
CPSC 413 — Solutions for Quiz #5

Take Home Test on Greedy Methods

November 26, 1998

This take-home test included four different problems, with varying difficulties. Students were
asked to choose and solve one of these questions.

1. For the first problem, you were asked to modify the solution for the “optimal fee problem”
from the notes on greedy methods, so that it was possible to consider fees that were negative
(as well as zero or positive) integers.

As it happens, two different algorithms for the problem were given — a simple iterative
algorithm, which was discussed in the early lectures, but which wasn’t included in the printed
lecture notes, and a recursive algorithm that was in the notes (and discussed briefly in the
later lectures).

The following solution will work from the recursive version, just because this will make it easier
to use the proof outlines that were also included in the lectures. However, it is possible to
solve this problem correctly by modifying the iterative algorithm (and its proof of correctness)
instead.

A very brief sketch of the modifications you should have made, to solve this problem by
working from the iterative algorithm, will be given at the end.

(a) As noted in the question, the original greedy algorithm is incorrect when negative fees
are allowed, because it always returns a valid set of full size k as its output.
To see that this would cause problems, it’s sufficient to consider an instance where
n = k = 1 and f1 = −1.
The original algorithm would return the set S = {1} as output, and this set has total
fee fS = f1 = −1. This is clear, because this set is the only valid set of size one!
However, the set S = ∅ (containing no elements at all) is also a “valid” set — it’s a
subset of {1} with size at most one — and its total fee is f∅ = 0.
Since this total fee, 0, is higher than the total fee for the set that is returned by the
original algorithm, this proves that the original algorithm would be incorrect if negative
fees were allowed.
Note that this proof would be exactly the same if the iterative version of the algorithm
was used instead of the recursive one (because we’ve seen that they both return the same
outputs).
Any proof that gave a different instance on which the original algorithm would give the
wrong answer would be acceptable, too. This would be an instance such that 1 ≤ k ≤ n,
and that included n fees f1, f2, . . . , fn, such that strictly fewer than k of these fees were
nonnegative.
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(b) It turns out that the smallest change you’d need to make to the algorithm and its proof,
in order to correct it, is very small ! All you need to do is modify the definition of “base
instances.”
Suppose, in particular, that you decided that an instance including integers n and k,
and n fees f1, f2, . . . , fn, is a base instance if and only if either k = 0 or fi < 0 for all i
such that 1 ≤ i ≤ n, or both.
If you decided that the algorithm should return the output set S = ∅ whenever its
instance was a base instance, then it should be clear that the algorithm returns the only
possible correct output in this case — the empty set is a valid set, and it’s the only one
whose total fee is nonnegative if the instance is a base instance (either because k = 0,
so that it’s the only set that’s valid, or because fi < 0 for all i, so that the total fee of
every other valid set would be negative).
Now, suppose that you’re given a “non-base” instance of the problem. This now includes
integers n and k such that 1 ≤ k ≤ n (since k is nonzero), and it also includes a sequence
of n integer fees f1, f2, . . . , fn such that fi ≥ 0 for at least one integer i (otherwise all
the fees would be negative).
Under these circumstances we’ll consider a “greedy choice” to be an integer i such that
1 ≤ i ≤ n and fi ≥ fj for every integer j such that 1 ≤ j ≤ n. That is, the “greedy
choice” is defined just like it was before.
Since this isn’t a “base instance,” fi ≥ 0 if i is the greedy choice.
Now, it is possible to produce a “Greedy Choice Property” by modifying the wording of
the “claim” that appears on page 76 of Part II of the lecture notes, just to reflect the
change in the definition of a “base instance:”

Claim 1.1 (Greedy Choice Property). If I is an instance of the (generalized) opti-
mal fee problem that includes n jobs, with fees f1, f2, . . . , fn, such that fj ≥ 0 for at least
one integer j between 1 and n, as well as an integer k such that 1 ≤ k ≤ n, then there
exists an integer i such that fi ≥ fj for all integers j such that 1 ≤ j ≤ n. Furthermore,
for any such integer i, there exists an optimal set S of jobs for this instance such that
i ∈ S.

The proof is similar, but not identical, to the proof of the original claim (which you’ll
find on pages 76–77 of Part II of the notes). Changes to the original proof, in the one
that follows, will be shown in bold face.

Proof. Suppose I is as described in the claim (so that it’s an instance of the problem
that is not a base instance — it includes n jobs with fees as above, for n ≥ 1, at least
one of these fees is nonnegative, and it includes the input k ≥ 1).
Since the set of integers between 1 and n is a nonempty finite set (it is given that n ≥ 1),
and since one or more of these integers correspond to nonnegative integer
fees, with all other fees being negative, it is clear that there exists at least one
integer i such that 1 ≤ i ≤ n and fi ≥ fj for all j such that 1 ≤ j ≤ n, as claimed.
Let i be any such integer (so that i is a “greedy choice”).
Since there is a finite, but positive, number of subsets of {1, 2, . . . , n} with size
at most k, there is at least one such set S such that fS is maximized. That
is, there exists at least one correct output set for this instance.
Now, let S̃ ⊆ {1, 2, . . . , n} be any such correct (valid and optimal) output set corre-
sponding to the instance I.
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Either i ∈ S̃ or i /∈ S̃.

Case: i ∈ S̃. In this case it is sufficient to set S to be S̃; then S is an optimal set of jobs
for this instance that includes i, as desired.

Case: i /∈ S̃.
Two “subcases” will be considered: Either |S̃| < k or |S̃| = k. Note that, since S̃ is
valid, |S̃| ≤ k, so that one of these two subcases must hold.

Subcase: |S̃| < k. In this case, since |S̃| and k are integers, |S̃| ≤ k − 1. Let

S = S̃ ∪ {i}.

Clearly i ∈ S (by construction).
Since i /∈ S̃, |S| = |S̃|+ 1 ≤ (k − 1) + 1 = k, and S ⊆ {1, 2, . . . , n}, so that S is a valid
set.
Recall that, since I is not a “base instance,” fj ≥ 0 for at least one integer j

such that 1 ≤ j ≤ n. Since i has been chosen such that fi ≥ fj for all j
between 1 and n, this clearly implies that fi ≥ 0.
Now, since i /∈ S̃ and fi ≥ 0,

fS = fS̃ + fi ≥ fS̃ .

On the other hand, this is a maximization problem, S̃ is optimal, and S is valid, so that
fS̃ ≥ fS as well. Therefore fS = fS̃ and S is optimal (since S̃ is).

Subcase: |S̃| = k. The proof for this subcase is identical to the original proof
for the same subcase, and can be found on pages 76–77 of Part II of the
lecture notes.

It turns out that the constructions that were given for the original algorithm (to deal with
the “optimal substructure property”) and the proofs that these constructions are correct
remain valid even if negative fees are allowed! Therefore, you could define exactly the
same constructions and give exactly the same proof as you in Section 3.7.2, on pages 77–
79 of Part II of the notes, in order to prove the “optimal substructure property.”
The corresponding recursive solution for this problem would be identical to the algorithm
shown in Figure 3.1 on page 61 of the notes except that the very first line would involve
a more complicated test: It should now be something like

if (k = 0 or n = 0 or fj < 0 for all j) then

in order to reflect the change in the definition of a “base instance.”
Since the greedy choice and optimal substructure properties have been proved, one could
complete the proof of correctness of this recursive algorithm using a proof by induction
on the “size” n of the input. However, this kind of proof wasn’t expected as part of an
answer for this question.

(c) Alternative Solutions: When this question was set, I had a slightly different solution
in mind — namely one in which “sentinel values” were used in some way in order to
prevent a fee fi from being included more than once in a solution.
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In particular, suppose that the notion of the “size” of an instance is changed, to be the
value k of the last part of the input. It turns out that you could then replace the first
“construction” for the optimal substructure property — in which you produce a smaller
instance of the same problem, to be solved recursively — with a construction in which
you start with an instance n, f1, f2, . . . , fn, and k, and a greedy choice i, and produce a
“smaller” instance, n̂, f̂1, f̂2, . . . , f̂n, and k̂, by setting n̂ = n, (not n − 1!), k̂ = k − 1,
and, for 1 ≤ j ≤ n,

f̂j =

{
fj if j 6= i,

−1 if j = i.

You would then replace the second construction by one in which you would take a
solution Ŝ ⊆ {1, 2, . . . , n} for the above “smaller” instance, and produce a solution S for
the original instance, by setting

S = S ∪ {i}

in all cases!
In order to prove correctness of this pair of constructions, you’d need to establish a
separate result:

Lemma 1.2. Suppose S is a solution for an instance n, f1, f2, . . . , fn, k of the general-
ized optimal fee problem, and i ∈ S. Then fi ≥ 0.

Proof. Suppose, instead, that i ∈ S and fi < 0. Then if

S̃ = S \ {i},

then S̃ ⊆ {1, 2, . . . , n} (since S ⊆ {1, 2, . . . , n}) and |S̃| ≤ |S| ≤ k, so that S̃ is valid.
Furthermore, since S = S̃ ∪ {i} and i /∈ S̃,

fS = fS̃ + fi < fS̃

if fi < 0, which contradicts the fact that S is optimal.

This “lemma” implies that if Ŝ really is a solution for the smaller instance defined by
the new construction then i /∈ Ŝ, since f̂i = −1 < 0.
Once this is established, the optimal substructure property can be established by sim-
plifying the argument given in Section 3.7.2 of Part II of the notes.
Since this alternative required a bit more work but also leads to a simpler (and therefore,
somewhat better) algorithm, a few more than twenty marks will be given for a complete
and correct presentation of this version of the algorithm and proof of its correctness.
Here’s a slightly different “alternate solution:” At least one student apparently noticed
that it would also be sufficient to replace k by the value

k̂ = min(k, |{i : 1 ≤ i ≤ n and fi ≥ 0}|)

(which is the minimum of k and the number of fees that are nonnegative), and then
execute exactly the same algorithm as before (that is, the algorithm in the notes!), using
k̂ instead of k, in order to correctly solve this modified version of the problem.
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However, the fact that this does give a correct solution requires a proof!
In order to prove this, you’d likely need to prove Lemma 1.2, above, and then deduce
that this means that the output set must have size k̂, as above.
This change — replacing k with the above value k̂ in statements of claims and their
proofs — is probably the most significant part of what you’d need to do in order to
prove correctness of an iterative algorithm for the generalized version of this problem,
as well.

2. Before considering a greedy algorithm for this problem, please note that the following defini-
tion of a “connecting set” for a tree is equivalent to the definition given in the problem: A
subset C of the nodes in a (rooted) tree T is a connecting set of T if every node v is either a
member of C or is at most one edge away from a member of C in the tree.

After all, the nodes that are “at most one edge away from v” are just the parent of v, the
children of v, and v itself.

This alternative definition (which, unfortunately, I only thought of when preparing these
solutions) will be used because it shortens some claims in the argument — however, you
could give pretty much the same algorithm and proof using the original definition instead!
(You’d just have to write a bit more.)

In order to solve this problem, we’ll begin by defining base instances and their solutions.

We’ll consider an instance of this problem — that is, a rooted tree T — to be a “base instance”
if there is at most one node in T .

It should be clear that it’s easy to recognize the base instances, because the only base instances
are empty trees (with no nodes at all) and trees of size one (consisting only of a root).

If a base instance T is an “empty tree” — it has no nodes at all — then the only connecting
set for this tree is the empty set. Thus, the solution, for this kind of base instance, is the
empty set, ∅.
If a base instance T is a tree of size one — including only a root node r — then the only
connecting set for this is the set {r} that includes this root, so that a solution for this instance
is the set {r} in this case.

Suppose now that we have a “non-base instance” — a tree T that includes at least two nodes.

We’ll define a greedy choice for this instance to be any node v that is the parent of one (or
more) of the deepest leaves in the tree.

Note that this is exactly the same as the “greedy choice” that was used for the “vertex
cover” problem (on trees) discussed in the labs.

Of course the corresponding “greedy choice property” and its proof will be at least a little
bit different!

Claim 2.1 (Greedy Choice Property). Suppose T is a tree that includes at least two
nodes.

Then there exists a node v in T which is a parent of one (or more) of the deepest leaves in
the tree.

Now let v be any node in T that is the parent of one (or more) of the deepest leaves in the tree.
Then there exists a connecting set C for T , such that |C| ≤ |C ′| for every other connecting
set C ′ for T , and such that v ∈ C.
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Proof. Suppose, as above, that T is a tree with at least two nodes.

Since T is nonempty it includes at least one leaf, u. Since it only has finitely many leaves,
there is at one leaf, w, that is at least as deep in the tree as all the other leaves.

Since T includes at least two nodes, the root is not a leaf. Therefore w is not the root, and
w has a parent. Clearly, if v is the parent of w, then v is “a parent of one (or more) of the
deepest leaves in the tree.”

Thus, every tree with two or more nodes has a node v that’s the parent of one (or more) of
the deepest leaves in the tree, as claimed.

Note as well that there is at least one “connecting set” for T — namely, the set of all the
nodes in the tree. There are only finitely many (but, more than zero) connecting sets, since
each connecting set is a subset of the nodes in T and T only has finitely many nodes.

Since the size of a connecting set is finite and is a nonnegative integer, it should be clear
that there is at least one connecting set whose size is less than or equal to the sizes of all the
others.

In other words, if T is an instance of the problem defined in this question, then this instance
does have at least one solution — an optimal subset of the nodes of T does exist.

Now, let v be a node in T that is a “parent of one (or more) of the deepest leaves in the tree,”
and let C̃ be connecting set for T whose size is as small as possible, so that C̃ is an optimal
set of the nodes in T .

As usual, two cases are possible: either v ∈ C̃ or v /∈ C̃.

If v ∈ C̃ then it is sufficient to set C to be C̃: C will then be a connecting set of minimal size
that includes v, as required.

Suppose instead that v /∈ C̃. Suppose, as above, that w is one of the deepest leaves in the
tree whose parent is v.

Since v /∈ C̃, and the only nodes that are at most one edge away from w are v and w itself,
w ∈ C̃ — otherwise C̃ would not be a connecting set!

Now let

C = (C̃ \ {w}) ∪ {v}

so that C includes the same nodes as C̃ except that w has been removed and v has been
included.

Clearly C is a subset of the nodes of the tree, since C̃ is.

Now let u be any node in the tree. Either

(a) u is one of the children of v,

(b) u is the node v itself, or

(c) u does not belong to the subtree that has v as its root at all.

These are only possible cases because v is a parent of one of the deepest nodes in the tree —
all the children of v must be leaves.

In case (a), u is one edge away from v, and v ∈ C.

In case (b), u is the same node as v and v ∈ C, so u ∈ C.
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In the final case (c), u is at most one edge away from some node x ∈ C̃, since C̃ is a connecting
set. Since u is not in the subtree whose root is v at all, u is strictly more than just one edge
away from w — so x is a different node than w.

This implies (by the construction of C from C̃) that x ∈ C as well, so u is at most one edge
away from some element of C.

Since every node of the tree is at most one edge away from some element of C, C is a
connecting set.

Therefore C is a “valid” subset of the nodes of the input tree.

Finally, since w ∈ C̃ and v /∈ C̃, it should be clear (from the construction of C from C̃) that
|C| = (|C̃| − 1) + 1 = |C̃|. Since C̃ is a connecting set of minimal size, C is a connecting set
with minimal size as well — the sizes of the two sets are the same!

Therefore C is also an optimal subset of the nodes of the tree, since C̃ is.

Since v ∈ C (by construction), C has all the properties needed to complete the proof.

Now, in order to prove the “optimal substructure property,” it is necessary to present two
constructions and prove that each is correct.

The first construction should take as input

• any “non-base instance” of this problem — that is, any tree T with two or more nodes,
and

• any “greedy choice” for this instance — that is, any parent v of one (or more) of the
deepest leaves in T ,

and it should produce a strictly smaller instance of the same problem as output — that is,
another tree T̂ with strictly fewer nodes than T .

There are three cases that must be considered, and there is a different way to produce T̂ for
each.

In the first case, v is the root of T . In this case, T̂ should be the empty tree (with zero nodes).

In the second and third cases, v is not the root; let x denote the parent of v in each case.

In the second case, x has only one child — which must be v. In this case, the tree T̂ should
include all the nodes that T does except for x, v, and all the children of v. Note that,
since v was a parent of one or more of the deepest leaves in the tree, v doesn’t have any
“grandchildren.” Thus, T̂ includes all the nodes of T except for the nodes in the subtree
with x as root.

In the third case, x has two or more children. In this case, the tree T̂ should include all the
nodes that T does except for v and its children. Since v has no “grandchildren,” T̂ includes
all the nodes of T except for the nodes in the subtree with v as its root.

Therefore, this construction is different from the one used in the above second case, because
x is included in T̂ in the third case, but not the second.

Before giving the second construction, let’s consider the correctness of the first one.

Claim 2.2. If T and v are as above and T̂ is the tree (or “forest”) that is described as above,
then T̂ is a tree which includes a strictly smaller number of nodes than T .
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Proof. First note that T̂ includes a subset of the nodes of T .

Note as well that T̂ is either the empty tree, or is obtained from T by removing the subtree
of T with some node (either x or v) as its root in every case. As a result, T̂ is also a tree in
every case.

Finally, T̂ never includes the greedy choice, v. Therefore T̂ really is a tree with strictly fewer
nodes than T , as required.

Now let’s consider the second construction. This should take as its input

• any “non-base instance” of the problem — that is, any tree T with two or more nodes,

• any “greedy choice” for this instance — that is, any parent v of one (or more) of the
deepest leaves in T ,

• the smaller instance T̂ of the problem (a smaller tree) that would be produced from T
and v using the first construction, and

• any solution for the smaller instance — that is, a connecting set Ĉ of T̂ whose size is as
small as possible,

and it should produce a solution for the original problem — a connecting set C of T whose
size is as small as possible — as output.

It turns out that the second construction is extremely simple: It just defines the set C to be

C = Ĉ ∪ {v},

that is, the set obtained from Ĉ by including the greedy choice.

The following claim implies that this second construction is also correct.

Claim 2.3. Let T be a tree with two or more nodes, let v be a parent of one or more of the
deepest leaves in T , and let T̂ be the smaller tree produced using the first construction from T
and v. Let Ĉ be any connecting set for T̂ of minimal size. Then if

C = Ĉ ∪ {v},

then C is a connecting set for T of minimal size. That is, C is an “optimal” subset of the
nodes of T .

Proof. Obviously, C is a subset of the nodes of T (it has “the right type”).

We’ll continue by proving that C is “valid” — that is, that it is a connecting set of T .

Recall that T̂ could have been produced from T and v in one of three ways, depending on
whether

• v was the root of T ,

• v had a parent, w, in T , and w had only one child (which was clearly just the node v),
or

• the parent w of v had two or more children in T .
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In the first case (v was the root of T ), the fact that v is also a parent of one of the deepest
leaves of T implies that the only nodes in T were v and its children.

Since the first construction returned the empty tree as T̂ in this case, and Ĉ was also the
empty set, C = {v} in this case. Since the only nodes in T besides v are all children of v,
they are all “at most one edge away” from v in T . Thus the set C = {v} is a connecting set
in this case.

In the second case (the parent w of v only had one child — v), T̂ included all the nodes of T
except for w, v, and the children of v. All of these nodes (w, v, and v’s children) are “at most
one edge” away from v so, since v ∈ C, they’re at most one edge away from some element
of C. All of the rest of the nodes belong to T̂ , and Ĉ is a connecting set for T̂ , so they’re all
at most one edge away from some member of Ĉ. Since Ĉ ⊆ C, they’re all at most one edge
away from a member of C as well. Therefore, every node in T is at most one edge away from
a member of C — and C is a connecting set for T in this case too.

The proof that C is a connecting set in the third case is almost identical to the proof in the
second case (the only difference will be that it will turn out that w is at most one edge away
from at least two members of C — which won’t prevent C from being a connecting set).

Thus C is always a connecting set — it’s a “valid” subset of the nodes of T .

All that’s left to do is to prove that C is also optimal. Unfortunately, it seems to be nec-
essary to give a slightly different argument for each of the three cases (based on how T̂ was
constructed from T ) here as well.

In the first case — v was the root of T , so that T̂ is the empty tree — it’s been noted already
that C = {v}. Since T has at least one node, the empty set is not a connecting set for T , so
that any connecting set of T with size one — including the above set C — must be optimal.

Now consider the second case — the parent w of v had exactly one child.

If w was the root of T then, once again, T̂ must have been the empty tree — and, once again
C = {v}. Once again, the empty set is not a connecting set, so C is clearly optimal.

Suppose, therefore, that w is not the root of T , so that w has a parent, “x,” in T . Note that
x is one of the nodes in T̂ (by inspection of the first construction).

It follows by the greedy choice property that there is some connecting set D for T of minimal
size, such that v ∈ D.

It can be shown, without too much effort, that if w ∈ D then the set

(D \ {w}) ∪ {x}

is also a connecting set of T of minimal size, which includes v, and — now — does not
include w. (If this is not clear, please prove this as an exercise.)

Therefore we may assume without loss of generality that D is a connecting set of minimal
size for T such that v ∈ D and w /∈ D. Since D does have minimal size, D does not include
any of the children of v, either — if it did then (since v ∈ D and all the children of v are
leaves) we could remove these children from D and produce an even smaller connecting set
for T .

Thus, if

D̂ = D \ {v}
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then D̂ is a subset of the set of nodes in T̂ .

Furthermore, since all the node in T̂ are at least two edges away from v in T , and D is a
connecting set for T , D̂ is a connecting set for T̂ .

To see this, let z be some node in T̂ . Then z is a node in T as well. Since D is a connecting
set for T , z is at most one edge away from some node a ∈ D. This node a must be different
from v (because every node in T̂ is at least two edges away from v), so a ∈ D̂ as well. Thus z
is also at most one edge away from an element of D̂ and, since z was arbitrarily chosen, this
implies that D̂ is a connecting set for T̂ .

Therefore

|Ĉ| ≤ |D̂|

since Ĉ was a connecting set for T̂ with minimal size.

It should be clear that |C| = |Ĉ|+ 1 and |D| = |D̂|+ 1, so this implies that

|C| ≤ |D|

as well. On the other hand, C is a connecting set for T and D is a connecting set for T with
minimal size, so

|D| ≤ |C|

too. Therefore

|C| = |D|,

and C is a connecting set for T with minimal size, since D is.

That is, C is an “optimal” subset of the nodes of T in this second case.

Finally, let’s consider the third case — the parent w of v had two or more children in T . In
this case, T̂ was obtained from T by removing v and all its children — so that w is included
in T̂ .

As before, we will continue by noting that the greedy choice property implies that there is
some connecting set D for T of minimal size, such that v ∈ D.

We may assume without loss of generality that D does include any of the leaves of T — for,
if t ∈ D and t is a leaf, then we could replace t in D with its parent. It would not be difficult
to prove that the resulting set is still a connecting set if D was and that it included one fewer
leaf. The size of the set would clearly not have increased and it would still contain v (since v
is not a leaf). If you did this for every leaf that did belong to D you’d have a connecting set
of minimal size, including v and not including any of the leaves, as desired.

Recall that the parent w of v has at least two children. Since v is a parent of one or more of
the deepest leaves in T , w cannot possibly have any “great-grandchildren:” It is the root of
a subtree with depth two in T .

Now, since D is a connecting set for T that doesn’t include any leaves, and w has at least
one child besides v, D must include either

• one or more of the children of w besides v — because these children are parents of a set
of leaves (which must somehow be “at most one edge away” from an element of D), or
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• w itself (because one or more of w’s other children is a leaf),

or both.

Let

D̂ = D \ {v}.

Since all of the children of v are leaves and D doesn’t include any of these, D̂ is a subset of
the set of nodes in T̂ . (Please look again at the first construction if it isn’t clear that this is
true.)

Suppose that b is a node in T̂ . If b is the parent w of v then b is at most one edge away from
some element of D̂: Note that, as claimed above, D̂ includes either w itself or at least one of
w’s children (that isn’t v).

If b is a node in T̂ different from w then there is some node c in D such that b is at most one
edge away from c. Since b is different from w, and b ∈ T̂ , b is at least two edges away from v.
Therefore, c is some element of D that is different than v, so that c is in D̂. Therefore b is
also at most one edge away from some element of D̂.

Therefore, D̂ is a connecting set for T̂ .

Now the rest of the proof is exactly the same as it was for the second case was, after it was
concluded that D̂ was a connecting set for T̂ : One simply observes that |Ĉ| ≤ |D̂|, notes that
this implies that |C| ≤ |D| as well, establishes (as above) that C and D must then have the
same size, and then concludes that C has minimal size, since D does.

Therefore C is a connecting set for T with minimal size, as desired, in this last case as well.

Now that we have a way to recognize “base instances” and solve them, a greedy choice, and
the two constructions needed for the “optimal substructure property,” a recursive greedy
algorithm for this problem can be obtained by plugging these components into the generic
“greedy method” shown in Figure 3.3 on page 65 of Part II of the lecture notes.

The correctness of this algorithm could be established (using the correctness of the method
to deal with base instances, and the greedy choice and optimal substructure properties) by
induction on the number of nodes in the input tree. This proof by induction was not required
for a complete solution for this question, if everything else had been done.

Finally, the proof of correctness of the second construction for the “optimal substructure
property” is more complicated than I’d anticipated. Therefore it will be possible to earn
slightly more than 25 marks for a complete and correct solution of this problem — and,
therefore, it will be possible to receive full marks (or high marks) even if you missed one or
two of the subcases or subtle parts of the proof given here.

3. It’s likely that the trickiest part of this question concerns “validity” rather than “optimality”
of solutions.

(a) Let’s begin (as you’d expect) by considering the new “minimization” problem, in which
you still wish to make change using as few coins as possible.
The following lemma will be useful later on.
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Lemma 3.1. Suppose n > 0, and let c, k, m0,m1, . . . ,mk and n be any instance of this
new coin-changing problem including n.
Suppose that it is possible to make change for n using the available coins — and let
s0, s1, . . . , sk be any nonnegative integers such that

0 ≤ si ≤ mi

for all i (such that 0 ≤ i ≤ k) and

k∑
i=0

sic
i = n.

Then there exists at least one integer i such that 0 ≤ i ≤ k, ci ≤ n, and mi > 0.
Furthermore, if l is the largest integer such that 0 ≤ l ≤ k, cl ≥ n, and ml > 0 (so that
either ci > n or mi = 0 or both, for all i such that l + 1 ≤ i ≤ k), then either sl > 0 or
there exists a set of nonnegative integers t0, t1, . . . , tl−1 such that

0 ≤ ti ≤ si ≤ mi

for 0 ≤ i ≤ l − 1, and such that

l−1∑
i=0

tic
i = cl.

Proof. First, it should be noted that since it’s possible to make change for n, there is
some integer i such that 0 ≤ i ≤ k, ci ≤ n, and mi > 0 — for otherwise, you couldn’t
possibly make change for n because all the available coins would be worth too much.
The rest of the proof will use induction on n.

Basis: The claim is trivial if n = 0 (since it requires that n is positive). Suppose,
therefore, that n = 1. In this case, since it is possible to make change for n, it must be
true that s0 = 1, m0 ≥ 1, si = 0 for 1 ≤ i ≤ k, and l = 0 (since 1 = n < c). Therefore
sl = s0 = 1, and this is all that’s needed.

Inductive Step: Suppose n̂ > 0 and that the result is true for every integer less than or
equal to n̂.
Now let n = n̂+1 and consider an instance of this problem including c, k, m0,m1, . . . ,mk,
and n such that it’s possible to make change for n. As argued above, there is at least
one integer i such that 0 ≤ i ≤ k, ci ≤ n, and mi > 0, so (since every such integer is less
than or equal to k) there is also some such maximal integer l; let l and s0, s1, . . . , sk be
as in the statement of the lemma.
If sl > 0 then we’re done. Suppose, therefore, that sl = 0.
Since either ci > n or mi = 0, when l + 1 ≤ i ≤ k, the si’s are all nonnegative integers,
and

k∑
i=0

si = n,
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it is clear that si = 0 when l + 1 ≤ i ≤ k (otherwise the above sum would be too large,
or we’d have si > mi for one or more i). Therefore, since sl = 0 as well,

l−1∑
i=0

si = n.

Obviously, since n > 0, this implies that l > 0.
We’ll consider three cases: Either n = cl, n > cl and s0 = 0, or n > cl and s0 > 0.
In the first case, n = cl, we’re done — we can set ti = si for 0 ≤ i ≤ l − 1. Then
0 ≤ ti ≤ si ≤ mi for 0 ≤ i ≤ l − 1 and

l−1∑
i=0

tic
i =

l−1∑
i=0

sic
i = n = cl

as required.
If n > cl and s0 = 0 then, since n > 0 and

l−1∑
i=1

sic
i =

l−1∑
i=0

sic
i = n,

it is clear that n ≥ c and, furthermore, that n is divisible by c (after all, every term in
the sum on the left is divisible by c).
Now let n = n/c, so 1 ≤ n ≤ n̂ = n − 1, and let c = c ≥ 2, k = k − 1, let mi = mi+1

for 0 ≤ i ≤ k = k − 1, and let si = si+1 for 0 ≤ i ≤ k as well. Then it is easily checked
that l = l− 1 is the largest integer such that 0 ≤ l ≤ k, such that cl ≤ n (since cl = cl−1

and n = n/c), and such that ml > 0 (since ml = ml+1 = ml). Furthermore it’s easily
confirmed that 0 ≤ si ≤ mi for 0 ≤ i ≤ k (since 0 ≤ si ≤ mi for 1 ≤ i ≤ k) and, since
s0 = 0,

k∑
i=0

sic
i =

k−1∑
i=0

si+1c
i

=
1
c

k−1∑
i=0

si+1c
i+1

=
1
c

k∑
j=0

sjc
j

=
n

c
= n.

It now follows by the inductive hypothesis that either sl > 0 or there exist integers
t0, t1, . . . , tl−1 such that 0 ≤ ti ≤ si ≤ mi for 0 ≤ i ≤ l − 1 and

l−1∑
i=0

tic
i = cl = cl−1.

Since sl = sl+1 = sl = 0, the first case is impossible, so the above values t0, t1, . . . , tl−1

must exist.
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Now let t0 = 0 and let ti+1 = ti for 0 ≤ i ≤ l; this defines a sequence of nonnegative
integers t0, t1, . . . , tl. It is easily checked that 0 ≤ ti ≤ si ≤ mi for 0 ≤ i ≤ l − 1 and
(since t0 = 0),

l−1∑
i=0

tic
i =

l−1∑
i=1

tic
i

= c
l−1∑
i=1

tic
i−1

= c
l−1∑
i=1

ti−1c
i−1

= c
l−1∑
j=0

tjc
j

= c · cl

= c · cl−1 = cl,

as required.
In the final case, n > cl and s0 > 0, it suffices to let n = n− 1 = n̂ and to consider the
instance including values c = c, k = k, m0 = m0 − 1 ≥ 0, and mi = mi for 1 ≤ i ≤ k,
with s0 = s0−1 ≥ 0 and si = si for 1 ≤ i ≤ k, in order to obtain another case where the
inductive hypothesis can be applied. This time it will turn out that l = l. Once again,
it can (eventually) included that there must be a sequence t0, t1, . . . , tl−1 of nonnegative
integers such that

l−1∑
i=0

tic
i = cl = cl.

Now it suffices to set ti = ti for 0 ≤ i ≤ l−1 — clearly 0 ≤ ti ≤ si ≤ mi for 0 ≤ i ≤ l−1
and

l∑
i=0

tic
i = cl

in this case — as required to complete the proof.

Now we’re ready to define a greedy algorithm to solve this problem.
Base instances will be those such that n = 0. Clearly the only correct solution for any
such instance is the sequence s0, s1, . . . , sk such that s0 = s1 = · · · = sk = 0.
We’ll consider the “size” of an instance to be n, so that base instances are the instances
with size 0.
The greedy choice for any non-base instance is a coin with denomination cl, where l = 0
if either ci > n or mi = 0 (or both) for all i such that 0 ≤ i ≤ k, and where l is the
largest integer such that cl ≤ n and ml > 0 otherwise.
The following greedy choice property is stronger a bit different than usual — it establishes
that if it possible to make change for n at all, then every solution includes at least one
coin with denomination cl.

14



Claim 3.2. Let c ≥ 2, k ≥ 0, m0,m1, . . . ,mk ≥ 0 and let n > 0 be a non-base instance
of this coin changing problem. Furthermore let l be an integer such that either l = 0,
when ci > n or mi = 0 for all i such that 0 ≤ i ≤ n, and such that l is the largest integer
such that cl ≤ n and ml > 0 otherwise.
Suppose it is possible to make change for n with the available coins. Then cl ≤ n and
ml > 0. Furthermore, if s0, s1, . . . , sk is any solution for the given instance of the
problem, then sl > 0.

Proof. Suppose it is possible to make change for n; then Lemma 3.1 implies the existence
of an integer i such that 0 ≤ i ≤ k, ci ≤ n, and mi > 0 — and this implies that if l is
the greedy choice then 0 ≤ l ≤ k, cl ≤ n, and ml > 0 as well.
Now let s0, s1, . . . , sk be any solution for this instance of the problem. If sl > 0 then
we’re done; suppose, therefore, that sl = 0. Now, it’s necessary and sufficient to obtain
a contradiction (proving that this case is impossible) in order to complete the proof.
Since either mi = 0 or ci > n, so that si = 0 for every integer i > l, the fact that

k∑
i=0

sic
i = n

and that sl = 0 implies that

l−1∑
i=0

sic
i = n

as well. Now Lemma 3.1 implies that there exist nonnegative integers t0, t1, . . . , tl−1 such
that 0 ≤ ti ≤ si ≤ mi for 0 ≤ i ≤ l − 1, and such that

l−1∑
i=0

tic
i = cl.

Consider a sequence ŝ0, ŝ1, . . . , ŝk of integers such that, for 0 ≤ i ≤ l,

ŝi =


si − ti if 0 ≤ i ≤ l − 1,
1 if i = l,
si if l + 1 ≤ i ≤ k.

Since ti ≤ si for 0 ≤ i ≤ l − 1, and s0, s1, . . . , sk is a “valid” sequence, ŝi ≥ 0 for all i as
well. Furthermore

k∑
i=0

ŝic
i =

l−1∑
i=0

ŝic
i + ŝlc

l +
k∑

i=l+1

ŝic
i

=
l−1∑
i=0

(si − ti)ci + 1 · cl +
k∑

i=l+1

sic
i

=

(
l−1∑
i=0

sic
i −

l−1∑
i=0

tic
i

)
+ cl + 0

= (n− cl) + cl = n.
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Thus the sequence ŝ0, ŝ1, . . . , ŝl is also “valid.”
Finally, it should be noted that

l−1∑
i=0

ti ≥ 2;

for, otherwise,

l−1∑
i=0

tic
i ≤

l−2∑
i=0

0 · ci + 1 · cl−1 = cl−1 < cl,

contradicting the choice of the ti’s. However, this implies that (since ŝl = 1 and sl = 0)

k∑
i=0

ŝi =
l−1∑
i=0

ŝi + ŝl +
k∑

i=l+1

ŝi

=
l−1∑
i=0

(si − ti) + (sl + 1) +
k∑

i=l+1

si

=
k∑
i=0

si −
l−1∑
i=0

ti + 1

≤
k∑
i=0

si − 2 + 1

<
k∑
i=0

si,

contradicting the fact that s0, s1, . . . , sk was “optimal” as well as valid.
Thus, we’ve obtained the desired contradiction: sl must be positive if s0, s1, . . . , sk is a
solution for the given instance.

The next claim can now be established from the previous one by induction on n:

Claim 3.3. Let c, k, m0,m1, . . . ,mk and n be an instance of this problem such that it
is possible to make change for n, and let s0, s1, . . . , sk be any solution for this instance
of the problem. Then

sk = min(d n
ck
e,mk).

Proof. As noted above, the proof uses (the strong form of) induction on n.

Basis: If n = 0 then clearly the only solution of the problem is the sequence s0, s1, . . . , sk
such that si = 0 for all i. Since

min(d n
ck
e,mk) = min(0,mk) = 0,

the desired identity is satisfied.

Inductive Step: Suppose n > 0 that the result is correct for all smaller integers.
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If n < ck then, the same argument as the one used for the basis implies that the result
is correct. Suppose, therefore, that n ≥ ck.
If mk = 0, then obviously any solution for the problem must have sk = 0 as well, and

min(d n
ck
e,mk) = min(d n

ck
e, 0) = 0,

so the desired identity is satisfied in this case, too.
Suppose, therefore, that n ≥ ck and mk > 0. Then the “greedy choice” l mentioned in
Claim 3.2 is actually the integer k — and this claim implies that sk > 0 in any solution
for this instance of the problem.
Now consider a modified instance in which mk is replaced with mk − 1, n is replaced
with n − ck, and nothing else is changed. Since it was possible to make change for n
with the original instance, it should be clear that it is possible to make change for n− ck
with the new instance. Furthermore, it follows by the inductive hypothesis that every
solution for the new instance should use the value

min(dn−ck
ck
e,mk − 1) = min(d n

ck
e,mk) = 1

for “sk.” On the other hand, it should be clear that, once you’ve started to make change
for n by choosing a coin with denomination cl, you must continue by making change for
n− cl in an optimal way (with one fewer coin with denomination cl available), and this
implies the total number of coins with denomination cl used must now be

1 + (min(d n
ck
e,mk) + 1) = min(d n

ck
e,mk),

as required to complete the proof.

If you’re making change for n using

sk = min(d n
ck
e,mk)

coins with denomination ck (and no coins with higher denomination are available) then
it should be clear that you must continue by making change for the amount n − skck
using the available coins with denominations 1, c, c2, . . . , ck−1. This observation, and the
previous claim, imply that the next one can be established by induction on k; its proof
is left as an easy exercise.

Claim 3.4. Let c, k, m0,m1, . . . ,mk, n be an instance of the coin changing problem
such that it is possible to make change for n. Then the only solution for this instance of
the problem is the sequence s0, s1, . . . , sk defined by the equations

nk+1 = n,

and

si = min(dni+1

ci
e,mi) and ni = ni+1 − sici

for i = k, k−1, . . . , 1, 0. Furthermore, if nk+1, nk, nk−1, . . . , n1, n0 are as defined by these
equations then n0 = 0.
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nk+1 := n
for i := k down to 0 do

si := min(dni+1

ci
e,mi)

ni := ni+1 − sici
end for
if n0 6= 0 then

for i := 0 to k do
si := 0

end for
end if
return s0, s1, . . . , sk

Figure 1: An Iterative Algorithm to Make Change When Coins are Limited

An algorithm for making change whose correctness is established by this claim is shown
in Figure 1. It should be clear by inspection of this algorithm that it uses O(k) arithmetic
operations in the worst case.

(b) When I set this question, I had a solution for the second problem in mind in which a
“greedy choice” for non-base instances was simply a coin of the smallest denomination
that you could legally choose. In other words, if you were given an instance c, k,
m0,m1, . . . ,mk, and n for the problem, such that it was possible to make change for n,
then a greedy choice would be a coin with denomination ci, where i was chosen to be as
small as possible such that mi > 0 and that it was also possible to make change for n−ci
(after the value of mi was decremented by one). You could use a solution for the first
version of the problem to decide whether it was possible to make change for n at all
(setting si = 0 for all i if it wasn’t), and you could use this to select the greedy choice,
too.
As it happens, though, there is a much better solution for this last version of the problem
than that!

Claim 3.5. Let c, k, m0,m1, . . . ,mk, n be an instance of the coin changing problem in
which you wish to make change for n using as many coins as you can.
Let

N =
k∑
i=0

mic
i,

the total value of all the coins available to you.
It is impossible to make change for n if n > N . Otherwise, n ≤ N and it is possible to
make change for n if and only if it is possible to make change for N − n.
Furthermore, suppose that ŝ0, ŝ1, . . . , ŝk is a solution for an instance of the previous
version of the problem with inputs c, k, m0,m1, . . . ,mk and N − n, so that 0 ≤ ŝi ≤ mi

for 0 ≤ i ≤ k,

k∑
i=0

ŝic
i = N − n,
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and

k∑
i=0

ŝi

is as small as possible. Then the (only) solution for the new version of the problem, for
the instance c, k, m0,m1, . . . ,mk and n, is the sequence s0, s1, . . . , sk, where

si = mi − ŝi

for 0 ≤ i ≤ n. That is, 0 ≤ si ≤ mi for 0 ≤ i ≤ k,

k∑
i=0

sic
i = n,

and

k∑
i=0

si

is as large as possible.

In other words, you should make change for n using the largest number of coins possible
by computing the total value N of all the coins available, figuring out how to make
change for N − n using the smallest number of available coins that you can, and using
this to decide which coins you should not include!
The proof of this claim is also left as an exercise. Note that it implies that the last
version of this problem can be solved substantially more efficiently than the questions
suggested!
In particular, this would also answer Question #4 as well as #3.
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