

The serial combination of input signals is abstracted by the and function. Here, both switches A and B
must be closed (1) for the output to be 1 and the lamp to light. Otherwise, any open switch will deny the
current from passing to the lamp.

Serial combination of input signals

The and truth table is reproduced below, replacing 1 for T and 0 for F.

Truth table for and

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

The not function abstracts an electrical that is called an inverter. It will simply cause the switch to
operate backwards: the current flows if the switch is open and it does not if the switch is closed.
Explaining the details of inverters is beyond the scope of our discussion.

Logic gates: Luckily, we do not need to think about invertors, parallel, and serial circuits. These can be
simply abstracted using the Boolean logic operations, and, or , and not. A serial circuit is represented
using an and gate with the symbol:

The output is 1 if and only if both inputs A and B are 1s; otherwise, the output is 0.

 Computer Science for Visitants

79

A parallel circuit is represented using an or gate with the symbol:

The output of an or gate is 0 if and only if inputs A and B are 0s; otherwise, the output is 1.

Finally an inverter circuit is represented using a not gate:

The output is 1 only if the input is 0 and vice versa.

While these three are sufficient to build any logic circuit, including a full blown ALU, it is sometimes
beneficial to add more gates so that the design is simplified. One such gate is the xor gate:

The xor’s gate output is 1 as long as exactly one of the inputs (A or B) is 1; otherwise it is a 0. The xor
truth table is reproduced below, replacing T with 1 and F with 0.

Truth table for xor

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Logic circuits: Any logic circuit can be built from these basic building blocks. For instance, the xor gate
can be built as a circuit involving and, or, and not gates.

EXAMPLE 8 – Building a xor from other gates

Recall that A XOR B is logically equivalent to (A OR B) AND NOT (A AND B). This can be represented by
the following circuit:

80

The operation of this circuit is illustrated below:

Gate G1 is an OR gate, so its output is the or of its inputs (A OR B). G2 is an AND gate and its inputs are
pinned on A and B; hence, its output is (A AND B). G3 inverts or negates the output of G2, producing
NOT (A AND B). Finally the outputs of G1 and G3 are fed as inputs to G4, which is an AND gate, resulting
in (A OR B) AND NOT (A AND B).

Circuits from truth tables: An easy way to construct a logic circuit is to first write down the outputs for
all possible inputs. This can be done using a truth table. Take for instance the XOR truth table discussed
earlier. Examining the table, we only have two possibilities where the output is 1, namely:

A B A XOR B

0 1 1

1 0 1

We then write a logic formula for each row, consisting of AND and NOT operations, such that the
formula is true for the given input combination. For the first row, where A = 0 and B = 1, the formula is
(NOT A) AND B. For the second row, the formula is A AND (NOT B). Then we take the OR of all such
formulas:
((NOT A) AND B) OR (A AND (NOT B))

This formula is expressed using the following circuit:

 Computer Science for Visitants

81

That is this is an alternative way to represent a XOR circuit. The general algorithm for converting a truth
table to a logic circuit is as follows.

Given a truth table:

1. For each output column in the truth table, for each row R in the truth table where the output is
1, Start with an empty formula FR for row R:

a. For each input value X in R that is 1, FR = FR AND X
b. For each input value X in R that is 0, FR = FR AND (NOT X)

2. OR all the formulas FR for all rows R (the result is called the Boolean sum of products)

EXAMPLE 9 – Converting a truth table to a logic formula

Given the following truth table:

Step 1 of the algorithm is to identify all rows with an output of 1. These are

The formula for row 1 is (NOT A) AND B and (NOT C)
For row 2: (NOT A) AND B AND C
For row 3: A AND (NOT B) AND C
For row 4: A AND B AND C

The Boolean sum of products is : [(NOT A) AND B AND (NOT C)] OR [(NOT A) AND B AND C] OR [A AND
(NOT B) AND C] OR [A AND B AND C]. The circuit now can be drawn.

Simplification: The circuit of Example 9 would be complex to draw. Fortunately, logic formulas can be
simplified in a manner similar to arithmetic formulas. Take the expression generated in Example 9:

82

 [(NOT A) AND B AND (NOT C)] OR [(NOT A) AND B AND C] OR [A AND (NOT B) AND C] OR [A AND B AND
C]
For simplicity we can re-write it as follows:
A-1BC-1 + A-1BC + AB-1C +ABC, where the + is the OR, X-1 is NOT X, and XY is X AND Y
Now we can factor it as if it is an arithmetic expression:
A-1BC-1 + A-1BC + AB-1C +ABC
= A-1B(C-1 + C) + AC(B-1 + B)
= A-1B(1) + AC(1), since X-1 + X is a tautology (keep in mind that this is NOT X OR X)
= A-1B + AC
This formula is equivalent to the original complex formula, but the resulting circuit can be much simpler.
We will draw the logic circuit in Example 12.

Adders: Adding two bits can be also done using these basic gates. Let’s examine all possible
combinations for adding two bits, using the following truth table:

Truth table adding two bits

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

We can use the Boolean sum of products for the two output columns: Sum and Carry. For the Carry
column the Boolean sum of products us simply A AND B. For the Sum, it is ((NOT A) AND B) OR (B AND
(NOT A)), which can be expressed as A XOR B.

EXAMPLE 10 – one-bit half adder

A one bit adder can add to numbers of size one bit each. The following circuit can add two bits:

The adder of Example 10 is insufficient if we would like to add numbers of sizes larger than one bit.

 Computer Science for Visitants

83

EXAMPLE 11 – one-bit full adder

Assume we are trying to add the numbers 11 and 11 as follows:
11
11+

Adding the first two bits (the least significant ones) can be done using a half adder, resulting in 0 for the
sum and 1 for the carry. Now we have the following situation:
1
11
11+
 0

To add the remaining two bits, a half adder is insufficient because we need to take into account the
carry out from the previous addition operation. A half adder has only two inputs, there is no third input
for the carry in. A full adder fixes this problem.

The input to this circuit is three bits: A, B and the carry in. The output is the Sum of A and B and the carry
out. Notice that if the carry in is always set to 0, the circuit becomes equivalent to a half adder.

The truth table corresponding to the full adder has 8 different combinations (since we have three inputs
and each input can have two values, the combinations are 23). The truth table for the full adder is left as
an exercise. You should also attempt constructing the full adder circuit using the Boolean sum of
products as an exercise.

So how do we construct an n-bit adder so that it adds n-bit numbers. Through the power of abstraction,
this is straightforward. We can treat the full adder as a black-box, it accepts three inputs: A, B, and the
carry in and produces two outputs: Sum = A+B and the carry out. We understand how this is done, but
we do not care about the details at this stage. We are hiding them intentionally.

Abstraction of a 1-bit full adder

84

To construct a two-bit adder, we need to connect two 1-bit adders so that the carry out of the adder
corresponding to the least significant bit is connected to the carry in of the second adder.

Constructing a 2-bit adder from two 1-bit adders

Two numbers A1A0 and B1B0 can now be added. A0 and B0 are added using the top adder, and if there is
a carry it is fed to the next adder which adds A1 and B1. The result of the addition is Sum1 Sum0 with
carry out. This approach can be generalized to build an n-bit adder, for any n.

Notice that in the two-bit adder, the carry out of the top 1-bit adder is no longer an output of the 2-bit
full adder. The 2-bit full adder can be abstracted as the following black box.

Abstraction of a two-bit full adder

 Computer Science for Visitants

85

ADVANCED TOPIC – 1-bit adders in Jython

86

Decoders: A decoder is a logic circuit that has n inputs and 2n outputs such that in every possible
combination of inputs a unique output is set to 1 and the rest to 0.

EXAMPLE 12 – 2-4 decoder

This decoder has two inputs F1 and F0, and produces outputs D0 – D3
When both inputs are 0s, the output D0 is 1 and the rest (D1 to D3) are 0s.
When F0 is 0 and F1 is 1, only D1 is 1, and the rest are 0s.
When F0 is 1 and F 1 is 0, only D2 is 1, and the rest are 0s.
When both inputs are 1s, only D3 is 1, and the rest are 0s.

This decoder can be abstracted as a black box:

ALU logic circuit: Now we have all the required components to build a one-bit ALU, an ALU that operate
on inputs of 1-bit length. The same technique that was used to build a general adder from the 1-bit full
adders can be used to build an n-bit ALU, for any n.

Our example ALU performs four operations only: and, or, not, and addition. So, we need a 2-4 decoder,
such as the one of Example 12, to instruct the ALU which of the four operations is required. We will use
a top-down design approach here, starting at the ALU block diagram (black box) and then refining it by
looking into its details.

 Computer Science for Visitants

87

High-level design of a 1-bit ALU

Our ALU receives four inputs (bits): A and B are the input bits, loaded from the ALU input registers. The
function inputs F0 and F1 are received from the CU and determine the type of operation and output
required from the ALU.
A function input of 00 (F0 = 0 and F1 = 0) produces output = A and B.
A function input of 01 (F0 = 0 and F1 = 1) produces output = A or B.
A function input of 10 (F0 = 1 and F1 = 0) produces output = not B.
A function input of 11 (F0 = 1 and F1 = 1) produces output = A + B, with the carry value in the output
carry out.

The three components of our ALU are: a full adder to perform addition, a logic unit with the three basic
logic operations (and, or, and not), and a 2-4 decoder that controls the output of the ALU.

Refining the 1-bit ALU

Three of the decoder outputs (D0-D2) are wired to the logic unit to determine if the operation is one of:
and, or, or not. The fourth (D3) is wired to the full adder. We have already built the decoder and the full
adder. The logic unit is also straightforward.

88

The logic unit

The trick is connecting the decoder to the rest of the components. This is also simple. We will “and”
each of the decoder outputs to the result of each of the four ALU functions. For instance, if we “and” D3
with the “sum” output of the full adder, the sum will be output only if D3 is 1 (the sum function is
selected). Recall that only one of the outputs of a decoder will be 1 and the rest are zeroed.

Connecting the decoder to the rest of the ALU components

 Computer Science for Visitants

89

If the decoder enables D0 (D0 = 1), then D1-D3 are all disabled (0s). With the exception of the and gate
labeled with 0, the output of all of the and gates will be 0. Hence, the output of the or gate is solely
determined by the result “A and B”. That is the ALU’s output is “A and B”.
If the decoder enables D1 (D1 = 1), then D0, D2, and D3 are all disabled (0s). With the exception of the
and gate labeled with 1, the output of all of the and gates will be 0. Hence, the output of the or gate is
solely determined by the result “A or B”. That is the ALU’s output is “A or B”.
If the decoder enables D2 (D2 = 1), then D0, D1, and D3 are all disabled (0s). With the exception of the
and gate labeled with 2, the output of all of the and gates will be 0. Hence, the output of the or gate is
solely determined by the result “not B”. That is the ALU’s output is “not B”.
If the decoder enables D3 (D3 = 1), then D0-D1 are all disabled (0s). With the exception of the two and
gates labeled with 3, the output of all of the and gates, will be 0. Hence, the output of the or gate is
solely determined by the result “A + B”. That is the ALU’s output is “A + B” and the carry out is also
allowed out.

Memory circuits: It remains to show how to use logic circuits to build a register. Main memory can be
built as a collection of registers, though different technologies are employed nowadays that are not
limited to registers. First we introduce NOR gates, which is simply a NOT OR gate. An OR gate and a NOT
gate can be combined in the following manner:

That is, the result is NOT(A OR B), if the inputs are A and B. This can be represented using a single gate,
the NOR gate:

The truth table for a NOR gate is as follows:

Truth table adding two bits

A B A OR B NOT(A OR B)

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Note that using DeMorgan’s rule, a NOR gate is equivalent to (NOT A) AND (NOT B)

Latches: The basic building block for a memory circuits is called a latch. This is a circuit that can
remember one bit. There are different kinds of latches. The one we discuss here is called an SR (Set-
Reset) latch, and it is built using two NOR gates.

90

SR latch

There are two inputs to the SR latch: S and R, and two outputs M and NOT M. M is the memory bit
memorized by this circuit. The S input sets the output M to 1, and the R input resets the output M to 0.
The SR latch circuit is tricky. Output from the top NOR gate is fed back as an input to the bottom NOR
gate and vice versa.

To set the latch, S is set to 1 and R to 0. The output of the top gate (NOT M) will be 0 regardless of what
the fed back input to the gate is (1 OR anything is 1, and the negation of 1 is 0). After some time, the fed
back input to the bottom gate stabilizes at 0. Since R is 0 the output of the bottom gate will be 1, setting
the memory bit M to 1.

To reset the latch, S is set to 0 and R to 1. The output of the bottom gate (M) will be 0 regardless of what
the fed back input to the gate is (1 OR anything is 1, and the negation of 1 is 0). This resets the memory
bit M to 0. After some time, the fed back input to the top gate stabilizes at 0. Since S is 0 the output of
the top gate will be 1.

When both S and R have the same value, the output cannot be easily determined. To prevent errors
resulting in an input where both S and R have the same value (such as having both at 1: reset and set the
circuit at the same time), we can update the latch as follows:

Updated latch (S latch) with a single input

To set this latch, we simply set S to 1, making R 0. To reset it, we set S to 0, making R 1.

Multi-bit registers: Two build an n-bit register, we need to group n latches together.

 Computer Science for Visitants

91

IV – Finite State Machines as Logic Circuits

FSMs change state, depending on the current state they are in and the input they receive. Hence, an
FSM needs memory to remember the state it is in. An FSM can be built using Boolean logic, with a
collection of registers needed to remember states.

EXAMPLE 13 – Automatic door controller

Recall the sliding door FSM from Chapter 3. Let’s imagine that the door only opens to the front. The
resulting FSM is given by the following diagram:

The state table is as follows:

One 1-bit register is sufficient to remember the current state: 0 is closed and 1 is open.

The inputs received and their binary encodings are:
NONE 00
FRONT 01

92

REAR 10
BOTH 11

The state table in binary is:

The logic formula equivalent to this truth table has been generated in Example 9. The circuit is (after
applying simplification which was performed immediately after Example 9):

 Computer Science for Visitants

93

V – Relationship between HL and LL programs

Programmers write high-level code, such as Jython programs and computers only understand 0s and 1s.
The machine (low-level) language drives the logic circuits of the computer. Compilers or interpreters
translate high-level code to low level code, which is executed by the computer hardware (the logic
circuits). Consider the following Jython statement, which adds to variables and stores the result in a
third variable:

x = y + z

The low level code generated from this statement is nothing but a stream of 0s and 1s. Yet, we an
abstract it using English-like statements and variable names (called assembly language). The translation
of x = y + z may look like the following assembly language program:

LOAD y A
LOAD z B
ADD A B C
STORE C x

Which instructs the CPU to load memory location y to register A; load memory location z to register B;
instruct the ALU to perform an addition operation storing the result in register C; finally the register C is
stored back to memory location x.

At the machine-language level, each instruction (LOAD, ADD, STORE, etc…) has a fixed binary
representation, just like ASCII codes for characters. The registers are referred to by their numbers and
memory locations are replaced by the actual memory address, all in binary. The above program can look
like the following machine language program:

00101001 10101010 0000001
00101001 10111000 0000010
01101011 00000001 0000010 00000011
00101010 00000011 00101010

LOAD is represented by 00101001; y is the memory address 10101010; A is register 1 or 0000001; z is
memory address 10111000; register B is number 2 or 0000010; ADD is 01101011; register C is number 3
or 00000011; STORE is 00101010; and memory location x is 00101010. We should note that these codes
are for an imaginary machine and codes can differ from one machine to another.

Fetch-decode-execute cycle: once the high-level program is translated to 0s and 1s. It is loaded to main
memory from the hard disk. A special register in the CPU, called program counter (PC), is loaded with
address of the first instruction in the program. (the name program counter is confusing since it has
nothing to do with counting). The CPU fetches the first instruction from main memory (or the cache) and
brings the instruction to a special register, called the instruction register (IR). The CU (control unit)
decodes the instruction, determining the type of work needs to be done. If it is a LOAD, it gets the
address of the variable to be loaded and sends an instruction to main memory to get the contents of the
required location. If it is an ADD, it sets up the proper inputs to the ALU circuit so that it can perform an

94

ADD. Then, the instruction is carried out or executed. All of this is done in the electronic circuits that are
built using logic operations.

 Computer Science for Visitants

95

Exercises

1. Convert each of the following binary numbers to decimal:
101010, 100100, 111111, and 01000011

2. Convert each of the following decimal numbers to binary:
31, 100, 1234 and 1778

3. Write the following negative decimal numbers in binary, using the 2’s complement format:
-6, -12, -21, and -78

4. Add the binary numbers: 101010 + 111111 and 00100111+11100010
5. Draw a circuit corresponding to the following logic formulas:

a. (A AND B) OR (A AND NOT B)
b. (A XOR C) AND (A OR (B OR NOT C))
c. (B NOR C) AND (A XOR NOT (B OR C))

6. Convert the following truth table to a logic formula:

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

7. Simplify the formula from Exercise 6 and draw the circuit
8. Construct a truth table for a 1-bit full adder and follow the Boolean sum of products to design

the circuit from scratch
9. Design a 1-2 decoder
10. Design a 3-8 decoder
11. Design a logic circuit that represents the FSM of the automatic door that opens both ways in

Chapter 3.
12. What are the likely assembly language instructions corresponding to the following Jython

statement: x = x + (y/z)?

Chapter 5
TTaammiinngg DDaattaa DDiinnoossaauurrss::
DDaattaabbaasseess

Computers run programs that operate on data. When such data becomes large, finding efficient ways to
organize it becomes crucial. We all organize our data, from shopping lists to monthly budget analysis.
Nevertheless, large amounts of data need to be carefully designed and organized. The simple list
structure of “to-do” lists falls short for larger data sets. Banks keep information about all their
customers, accounts, and even all the transactions performed on each account. This is a lot of data that
need to be organized so that the computer programs work properly and the bank functions.

A database is an organized collection of data. Your mobile phone uses a database to store your address
book. The university uses a database to keep track of students, their course and grades, and much more.
In this chapter, we will learn how to design data models. Such models, if properly designed, lead to
properly designed databases. Once we learn how to model data and design databases, we will look at a
programming language that is meant to interact with databases, called SQL.

I – Data Modeling

The data modeling approach we discuss here is called the Entity-Relationship model, abbreviated ER.
Database can be modeled as entities and relationships between these entities.

Entities and Entity Types: An entity is any object that exists in the real world. Such an object can exist
physically, in a tangible way, or conceptually, in a virtual way. A book, car, student, and jacket are all
examples of physical entities. A course, bus route, and job are entities of conceptual existence. An entity
type specifies a class of entities. The employee “Scott Smith” is an entity of type employee; so is “Sarah
Smith”, say. These entities are of the same type, employee. All employees share common
characteristics. An entity type defines these common characteristics. For instance all employees have
names, this is a common characteristic. Two different employees may have different names, but they
have names. Another common characteristic is the salary; all employees earn a salary. The value of the
salary could be different between employees.

We will use as a running example a simple company, called the 203 company. It has employees working
on projects and departments that manage projects.

EXAMPLE 1 – Entity Types

The entity types in the 203 company are: EMPLOYEE, PROJECT, and DEPARTMENT.

ER Diagrams and Entity Types: Our ER model is specie as a special kind of graph, called ER diagram
(ERD). The vertices in this graph are entity types. These vertices are drawn as boxes.

 Computer Science for Visitants

97

EXAMPLE 2 – 203 Company ERD

Attributes: Entities have attributes, properties that describe them. An employee for instance can be
described by a name, date of birth, salary, address, etc … The choice of the attributes is determined by
the problem we are trying to solve. In the ERD, the attributes of each entity type is listed inside the box
corresponding to that entity type. These attributes will be assigned values, which could be different
from one entity to another. A collection of attributes that uniquely identify an entity is called a primary
key.

EXAMPLE 3 – 203 Company ERD

An employee can be described by a social insurance number (SIN), name (first and last), date of birth
(DOB), gender, salary, and address (number, street, city, and postal code).

A department has a number and a name. In addition, a project has a location.

98

The attribute SIN of EMPLOYEE is underlined to indicate that it is a primary key for EMPLOYEE. No two
different employees can have the same SIN. Similarly, Number in PROJECT is the primary key. The
department Number is the primary key for DEPARTMENT.

Take a specific entity of EMPLOYEE, “Debra Beacons”. It may have the following values assigned to the
EMPLOYEE attributes: (171717171, Debra, Beacons, 15-Aug-1961, Female, $70,000, 15, Bacon Hill, Ham
Land, T2X Y0Y). Similarly, employee “Sam Field” can be described by: (181817178, Sam, Field, 17-Feb-
1978, Male, $40,000, 15, Kick Way, Ball Land, Y2K K0K)

This ERD is not complete yet. It does not contain relationship information (the R of ER). How does an
employee relate to a department? How do employees relate to projects?

Relationships and Relationship Types: A relationship type specifies if and how entity types relate to
each other. A relationship is an instance of the relationship type relating entities together. Relationship
types are the edges of the ERD graph. These edges are labeled to convey extra information.

Cardinality of Relationship Types: One piece of extra information needed for the edges is the cardinality
of the relationship types. We have three cardinalities:

 One-to-one: represents a unique association between entity-types. Attributes are normally
regarded as one-to-one relationship types.

 One-to-many (many-to-one): An entity can be associated with more than one other entity. A
department can have many employees, but an employee is allowed to belong to one
department only.

 Many-to-many: An employee can work on more than one project, and a project can have many
employees working on it. This is an example of a many-to many relationship type.

EXAMPLE 4 – 203 Company ERD

The ERD of the previous example is revised to include three relationship types: WORKS FOR, CONTROLS,
and WORKS ON

 Computer Science for Visitants

99

The WORKS FOR edge is labeled with 1 on the EMPLOYEE side and N on the DEPARTMENT side. This is
an indication that WORKS FOR is a one-to-many relationship type: An employee can work for one
department, but a department may have many employees working for it.

The CONTROLS relationship type is also one-to-many : A department may control several projects, but a
project must be controlled by a single department (inter-departmental projects are not allowed in the
203 company).

The WORKS ON edge is labeled with M and N, indicating a many-to-many relationship type: an
employee can work on many projects and a project can have many employees working on it. Employee x
can be working on 2 projects, say and project y can have 12 employees working on it. We choose to use
different symbols on each side of the edge (M and N, as opposed to using N on both ends) so that we do
not give the impression that the numbers must be equal on both sides (If employee x works 2 projects,
say, we should not imply that project y must have 2 employees working on it).

Relationship Type Degrees: The degree of a relationship type is the number of entity types it relates.
WORKS_ON, WORKS_FOR, and CONTROLS are all binary relationship type. Each relates two entity types.
The degree of such a relationship is two. Relationship types could be of any degree, relating as many
entity types as needed. Relationship types of very high degrees are seldom used in practice.

Participation Levels: It is often helpful to include further information on the edges of the ERD, such as
how each entity participates in the relationship. Does every employee have to work on a project? Does
every department control some project? There are two levels of participation in a relationship, universal
or full and existential or partial.

EXAMPLE 5– 203 Company ERD

The following ERD contains extra labels, in the form of existential and universal quantification symbols.

100

The EMPLOYEE side of WORKS FOR is labeled with , indicating that every employee must work for

some department. Similarly, the DEPARTMENT side of WORKS FOR is labeled with , indicating that
every department must have some employee working for it. In other words, EMPLOYEE fully participates
in WORKS FOR and DEPARTMENT fully participates in WORKS FOR.

The EMPLOYEE side of WORKS ON is labeled with , indicating that some (but not necessarily all)

employees work on projects. However, PROJECT’s side of WORKS ON is labeled with , emphasizing that
every project must have some employee working on it.

The DEPARTMENT participation in CONTROLS is partial, emphasizing that not all departments need to
have projects under their control. However, projects must be always controlled by some departments.

 Computer Science for Visitants

101

II– Mapping ERD to a Schema

The ERD is one step towards designing a database. It specifies how data is related. In a database,
information is specified in the form of tables. The structure of these tables is called the database
schema. We will present an algorithm that translates an ERD to a database schema.

EXAMPLE 6 – Databases and Schema

The following shows an example database that contains three tables: EMPLOYEE, DEPARTMENT, and
PROJECT.

The database schema for this example is simply:

102

Mapping algorithm: The input to the mapping algorithm is an ERD and the output is a database schema.
In this version, we ignore one-to-one relationship types, but we will discuss how to handle them later.

1. Each entity type is translated to a table; its attributes become columns
2. Each many-to-many relationship type becomes a table; the columns are the primary keys of the

participating entity types
3. For each one-to-many relationship type, add the primary keys of the entity type on the one side

as columns in the table corresponding to the entity type on the many side

EXAMPLE 7 – Mapping

The schema corresponding to the ERD in Example 4 is as follows:

The EMPLOYEE table has all the attributes of the EMPLOYEE entity type as columns. In addition it has the
Number of the DEPARTMENT entity type induced by the WORKS FOR relationship type. Since this is a
one-to-many relationship and DEPARTMENT is on the one side, the primary key of DEPARTMENT has
been duplicated in the EMPLOYEE table, Dnumber. Since Dnumber came from another place, it is called
a foreign key.

The DEPARTMENT table has the two attributes of the DEPARTMENT entity type..

The PROJECT table has the three attributes of the PROJECT entity type. In addition, it has the foreign key
Dnumber from the DEPARTMENT entity type. This is a result of the CONTROLS relationship. Since
DEPARTMENT is on the one side, DEPARTMENT’s primary key (DNumber) is duplicated in the table
PROJECT.

 Computer Science for Visitants

103

The only many-to-many relationship type is WORKS ON. A new table is created as a result of this
relationship, we called it PROJ_EMP. This table has the primary keys of the participating entity types,
namely PROJECT and EMPLOYEE.

Notice that we have renamed number to Dnumber (for department) and Pnumber (for project) to avoid
any confusion whether we are referring to the number of the project or the department. The same also
applies to name (Dname and Pname)

EXAMPLE 8 – An instance database

The database of Example 6 forms an instance of the schema generated in Example 7, after the addition
to the following able

One-to-one relationship types: This kind of relationships is rare in databases. Nevertheless, they can
occur. For instance, a MANAGES relationship type could be relating EMPLOYEE and DEPARTMENT. This
relationship captures which employee manages which department. Since a department can have exactly
one manager and an employee can manage only one department this would be a one-to-one
relationship.

One-to-one relationships are treated like one-to-many relationships. They do not cause new tables to be
created. Instead they augment the structure of existing tables. With one-to-many relationships, the
primary key on the “one” side of the relationship is duplicated as a foreign key at the “many” side of the
relationship. One-to-one relationships are a little bit more difficult since both ends of a relationship type
are the “one” end. To guarantee a good design, we have to take participation into consideration. If both
sides (entity types) participate in the relationship at the same level (both are partial or both are full),
then it does not matter which primary key is duplicated in the other end as a foreign key. It is your pick.
However, if one entity type participates partially and the other fully, we take the primary key of the
partial side and duplicates it as a foreign key in table corresponding to the full side.

104

EXAMPLE 9 – One-to-one relationships

Consider the following updated ERD. We have added a one-to-one MANAGES relationship, between
DEPARTMENT and EMPLOYEE.

This would cause the schema developed in Example 7 to change. The DEPARTMENT table will be as
follows:

We have added the SIN of the EMPLOYEE who manages a DEPARTMENT, as column MGR_SIN.
EMPLOYEE is on the partial participation side of MANAGES and DEPARTMENT is on the full side (not all
employees are manages, but all departments must have managers). So, we have duplicated EMPLOYEE’s
primary key in the DEPARTMENT table.

Attributes for relationship types: We have given only entity types attributes, but relationship types can
also have attributes. Consider for instance the WORKS ON relationship. It simply tells us which employee
is working on which project, but it does not tell us how many hours the employee is working on each
project. To capture this extra information, the WORKS ON relationship type must have an attribute,
Hours. As another example, consider the MANAGES relationship type of Example 9. Here also, we may
need to know the effective dates of a manager. If this is the case, then we need two attributes of the
MANAGES relationship type: Start date and End date.

EXAMPLE 10 – Relationship attributes

In the following ERD, we have added attributes to MANAGES and WORKS ON, as we have discussed
earlier.

 Computer Science for Visitants

105

Now, we are ready to refine the algorithm for mapping from ERD to database schema so that it takes
into consideration one-to-one relationships and relationship type attributes.

Complete Mapping Algorithm:

1. Each entity type E is translated to a table T (to emphasize that T is a result of E, we write T(E))

 T’s columns are E’s attributes
2. Each many-to-many relationship type R, relating entity types E1 and E2, becomes a table T

 T’s columns are R’s attributes

 the primary key of E1 and E2 is added as columns in T
3. For each one-to-many relationship type R, relating E1 to E2 with E1 on the “one” side:

 add the primary key of E1 as columns in T(E2)

 any attributes that R has become columns in T(E2)
4. For each one-to-one relationship type R, relating E1 to E2 with E1 on a partial participation side

or both E1 and E2 fully participate in R:

 add the primary key of E1 as columns in T(E2)

 any attributes that R has become columns in T(E2)

EXAMPLE 11 – Mapping

We apply the Complete Mapping Algorithm to the ERD in Example 10, step by step.

Step 1 results in the following three tables, corresponding to the three entity types in the ERD:

106

Step 2 results in adding a fourth table corresponding to the only many-to-many relationship type in the
ERD. Hours is an attribute of WORKS ON, but SIN and Pnumber are foreign keys.

The remaining relationship types are either one-to-one or one-to-many. They do not cause the creation
of new tables. Instead, the augment the structures of the already existing four tables by adding more
columns as foreign keys.

Step 3 with the WORKS FOR relationship results in the following change for table EMPLOYEE

Step 3 with the CONTROLS relationship results in the following change for table PROJECT:

Step 4 with the MANAGES relationship results in the following change for table DEPARTMENT:

 Computer Science for Visitants

107

III– Design Principles

What makes a good design? Why did we copy the primary key from the one side to be duplicated as a
foreign key in the table corresponding to the many side? What happens if we do the opposite? There
are three basic design principles in databases.

1. Meaning of a schema should be easily explained: Do not combine attributes from different entity
types into a single table.

EXAMPLE 12 – Schema meaning

We could have combined both PROJECT and DEPARTMENT into one schema

The resulting table would have an unclear meaning.

2. Reduce redundancy: Unnecessary redundancy can lead to modification anomaly. Such anomalies
arise when modification of data is required.

EXAMPLE 13 – Modification anomaly

Assume that we have designed the project schema as follows:

The replication of Dnumber in project is unnecessary. A modification anomaly arises if the 203 company
decides to change the name of the IT department, say. Such un update will not be limited to the
DEPARTMENT table, but it will need to be done in PROJECT and other places where Dnumber is
repeated.

Note that in our original design of Example 11, Dname occurs in one place only, the DEPARTMENT table,
and any modification to it will be limited to the DEPARTMENT table. The remaining table will remain
untouched.

Step 3 of the Complete Mapping Algorithm instructs us to add the primary key of the “one” side in the
table corresponding to the “many” side. If we do the opposite, it will result in unnecessary redundancy.

108

EXAMPLE 14 – Unnecessary redundancy

Let’s consider the CONTROLS relationship type. Assume instead of following our mapping algorithm we
copy the primary key of PROJECT in DEPARTMENT (the algorithm asks us to do the opposite). This would
result in the following schema

Our example database would contain

Since the IT department manages two projects, this results in two tuples corresponding to the IT
department in DEPARTMENT. In general, this could result in much more redundancy, since it requires a
department row for each project it manages.

3. Reduce NUL values: NUL values are blank values and are unavoidable, but the design should try to
minimize them as much as possible. NUL values waist space. In the DEPARTMENT table the EndDate for
the managers is unknown; we have to leave them blank until the manager completes the managerial
duties. Also NUL values result in confusion. What does a NUL value mean: not applicable, unknown, or
to be recorded? It is not always possible to determine the meaning of a NUL value.

 Computer Science for Visitants

109

EXAMPLE 15 – Unnecessary redundancy

Let’s consider the MANAGES relationship type. Assume instead of following our mapping algorithm we
copy the primary key of DEPARTMENT in EMPLOYEE (the algorithm asks us to do the opposite). This
would result in the following schema

Since not all employees are managers (EMPLOYEE’s participation in MANAGES is partial), this would
result in unnecessary NUL values in EMPLOYEE.

110

IV– Tables and Relations

A database schema results in a collection of tables. That is a database is collection of tables containing
the desired information. Tables are relations as defined in Chapter 1. Recall that a relation on sets A1 , A2
, … , An is a subset of A1 x A2 x … x An. In fact, most people call a table a relation (do not confuse this with
relationships and relationship types)

EXAMPLE 16 – Tables as relations

Consider the project table

This table can be represented in set notation as follows:
PROJECT = {(1, Web Shopping, Calgary, 1), (2, Backup, Calgary, 1), (3, New benefits, Toronto, 2), (4,
XT345, Toronto, 3)

This is the reason database experts call a row a tuple because it simply is. It should be easily seen if
N is the set of natural numbers,
M is the set of names,
L is the set of locations,

PROJECT  N×M×L×N

 Computer Science for Visitants

111

V– Querying the Database

The Structured Query Language (SQL) is an English-like computer language that is specific for databases.
The language has two parts: the Data Definition Language (DDL) used to define the database such as the
table structure and the Data Manipulation Language (DML) used to insert, delete, modify, and query
data. In this course, we limit discussion to queries. A query is a question submitted to the database and
the answer is a relation (a collection of tuples or rows).

Basic SQL: A basic SQL statement has two clauses SELECT and FROM. The FROM clause specifies which
tables the query is being performed on and the SELECT clause specifies the columns that need to be
returned.

Throughout this section, we use the following database example.

PROJECT

Pnumber Pname Location Dnumber

1 Web Shopping Calgary 1

2 Backup Calgary 1

3 New benefits Toronto 2

4 XT345 Toronto 3

DEPARTMENT

Dnumber Dname MGR_SIN StartDate EndDate

1 IT 171717171 12-Feb-2008 NUL

2 Finance 123456789 1-Mar-2002 NUL

3 Marketing 666333999 1-Jan-2005 NUL

EMPLOYEE

SIN Fname Lname DOB Gender Salary Number Street City Pcode Dnumber

171717171 Debra Beacon 15-Aug-
1961

Female 70000 15 Bacon
Hill

Ham
Land

T2X
Y0Y

1

181817178 Sam Field 17-Feb-
1978

Male 40000 15 Kick
Way

Ball
Land

Y2K
K0K

1

12345679 Rajeet Folk 30-Apr-
1967

Male 78000 123 One
Road

Banner H1H
J9J

2

987654321 Marie Band 12-Jan-
1985

Female 53500 2828 Exit
Close

Tree
Hill

K8O
O8K

2

666333999 Saleh Dice 25-Mar-
1970

Male 90400 66 Straight
Way

Bent
Road

T4E
T6B

3

112

PROJ_EMPLOYEE

SIN Pnumber Hours

171717171 1 15

171717171 2 25

181817178 1 30

181817178 2 10

123456789 3 40

666333999 4 40

EXAMPLE 17 – Projection in SQL

The following SQL statement projects PROJECT to two columns:

SELECT Pname, Location
FROM PROJECT

That is, the answer to this question is:

Pname Location

Web Shopping Calgary

Backup Calgary

New Benefits Toronto

XT345 Toronto

More useful SQL statements require a WHERE clause, which specifies a Boolean condition that filters the
returned tuples. This operation is referred to by selection.

EXAMPLE 18 – Selection in SQL

The following SQL statement selects from PROJECT only those projects located in Calgary

SELECT Pnumber, Pname, Location, Dnumber
FROM PROJECT
WHERE Location = ‘Calgary’

The result of this query is:

Pnumber Pname Location Dnumber

 Computer Science for Visitants

113

1 Web Shopping Calgary 1

2 Backup Calgary 1

There is a cleaner way to write this same query. Instead of listing all the columns of STUDENT, we can
simply use the wild card *:

SELECT *
FROM PROJECT
WHERE Location = ‘Calgary’

EXAMPLE 18 – Selection and Projection in SQL

Selection and projection can be combined together.

SELECT Pname, Location
FROM PROJECT
WHERE Location = ‘Calgary’

The result of this query is:

Pname Location

Web Shopping Calgary

Backup Calgary

Set operations in SQL: The result of a query is a relation, which is a set. So SQL allows us to combine the
sets resulting from two different queries into one set using operations on sets (union, intersection, and
difference). The general structure of such queries is:

Query 1
set operation
Query 2

Where set operation is any of UNION, INTERSECT (for intersection), or MINUS (for set difference)

EXAMPLE 19 – Set operations in SQL

The result of the following query is all projects that are located in Calgary or Toronto

SELECT *
FROM PROJECT
WHERE Location = ‘Calgary’
UNION
SELECT *
FROM PROJECT
WHERE Location = ‘Toronto’

114

The result of the following query is the SIN of all female managers

SELECT SIN
FROM EMPLOYEE
WHERE Gender = ‘Female’
INTERSECT
SELECT MGR_SIN
FROM DEPARTMENT

The result of the following query is the SIN of all non-manager males

SELECT SIN
FROM EMPLOYEE
WHERE Gender = ‘Male’
MINUS
SELECT MGR_SIN
FROM DEPARTMENT

Natural Joins: PROJECT has the foreign key Dnumber which relates to DEPARTMENT. If we need to know
which department controls the Web Shopping project, from table PROJECT it can be determined that is
department number 1. Another query is required from table DEPARTMENT to figure out the rest of the
department information such as the department name. SQL allows us to formulate such queries in one
shot using natural joins.

EXAMPLE 20 – Cartesian products and joins

Consider the following query:

SELECT *
FROM PROJECT, DEPARTMENT

This query gives us the product of the set PROJECT and the set EMPLOYEE, or PROJECT × EMPLOYEE.
That is, the result is:

 Computer Science for Visitants

115

It pairs each row of PROJECT with every row of DEPARTMENT

A query like this is not useful by itself. We need to filter the results further, leaving only the meaningful
matches. For instance, it makes sense to only keep the IT department beside the Web Shopping project.
That is we want the Dnumber from PROJECT to be the same as the Dnumber from DEPARTMENT. The
matching values are encircled:

116

To eliminate the rest of the rows, we add a WHERE clause to filter these rows.

SELECT *
FROM PROJECT, DEPARTMENT
WHERE PROJECT.Dnumber = DEPARTMENT.Dnumber

This is called a (natural) join and the result of the query is:

Complex Boolean conditions: The WHERE clause can include complex Boolean conditions using AND,
OR, and NOT. The comparison operators used in SQL are:

 Equals =
 Greater than >
 Less than <
 Different (not equal) <> or !=
 Less than or equal <=
 Greater than or equal >=

EXAMPLE 21 – More SQL examples

The following query retrieves the last names and DOBs of female employees whose salary is more the
40K

SELECT Lname, DOB
FROM EMPLOYEE
WHERE Gender = ‘Female’
AND Salary > 40000

The following query retrieves the SIN, last name, and first name of employees whose salary is between
(inclusive) 30K and 50K

SELECT SIN, Lname, Fname
FROM EMPLOYEE
WHERE Salary >= 30000
AND Salary <= 50000

The following query retrieves the SIN, last and first names of all male employees who earn more than
30K and all female employees who earn above 40K

 Computer Science for Visitants

117

SELECT SIN, Lname, Fname
FROM EMPLOYEE
WHERE (Gender = ‘Male’ AND Salary > 30000)
OR (Gender = ‘Female’ AND Salary > 40000)

Alternatively, the same query can be expressed using set union as follows:

SELECT SIN, Lname, Fname
FROM EMPLOYEE
WHERE (Gender = ‘Male’ AND Salary > 30000)
UNION
SELECT SIN, Lname, Fname
FROM EMPLOYEE
WHERE (Gender = ‘Female’ AND Salary > 40000)

The following query retrieves the addresses of all employees who work for the IT department:

SELECT Number, Street, City, Pcode
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dnumber = DEPARTMENT.Dnumber
AND Dname = ‘IT’

Building a query trace: Tracing SQL queries with join conditions can be tedious. Consider the following
query:

SELECT SIN, Number, Street, City, Pcode, Dname
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dnumber = DEPARTMENT.Dnumber
AND Dname = ‘Marketing’
AND Salary > 70000

One straightforward way is to start the trace by considering the Cartesian product of EMPLYEE and
DEPARTMENT. If EMPLOYEE has n tuples and DEPARTMENT has m tuples, we would be starting with a
result set of n×m tuples. In our case, this is 6×3 = 18 tuples, but in general this could be prohibitively
large. The last two lines of the SQL query can restrict the result set since we need not consider all
departments and all employees. There is exactly one department with Dname=’Marketing’ and we only
have two employees whose salary > 70K. So, we need only work with 2×1= 2 tuples to construct the
result of this query. So, we build the trace starting by applying the filtering imposed by the last two lines.

The table DEPARTMENT when filtered by Dname = ‘Marketing’, leaves us with the following subset of
DEPARTMENT:

Dnumber Dname

3 Marketing

118

Similarly, applying the condition Salary > 70000 gives us the following subset of EMPLOYEE:

SIN Fname Lname DOB Gender Salary Number Street City Pcode Dnumber

12345679 Rajeet Folk 30-Apr-1967 Male 78000 123 One Road Banner H1H J9J 2

666333999 Saleh Dice 25-Mar-1970 Male 90400 66 Straight Way Bent
Road

T4E T6B 3

The Cartesian product is now simpler to work with:

SIN … Salary Number Street City Pcode Dnumber Dnumber Dname

12345679 … 78000 123 One Road Banner H1H J9J 2 3 Marketing

666333999 … 90400 66 Straight Way Bent
Road

T4E T6B 3 3 MArketing

Quickly we can infer that the result of this query is simply:

SIN Number Street City Pcode

666333999 66 Straight Way Bent
Road

T4E T6B

Ordering the query results: The rows returned as a result for a query are ordered in the way they are
stored in the database. We can instruct the SQL query to order the result using an ORDER BY clause.

EXAMPLE 22 – ORDER BY clause

The following query orders the result by last name

SELECT Lname
FROM EMPLOYEE
WHERE Fname != ‘Sarah’
ORDER BY Lname

The following query orders the result by last name in descending order

SELECT Lname
FROM EMPLOYEE
WHERE Fname != ‘Sarah’
ORDER BY Lname DESC

The following query orders the result by last name and first name (if two employees have the same last
name the tie is broken by their first names)

SELECT Lname , Fname, Salary
FROM EMPLOYEE

 Computer Science for Visitants

119

WHERE Fname != ‘Sarah’
ORDER BY Lname, Fname

Aggregate functions: Some of the aggregate (or group) functions in SQL are:

 SUM: sum of values in a column
 AVG: average of values in a column
 COUNT: number of not null values
 MIN: minimum value in a column
 MAX : maximum value in a column

EXAMPLE 23 – Aggregate functions

The following query determines the sum of all salaries

SELECT SUM(Salary)
FROM EMPLOYEE

The following query determines the number of records in EMPLOYEE

SELECT COUNT(*)
FROM EMPLOYEE

The following query determines the average salary in department number 1

SELECT AVG(Salary)
FROM EMPLOYEE
WHERE Dnumber = 1

The following query determines the minimum salary for female employees

SELECT MIN(Salary)
FROM EMPLOYEE
WHERE Gender = ‘Female’

The following query determines the maximum salary for male employees

SELECT MAX(Salary)
FROM EMPLOYEE
WHERE Gender = ‘Male’

GROUP BY clause: The GROUP BY allows us to apply aggregate functions for separate groups of values,
such as counting the number of employees in each department.

EXAMPLE 24 – Aggregate functions

The following query determines the sum of all salaries for each department

120

SELECT Dnumber, SUM(Salary)
FROM EMPLOYEE
GROUP BY Dnumber

The result would be:
Dnumber SUM(Salary)
1 11000
2 131500
3 90400

The following query calculates the average salary per gender

SELECT Gender, AVG(Salary)
FROM EMPLOYEE
GROUP BY Gender

HAVING clause: We can further filter the result of a group function by requiring the aggregate value to
satisfy certain Boolean condition.

EXAMPLE 25 – Aggregate functions

The following query determines the number of projects each employee works on

SELECT SIN, COUNT(*)
FROM EMP_PROJ
GROUP BY SIN

The following query further filters the result to include only those employees who work on more than
one project:

SELECT SIN, COUNT(*)
FROM EMP_PROJ
GROUP BY SIN
HAVING COUNT(*) > 1

 Computer Science for Visitants

121

Exercises

1. Design a simple university ER

a. The university has students, courses, and instructors
b. The database will be used to keep track of student completion of courses and the

respective final letter grades
c. We should be able to tell which instructor taught a given student and in what course

2. Design a simple bookshop ER

 They carry only Books

 They need to be able to search for a book by author, publisher, subject, etc..

 They also record size, cost price, sale price, acquire date of each book
3. Design a simple music library ER

 The library has all kinds of records (Disks, phonographs, etc…)

 For each song/instrumental, the library keeps track of all musicians who are in making the
song/instrumental (who did what: vocal, piano, drums, lyrics, composing, etc …)

 It also keeps track duration, date and other properties of each song/instrumental
4. Map the ERD of questions 1, 2, and 3 to a database schema
5. On the example database, write the following queries in SQL:

a. Retrieve employees whose salary is less than 30K
b. Retrieve employees whose salary is less than 30K and live in Ham Land
c. Retrieve employees whose salary is more than 30K or do not live in Ham Land
d. Retrieve projects that are controlled by the finance department
e. (very challenging) retrieve the departments that are control at least one project and are

managed by a female employee
f. Find the total number of hours each employee is working on projects
g. Find the average hours that employees are working on projects
h. Find the total salary per department, as long as the total is more than 100K

122

Chapter 6
MMiinngglliinngg CCoommppuutteerrss::
NNeettwwoorrkkiinngg

Computers are no longer computing machines only. They have become a communication tool. Browsing,
instant messaging, voice over IP, and media streaming have become an integral part of our lives. But,
how are actually things done? What happens behind the scene? Do you still think that the WWW and
the Internet are the same thing? In this chapter, we focus our spot light on these and similar questions.

The chapter explains what the Internet and the WWW are and what rules computers need to follow so
that they communicate with each other. Buzz terms such as TCP/IP, UDP, and HTTP will become
meaningful. Communication cannot be made viable if it is not secure. The types of threats and the
security mechanisms that are used to guard against threats are also discussed.

I – Basics of Networking

You open a browser and type in the address www.cbc.ca/index.html. Suddenly, you have a nicely
presented Web page. What did actually happen? The page you have just opened was stored on a
computer that is located somewhere else, possibly on the other side of the planet. The browser, running
on your computer, sent a request to the computer that hosts the Web page you are requesting, and the
latter sent the Web page to your browser. Let’s accept this simplistic view for now. Your browser is
called the client program and your computer is the client computer. The computer that is storing the
Web pages is called the server computer and there is a program running on it whose job is to serve the
client’s requests; this program is the server.

Simplified view of client-server interaction

The Internet: For the client computer and the server computer to communicate, they have to be hooked
up together through a network. A network is a collection of wires, wireless antennas and receivers,
satellite connections, and any other mechanism that can make the two computers communicate. Yet,
the network alone is not sufficient to establish communications. The mere fact that you and your friends
have phones is not sufficient for both of you to make a telephone conversation. You need to know how
to use the phone, you have to have a subscription with a telephone service provider, and you and your
friend must be able to speak a common language. The rules that make it possible for computers to

 Computer Science for Visitants

123

communicate are called protocols. A networking system consists of a network and protocols. The
Internet is the largest networking system that ever existed.

The two components of a networking system

Internet Protocols: The Internet’s protocol suite is called TCP/IP. IP stands for Internet Protocol and it
mainly specifies an addressing mechanism. Computers need this addressing mechanism to locate each
other. The telephone system has an addressing mechanism, which specifies the addresses of
telephones: country code, area code, phone number. The postal system also has an addressing
mechanism, without of which it would be impossible to send post cards to your friends. IP requires that
each computer hooked to the Internet must have a unique IP address. The IP address consists of 4
positive integers separated by dots and each integer must be between 0 and 255. Work is in progress to
enlarge the IP addresses so that more computers can be connected to the Internet.

EXAMPLE 1 – IP addresses

The following are valid IP addresses: 150.203.1.2, 127.15.30.12, and 57.83.77.90.

The following are not valid IP addresses: 150.256.1.2, 1.2.3, and 150.-1.34.56.

The server computer can have several server programs running on it. It is a large organization, just like
your bank, where several servers with different specialties attend to customers. Typically bank branches
have a main telephone number that connects you to the branch and then you will be asked to dial an
extension number to connect to the right person that will serve you. The IP address is the address of the
server computer. To connect to a specific server within the server computer, a client needs an extension
number. These extension numbers are called port numbers. For instance, Web servers who serve Web
pages are typically on port number 80 and email servers use port 25.

In addition to addressing, the IP protocol is also responsible for routing messages, but we will not dwell
on routing here.

The first part of TCP/IP is TCP, which stands for Transmission Control Protocol. TCP specifies the rules for
establishing connections between the client and server computers. These rules are:

1. The server must be listening to some port number waiting for clients’ requests. This port
number is the private extension for this server.

124

2. A client must request a connection with the desired server, specifying an IP address and a port
number. This request is sent from the client computer to the server computer over the network.

3. The server accepts or rejects the request. If the connection request is accepted, a connection
between the client and server is established.

4. The client can send its requests to the server once the connection is established and the server
can send its responses back to the client.

5. Once the client has no further requests, the connection is closed by the client and the server.

WWW: The World Wide Web is the collection of HTML documents available through the Internet. The
WWW is not the Internet and the Internet is not the WWW. The latter is simply an application built on
top of the Internet, just like email is a different application built on the Internet. These applications rely
on the protocols provided by the Internet, but they specify their own application-level protocols. When
you communicate with your friends over the phone, you have to play by the rules set by the telephony
system. Nevertheless on top of these protocols, you have your own (application-level) protocols. These
could specify things such as do not call after midnight or before 10AM, or if you do not have enough
credit, you miss call your friends so that they call you back. The protocol of WWW is called HTTP, which
stands for Hyper Text Transfer Protocol and the email protocol is SMTP or Simple Mail Transfer Protocol.

WWW and email as applications of the Internet

So, when you requested the page www.cbc.ca/index.html, the browser had to follow the 5 TCP steps
outlined earlier. The missing link though is that the browser (the client) must request a connection with
the Web server specifying an IP address and a port number. How was it able to lookup the IP address of
the appropriate machine? First, we need to understand URLs.

URLs: A Universal Resource Locator is an easy to remember address given to a resource on the Web. The
URL http://www.cbc.ca/index.html has several components. The http:// prefix is specifying which
protocol is being used, HTTP: the protocol of the Web. www.cbc.ca is the name of the server machine
your client is trying to connect to. The last part /index.html is the name of a file stored on the server
machine.

Naming service: Fortunately, one does not need to remember the IP address of the www.cbc.ca server.
When someone requires a telephone number, typically they resort to the phone book to look it up. All

 Computer Science for Visitants

125

what they need to remember is the name of the party they would like to dial up. In the Web,
www.cbc.ca is the name of the server computer that one would like to communicate with. Your browser
uses the equivalent of the telephone book to translate the symbolic name to an IP address. There are
special servers that implement such a “phone book” for the Web. These are called naming servers. The
browser communicates with a nearby naming server to lookup the IP for www.cbc.ca.

High-level view of the naming service

The implementation of the naming service is still more complicated than this simplistic explanation.
Though it is feasible for every naming server to record the IPs of all the servers on the planet, this
approach is not desirable. Every time a new server is added to the Internet, all such naming servers must
be updated. This is infeasible. Instead, the local naming server communicates with other naming servers
to resolve a name to an IP.

Illustration of name resolution

When the local naming server receives a lookup request for www.cbc.ca from the browser, it knows that
it should contact the naming server that handles the ca domain. Anything that ends with ca must be
registered with the ca naming server. The ca naming server examines the local naming server request
and provides the local naming server with the IP for the naming server that handles cbc.ca. The local
naming server sends another request to the cbc.ca naming server. www is typically the name of an
actual computer registered with the cbc.ca naming server. So the latter supplies the IP to the local
naming server which passes it back to the browser.

126

Note that in such an organization, the cbc.ca can add and remove server computers without having to
update the ca naming server. The latter must be only updated if a new Web site is added under the ca
domain. The browser can now request a connection with the required server. Note also that the naming
servers make use of TCP/IP to communicate with each others as well.

HTTP: Now that the connection between the browser and the Web server are established, what kind of
language do they speak with each other? They speak HTTP. That is, HTTP defines the structure and
meaning of messages being exchanged between the browser and the Web server. For instance, the
browser needs to be able to say: get me the file index.html. In what format does the server send the
reply back? Keep in mind that all HTTP messages are sent using TCP/IP.

In HTTP there are two types of messages. Requests are sent from the client to the server and responses
sent back from the server to the client. The two major request messages are called GET and POST. The
GET message is generated every time a hyperlink is clicked. The POST request is generated when you fill
in form data and press a submit button.

The general HTTP message structure is as follows:

General header
Additional headers
An empty line
An optional message

A GET request would look like:
GET /index.html HTTP/1.1

(must be followed by an empty line)
The last part of the request HTTP/1.1 is specifying the protocol version.

A response message for this request may look like:
HTTP/1.1 200 OK
Date: Sat, 15 Nov 2009 14:55:11 GMT
Server: Apache/2.0.47
Accept-Ranges: bytes
Content-Length: 1107
Connection close
Content-Type: text/html; charset=ISO-8859-1

<HTML>
To the rest of the HTML page

UDP: TCP is not the only protocol used by the internet to transit information. The Universal Datagram
Protocol (UDP) is less famous that TCP but is part of the Internet suite. A message, such as an HTTP
response message including a an HTML file, is first broken down into smaller equal–sized messages
called, packets or datagrams.

 Computer Science for Visitants

127

Breaking a message into equal-sized packets

These packets are sent separately over the network; they include extra information, such as the sender
and receiver info and sequential numbers so that the original message can be re-assembled by the
receiving party.

While TCP requires establishing a connection before exchanging messages, UDP does not. This makes
TCP a connection-oriented protocol and UPD a connectionless protocol. The telephone system is a
connection-oriented system. To talk to your friend, you have to establish a connection first: you have to
dial your friend and she must pick up. The postal system is connectionless. To send your parents a post
card, you do not have to have a connection established a head of time. You simply address the post card
and affix a stamp on it and drop it in the postal office or a postal drop box, then you go away to do other
things. The card gets routed in the postal system until it reaches its destination. Your parents need not
be sitting there waiting for the card to arrive; they will be simply doing other errands too. UDP works
much like the postal system. UDP is faster than TCP, but it is less reliable. Packets can be lost in UDP.

128

II – Secure Communication

When someone tries to login to their Internet banking application, a POST request that contains the
login information is sent from the browser to the server hosting the application. What if someone
manages to get this message and acquires your banking information? This is definitely possible if no
extra measures are taken.

HTTPS: HTTP with security (HTTPS) enhances the HTTP protocol to make communication secure. It adds
to HTTP a security protocol called Secure Socket Layer (SSL), which we will explain shortly. First, we need
to understand the kinds of threats that exist with communication so that we know how to counter
them.

Threat Types: There are three major types of threats that compromise communication:

1. Interception: this type of threat takes place when a party obtains access to messages, data, or
services that they are not authorized to access. If someone gets your login information, this is
interception. Another example is if someone is able to break into the tax records and obtain
your tax information.

2. Modification: this type takes place when an unauthorized change of messages, data, or services
occurs. For instance, messages can be intercepted and changed before they arrive at their
destination.

3. Fabrication: this threat refers to the unauthorized creation of messages, data, or services.
Phishing email messages pretended to be sent from your bank to update your information, so
that the phishers trap you to submit your confidential information to them is an example of
fabrication threats.

Security Measures: To guard against these threats, two types of security measures can be taken.

1. Encryption: encode data and messages so that only intended parties can decode them.
2. Authentication: verify that the claimed identity by some party is authentic.

Encryption and authentication need to go hand-in-hand to create secure channels. A sender S encrypts a
message m into a form no one other than the authorized parties can understand. The encrypted form of
m, say m’, is sent over the network. When the intended receiver R receives m’, R will be able to decrypt
m’, generating m from it. m is called the plain text and m’ is called the cipher text.

Illustration of encryption

Before we see how this guards against the three types of threats, let’s pause and understand how
encryption works. Consider the plain text:

 Computer Science for Visitants

129

1 2 3 4 5 6 7 8

C P S C 2 0 3

which is an 8-charcter message. One (naïve) way to encrypt this message is to use a permutation key:

1 2 3 4 5 6 7 8

7 3 6 2 1 8 5 4

This key must be kept a secret and should be only shared by the sender and receiver. They key tells the
sender how to encrypt the message and the receiver how to decrypt it. It simply tells the sender to
shuffle the message in a certain way. Character 1 in the plain text goes to position 7 in the cipher text,
character 2 of the plain text goes to 3 in the cipher text, and so on, generating the following cipher text:

1 2 3 4 5 6 7 8

0 S 2 P C 3 C

The receiver can reverse this process easily and construct the plain text back from the cipher text.

While actual cryptosystems use similar ideas to this example, this approach is a very bad one. There are
two differences between our naïve example and real systems. First, the encryption algorithm is far more
complicated and second, encryption is done at the bit level rather than the character level. However,
the example should serve the purpose of giving an idea how cryptosystems work.

Cryptosystems guard against the three types of threats listed earlier. An intruder will not be able to
decrypt m’ and therefore cannot get the message m. Also, an intruder cannot fabricate or modify the
cipher text unless the secret key is compromised. However, encryption alone is insufficient to guarantee
secure communication. If messages are being encrypted to guard against intruders, we also need to
make sure that the identity of whom we are communicating with is indeed who we think they are.
Authentication is as important as encryption.

Types of cryptosystems: Encryption systems are of two kinds. In the symmetric type, parties share a
secret key, which is used for encryption and decryption. These are called secret or shared key
cryptosystems. The naïve permutation example that we have discussed earlier fall in this category. The
second type is the asymmetric or public key cryptosystems. These make us of a pair of keys for each
communicating party: a private key, which is always kept secret and is never shared with anyone, and a
public key which is made available publicly. These keys are generated in such a way that they are
reciprocal, yet it is not easy to construct a private key given the public one. Reciprocity means that if a
message is encrypted using the public key, it can be only decrypted using the matching private key and
vice versa.

To achieve encryption in an asymmetric system, the sender S makes use of the receiver’s R public key to
encrypt the message. R’s private key is needed to decrypt the message and only R knows this key
establishing secure communication.

130

To achieve authentication in such a system, the sender S uses its private key to encrypt the message.
The receiver can authenticate the sender by applying R’s public key to this message. If the message is
recovered, it must be R who sent the message since only R knows its private key. Let X be a
communicating party. Denote by X+ and X- X’s public and private keys, respectively. Let m by the plain
text. The message m,S-(m) has two components, m itself, and an encryption of m using S’s private key.
The latter is called a digital signature. When R receives this message it applies S+ to S-(m) to decrypt the
message, S+ (S-(m)) = m. R compares m from the first component of the message and the decrypted one
of the second part. If they match, it must be the case the message is from S. In other words R
authenticates S. If the message is confidential, S uses R’s public key to encrypt the whole message. That
is S sends R+(m,S-(m)) to ensure that only R gets the message.

SSL: The secure socket layer protocol (indicated by https in your browser) uses a combination of
symmetric and asymmetric key cryptosystems to establish secure channels and to allow browsers to
authenticate servers.

Illustrating SSL

The browser B requests a secure connection with the server S. Then S replies by sending its digital
certificate to B, so that B authenticates S. Then, B generates a secret shared key K and sends it to S; but
this key must remain a secret between B and S. So, B uses S’s public key to encrypt K, S+(K) . Now K can
be used to encrypt the communication between R and S during this session. The key K will then be
disposed off. Each time B requires a secure connection with S, a new disposable secret key is generated
and used for one session only. Digital certificates are obtained through a third party for a fee.

 Computer Science for Visitants

131

Exercises

1. Which of the following is a legal IP address?
a. 1.2.3
b. 1.2.3.4
c. 1000.2000.3.4

2. When would be possible for a locale name server to translate the name www.facebook.com
without talking to any other naming server (.com or facebook.com)?

3. Which HTTP request is generated when a hyperlink is clicked?
4. Which HTTP request is generated when a form submit button is clicked?
5. Research the HEAD HTTP request and understand what it does.
6. Using the permutation key described in this chapter, determine the plain text from the following

cipher text: anmuay t.

