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Abstract

We present new, efficient algorithms for computations on separable matrix
algebras over infinite fields. We provide a probabilistic method of the
Monte Carlo type to find a generator for the centre of a given algebra
A ⊆ Fm×m over an infinite field F. The number of operations used is
within a logarithmic factor of the cost of solving m×m systems of linear
equations. A Las Vegas algorithm is also provided under the assumption
that a basis and set of generators for the given algebra are available. These
new techniques yield a partial factorization of the minimal polynomial of
the generator that is computed, which may reduce the cost of computing
simple components of the algebra in some cases.

1. Introduction

A finite-dimensional associative algebra A is a finite-dimensional vector space
over a field F equipped with a multiplication operation under which the space
forms an associative (though not necessarily commutative) ring with identity, in
which multiplication in F and multiplication in the ring commute:

α(ab) = (αa)b = a(αb) for all α ∈ F and all a, b ∈ A.

A matrix algebra is a subalgebra of the matrix ring Fm×m that includes the
identity matrix. All algebras discussed in this paper are finite-dimensional and
associative.

Algebras over finite fields have been studied in an earlier paper (see Eberly
and Giesbrecht [2000]). In this paper we propose efficient new algorithms for
separable algebras over infinite fields.

Recall that the (Jacobson) radical Rad(A) of an algebra A over a field F is
the intersection of all maximal left ideals in A, and that A is semi-simple if
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Rad(A) = (0). Such an algebra is separable if the algebra AE = A⊗F E obtained
from A by “extension of scalars” is semi-simple over E for every field extension
E of F. Curtis and Reiner [1962] and Pierce [1982] each discuss the properties of
extensions of scalars and separable algebras that will be used in this paper. As
they note, any semi-simple algebra over a field of characteristic zero and, more
generally, over any perfect field is separable. Our algorithms therefore apply to
all such algebras.

The first provably efficient algorithms for computing the structure of a matrix
algebra are due to Friedl and Rónyai [1985], who gave polynomial time algo-
rithms to find the Jacobson radical and to decompose a semi-simple algebra
over a finite field or number field as a direct sum of simple algebras. Subsequent
work by Rónyai [1987, 1988, 1990, 1992] and Ivanyos and Rónyai [1993] examined
additional questions over number fields, and in particular showed that deciding
whether an algebra over a number field possesses nontrivial idempotents has ap-
proximately the same complexity as factoring integers: Assuming the generalized
Riemann hypothesis, there exists a randomized polynomial time reduction from
the problem of deciding quadratic residuosity (modulo a squarefree integer) to
deciding whether an algebra has nontrivial idempotents (or zero divisors). Under
the same assumption, there also exists a randomized polynomial time reduction
from the problem of factoring squarefree integers to that of finding nontrivial
idempotents (or zero divisors) in four-dimensional central simple algebras over Q
(see Rónyai [1988]). Thus these problems are (currently) intractable. As shown
by Ivanyos and Rónyai [1993], there does exist a deterministic polynomial time
“ff-algorithm” (allowed to call oracles for integer factorization and for factoriza-
tion of polynomials over a finite field) to decide whether an associative algebra
over a number field has nontrivial idempotents. However, the problem of finding
such idempotents may be considerably more difficult: The algorithms of Rónyai
[1992] and Ivanyos and Rónyai [1993] answer the decision problem without gen-
erating such idempotents and, to our knowledge, no bounds on the size of these
idempotents are presently known.

Other work concerning these computations over large fields includes the algo-
rithms of Cohen et al. [1997] and Ivanyos [1999] for computation of the radical of
an associative algebra, and the randomized algorithm of Eberly [1991] for com-
putation of the simple components of semi-simple algebras over large perfect
fields.

More practical work has concerned computations over finite fields, including
the heuristic of Parker [1984] to test irreducibility of an A-module over a small
finite field and to split reducible modules, and the more recent extension of the
technique (now effective over arbitrary finite fields) of Holt and Rees [1994],
as well as the work of Schneider [1990] and Eberly and Giesbrecht [2000] to
compute primitive idempotents in associative algebras, and the algorithms of
Ivanyos [2000] to compute algebra generators of the Wedderburn complement
as well as ideal generators for the radical of a matrix algebra given by algebra
generators. Many of these algorithms take advantage of the fact that primitive
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idempotents are easy to find in associative algebras over finite fields. As noted
above, Rónyai [1987] has established that this is not the case at all for associative
algebras over number fields so that other techniques must be used in this case.

We propose modifications of the method originally given by Friedl and Rónyai
[1985] and adapted by Eberly [1991] to find the simple components of a semi-
simple algebra by decomposing its centre. As we note, the technique is applicable
to separable algebras over arbitrary fields. We provide more efficient Monte Carlo
and Las Vegas algorithms for the first step in this process, namely, computation
of a generator γ for the centre of a given separable matrix algebra A over an
arbitrary large field. The method also yields a partial factorization of the minimal
polynomial of γ. A complete factorization of this minimal polynomial is required
to compute the simple components of A, and the cost of this factorization tends
to dominate the cost of the entire process. Thus, our modifications will not
reduce the asymptotic worst-case complexity. However, the modifications may
replace the need for a factorization of a single polynomial of large degree with
factorizations of several polynomials of lower degree, and may reduce the cost of
the computation in practice.

Additional preliminaries, including relevant results concerning asymptotically
fast matrix and polynomial arithmetic, tools for probabilistic analysis, as well
as notation and results concerning the structure of separable algebras and their
modules and necessary computations of matrix normal forms, are included in
Section 2. Section 3 introduces “self-centralizing elements” of algebras and the
properties that we will need to decompose these algebras. Useful pairs of these
elements, which we call “centering pairs,” are introduced in Section 4, and are
used in new algorithms to compute the centre of A. Finally, the Wedderburn
decomposition of separable algebras is considered in Section 5.

An extended abstract of some of this work appears in “Proceedings, Inter-
national Symposium on Symbolic and Algebraic Computation,” Zurich, 1996
(ISSAC ’96), pp. 170–178.

2. Preliminaries

2.1. Asymptotically Fast Matrix and Polynomial Arithmetic

We will generally tie the complexity of our results to that of matrix multipli-
cation. We define MM(m) such that O(MM(m)) operations in a field F are
sufficient to multiply two matrices in Fm×m. Using the standard algorithm re-
quiresMM(m) = m3 while the currently best known algorithm of Coppersmith
and Winograd [1982] allows MM(m) = m2.376. Various related matrix compu-
tations can be performed at the same cost. In particular, Bunch and Hopcroft
[1974] have shown that a nonsingular matrix in Fm×m can be inverted using
O(MM(m)) operations, and Ibarra et al. [1982] have presented methods to
compute the rank and a maximal nonsingular submatrix of a matrix in Fm×m at
this cost, as well.
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We also define M(m) such that O(M(m)) operations in F suffice to mul-
tiply two polynomials in F[x] of degree m. Using the standard algorithm al-
lows M(m) = m2, while the algorithm of Schönhage and Strassen [1971] and
Schönhage [1977] allows M(m) = m logm log logm.

For notational convenience we assume that mM(m) ∈ O(MM(m)).
The above information about asymptotically fast matrix and polynomial arith-

metic should be sufficient to follow the arguments presented below. However,
Bürgisser et al. [1997] present additional information about asymptotically ef-
ficient matrix computations, while von zur Gathen and Gerhard [1999] should
be consulted for additional information about asymptotically fast polynomial
arithmetic.

2.2. Tools for Probabilistic Analysis

To prove correctness of our probabilistic algorithms, we require some technical
conditions on the presumed ability to select a random element α from the alge-
bra A. One rigorous way of doing this will be to select a sufficiently large finite
subset S of the field F, as well as a finite set of elements of A whose F-linear
span includes elements with the properties we need, and then to select elements
uniformly from the S-linear span of these elements of A. We prove in the sequel
that if F is infinite then the algebra always includes the elements we require,
so that it will be sufficient to choose elements from the S-linear span of a basis
for A. This requires O(nm2) operations in F if A ⊆ Fm×m, A has dimension n
over F, and a basis for A is available.

Several of the results to be presented will rely on the following bound on the
number of zeroes of a (nonzero) multivariate polynomial within a particular set.
Several bounds like this one appeared, and were used for algorithm analysis,
at approximately the same time. For example, a similar asymptotic bound was
presented and used by DeMillo and Lipton [1978], and preliminary reports of
work by Schwartz [1980] and Zippel [1979] that presented and applied similar
bounds were, apparently, presented at the same conference in 1979. The version
presented below is that of Schwartz [1980], and it is a restatement of Schwartz’s
“Corollary 1.”

Theorem 2.1 (Schwartz-Zippel Lemma): Suppose q ∈ F[x1, x2, . . . , xn] is
a polynomial with total degree at most d and that q is not identically zero. Let
c > 0, and suppose S ⊆ F is a finite set with size at least cd. Then the number
of elements of Sn which are zeroes of q is at most c−1|S|n.

The result will be applied in two ways: It will be used, directly, to bound
the probability of failure of several randomized algorithms that select elements
uniformly and independently from a finite set (see Lemma 2.4, Theorem 3.6,
Lemma 3.11 and Theorem 4.2, below). It will also be used, indirectly, to prove
the existence of various combinatorial structures, by demonstrating that these
can be randomly selected with positive probability — an application of the
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“probabilistic method” described by Alon and Spencer [1992] (see, in particular
Lemma 3.14 and Theorem 4.1).

2.3. The Structure of a Semi-Simple Matrix Algebra

Suppose henceforth that A is a separable algebra of dimension n over a field F,
and that there exists a faithful A-module of dimension m. By the Wedderburn
Structure Theorem [Wedderburn, 1907]

A = A1 ⊕ A2 ⊕ · · · ⊕ Ak

for simple algebras A1,A2, . . . ,Ak ⊆ A, and each simple component Ai is iso-
morphic to a full matrix ring over a division ring Di over F, so that

Ai
∼= Dti×ti

i

for some positive integer ti, for 1 ≤ i ≤ k. Furthermore as shown, for example,
by Pierce [1982], the dimension of each simple algebra (such as Ai, or Di) over
its centre is a perfect square. Let Ei be the centre of Ai (isomorphic to the centre
of Di as well and, consequently, a field extension of F); let ei = [Ei : F], and let
d2
i be the dimension of Di over Ei, so that Ai has dimension eid

2
i t

2
i over F for all i

and
n = e1d

2
1t

2
1 + e2d

2
2t

2
2 + · · ·+ ekd

2
kt

2
k. (1)

Suppose in addition that A is a matrix algebra, so that A is a subalgebra of
Fm×m for some positive integer m. Now the vector space Fm×1 is an A-module
in a natural way: For any element α of A and vector v ∈ Fm×1, the result αv
of applying α to v is simply the matrix-vector product obtained by multiplying
the matrix α ∈ Fm×m by the vector v.

Since A is separable, and therefore semi-simple, Fm×1 is a semi-simple A-
module. That is, Fm×1 is the direct sum of a set of simple A-modules, each of
which is a faithful Ai-module for exactly one simple component Ai of A and
which annihilates all the other simple components Aj. Suppose a decomposition
of Fm×1 as a direct sum of simple modules includes exactly si simple modules
M

(i)
1 ,M

(i)
2 , . . . ,M

(i)
si such that AiM

(i)
j = M

(i)
j for 1 ≤ j ≤ si and 1 ≤ i ≤ k, so

that si ≥ 1 for all i, and

Fm×1 = M
(1)
1 ⊕M

(1)
2 ⊕ · · · ⊕M (1)

s1
⊕ · · · ⊕M (k)

1 ⊕M (k)
2 ⊕ · · · ⊕M (k)

sk
. (2)

This decomposition is not unique. However, the values s1, s2, . . . , sk certainly
are. Furthermore it is well-known (see, for example, Curtis and Reiner [1962])
that all simple modules that are faithful Ai-modules are isomorphic as A-modules
and as vector spaces over F,

M
(i)
j
∼= Dti×1

i

for 1 ≤ j ≤ si. Consequently M
(i)
j has dimension eid

2
i ti over F for 1 ≤ j ≤ si and
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A︸︷︷︸
n

=
k⊕
i=1

Ai Ai︸︷︷︸
eid2

i t
2
i

= Dti×ti
i Ei︸︷︷︸

ei

= Centre (Di)︸︷︷︸
eid2

i

Fm×1︸ ︷︷ ︸
m

=
k⊕
i=1

si⊕
j=1

M
(i)
j M

(i)
j︸︷︷︸

eid2
i ti

∼= Dti
i

n =
k∑
i=1

eid
2
i t

2
i m =

k∑
i=1

eid
2
i siti

N = max
1≤i≤k

dti/sie ≤ min(m,n) d =
k∑
i=1

eiditi ≤ min(m,n)

Figure 1: Summary of Notation

1 ≤ i ≤ k. Now, an inspection of equation (2) and comparison of dimensions of
modules confirms that

m = e1d
2
1s1t1 + e2d

2
2s2t2 + · · ·+ ekd

2
ksktk. (3)

The notation introduced in this section (together with the values N and d
defined below) is summarized in Figure 1.

2.4. Distinguishing Elements by Matrix-Vector Products

Since A ⊆ Fm×m it is clear that one can check whether a given element α of A is
zero by inspecting the m2 entries of the matrix α. It will be useful in the sequel
to check this condition by computing and inspecting matrix-vector products
instead. Therefore, let

N = max
1≤i≤k

dti/sie . (4)

Definition: A set of vectors v1, v2, . . . , vN ∈ Fm×1 is a distinguishing set for A if
there exists at least one vector vi in this set such that αvi 6= 0, for every nonzero
element α of A.

Clearly, if a distinguishing set v1, v2, . . . , vN of vectors is available, then we can
check whether α = 0 for a given element α of A by computing and inspecting
the N matrix-vector products αv1, αv2, . . . , αvN . We can also check whether two
elements α and β are equal in A by using these vectors to decide whether the
difference α− β is zero.

Theorem 2.2: If A ⊆ Fm×m is a semi-simple algebra and N is defined as in
equation (4), above, then a distinguishing set of vectors v1, v2, . . . , vN ∈ Fm×1

for A exists.
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Proof: Suppose first that A is simple and that s1 = 1, so that Fm×1 is a simple A-
module. It is also a faithful A-module, since A ⊆ Fm×m. In this case, k = 1, n =
e1d

2
1t

2
1,m = e1d

2
1s1t1 = e1d

2
1t1, andN = dt1/s1e = t1. Furthermore the centralizer

CFm×m(A) of A in Fm×m (that is, the set of all the matrices in Fm×m commuting
with all the elements of A) is clearly isomorphic to the ring HomA(Fm×1,Fm×1)
of A-endomorphisms of Fm×1 into Fm×1, so that this is isomorphic to eAe for
some idempotent e in A. Since Fm×1 is a simple A-module, HomA(Fm×1,Fm×1) is
isomorphic to the division algebra D with dimension e1d

2
1 over F, and (comparing

dimensions) Fm×1 may be regarded as a module with dimension t1 = N over this
division algebra. (See, for example, Section 26 of Curtis and Reiner [1962] for
details.)

Now it suffices to choose v1, v2, . . . , vN to be any basis for Fm×1 over the cen-
tralizer CFm×m(A) to ensure that v1, v2, . . . , vN is a distinguishing set for A. For
if γ1, γ2, . . . , γe1d2

1
is a basis for the centralizer over F then the set of vectors γivj

such that 1 ≤ i ≤ e1d
2
1 and 1 ≤ j ≤ N = t1 forms a basis for Fm×1 over F, and

if α ∈ A such that αvj = 0 for 1 ≤ j ≤ N then, since γi commutes with α,

α(γivj) = αγivj = γiαvj = γi(αvj) = γi0 = 0

for all i and j, implying that α = 0 as well.
Suppose next that A is simple and s1 > 1, so that Fm×1 = M1⊕M2⊕· · ·⊕Ms1

is a direct sum of simple A-modules M1,M2, . . . ,Ms1 . Then N = dt1/s1e. The
above argument can be applied to M1 instead of Fm×1 to prove the existence of
elements u1, u2, . . . , ut1 of M1 such that αuj is nonzero for at least one element uj
of this set whenever α is a nonzero element of A. Now, since A is simple, the
modules M1,M2, . . .Ms1 are isomorphic as modules over A, so that there exist
A-module isomorphisms φj : M1 → Mj for 2 ≤ j ≤ s1. Set ui = 0 for t1 + 1 ≤
i ≤ Ns1 = dt1/s1es1 and let

vi = u(i−1)s1+1 +

s1∑
j=2

φj(u(i−1)s1+j) ∈ Fm×1

for 1 ≤ i ≤ N . Since Fm×1 is a direct sum of the A-modules M1,M2, . . . ,Ms1 ,
and since the above maps φ2, φ3, . . . , φs1 are A-module isomorphisms, if α ∈ A

such that αvi = 0 then

αu(i−1)s1+1 = αu(i−1)s1+2 = · · · = αuis1 = 0

as well. Thus if α ∈ A such that αvi = 0 for 1 ≤ i ≤ N , then αuj = 0
for 1 ≤ j ≤ Ns1, implying that α = 0 by the choice of u1, u2, . . . , ut1 . Thus
v1, v2, . . . , vN is a distinguishing set in this case.

Now suppose A is semi-simple over F with simple components A1,A2, . . . ,Ak.
Let ω1, ω2, . . . , ωk ∈ A be the identity elements of A1,A2, . . . ,Ak, respectively,
so that these are orthogonal central idempotents in A, and so that

Fm×1 = ω1Fm×1 ⊕ ω2Fm×1 ⊕ · · · ⊕ ωkFm×1.
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Now ωiF
m×1 has a structure as an Ai-module and the above argument can be

used to prove the existence of elements vi,1, vi,2, . . . , vi,dti/sie of ωiF
m×1 such that

at least one of αivi,1, αivi,2, . . . , αivi,dti/sie is nonzero whenever αi is a nonzero
element of Ai.

For 1 ≤ j ≤ N = max
1≤i≤k

dti/sie, set

vj =
∑

1≤i≤k
dsi/tie≥j

vi,j ∈ Fm×1,

and recall that each element α of A has a unique representation as a sum α =
α1 + α2 + · · ·+ αk where αi ∈ Ai for 1 ≤ i ≤ k. Furthermore, α = 0 in A if and
only if αi = 0 in Ai for all i, and this can be used to establish that the above
elements v1, v2, . . . , vN form a distinguishing set for A. 2

A consideration of the case when A is simple and isomorphic to a full matrix
ring over F suggests that this is the best we can hope for: In this case, if one
chooses any set of fewer than N vectors, then there will exist a nonzero element
of A that annihilates all of them.

On the other hand, the news is not all bad. Suppose that A is given by a set of
structure constants that can be used to define a regular matrix representation of
the algebra. In this case we have m = n and, indeed, si = ti for 1 ≤ i ≤ k, so that
N = 1. One can then check whether α = β in A by checking whether αv = βv
for a single (well-chosen) vector. The Las Vegas algorithms given later in the
paper will therefore perform quite well in this case (see in particular Theorems
3.13 and 4.6 below).

2.5. Minimal Polynomials of Elements

Let
d = e1d1t1 + e2d2t2 + · · ·+ ekdktk (5)

for the values k, e1, e2, . . . , ek, d1, d2 . . . , dk and t1, t2, . . . , tk as defined in Sec-
tion 2.3. A comparison of equations (1), (3) and (5) confirms that d ≤ min(m,n).

The following result is well-known (or, easily deducible), but it is important
enough to this work to be mentioned here.

Lemma 2.3: Let A ⊆ Fm×m be a semi-simple algebra over F, and let d be defined
as above. Then the minimal polynomial of any element of A has degree at most d
over F.

Proof: It will be useful to consider four successively more general cases, namely,
that A is isomorphic to a full matrix ring over F, a central simple algebra over F,
a simple algebra over F and, finally, an arbitrary semi-simple algebra over F.

In the first case k = e1 = d1 = 1, n = t21 = d2 and, since elements of A may
be identified with d× d matrices over F, the result follows from the fact that the
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minimal polynomial of a matrix is always a divisor of a polynomial in F[x] with
degree d, namely, its characteristic polynomial.

In the second case k = e1 = 1 and n = d2
1t

2
1 = d2 as above. Let E be an

algebraic closure of F and consider the algebra AE = A ⊗F E over E obtained
from A by extension of scalars. It is easy to show that the dimension of the
vector space spanned by the elements 1, α, α2, . . . of A over F is the same as the
dimension of the vector space spanned by the elements 1⊗F 1, α⊗F 1, α2⊗F 1, . . .
of AE over E, for any element α of A. Thus the minimal polynomial of α over F
is the same as that of α ⊗F 1 over E. It is well-known that AE is isomorphic
to Ed×d as an algebra over E so that, once again, this minimal polynomial must
have degree at most d.

Next suppose that A is simple over F, so that k = 1 and A = A1. In this case A

can be regarded as a central simple algebra of dimension d2
1t

2
1 over its centre E1.

Now, as argued above, the minimal polynomial of any element α of A over E1

has degree at most d1t1, and the elements 1, α, α2, . . . , αd1t1−1 span E1[α] over E1.
Since [E1 : F] = e1 there exists a basis β1, β2, . . . , βe1 of E1 over F, and it is easy
to see that the elements βiα

j such that 1 ≤ i ≤ e1 and 0 ≤ j < d1t1 span E1[α]
over F. Consequently E1[α] has dimension at most e1d1t1 = d, and since F[α] is a
subspace of E1[α], F[α] has dimension at most d over F as well. Since the degree
of the minimal polynomial of α over F is the same as the dimension of F[α]
over F, the result now follows for the case that A is simple.

Finally, suppose that A is semi-simple over F, and let α ∈ F. Since A is
a direct sum of its simple components α can be written (uniquely) as a sum
α = α1 + α2 + · · · + αk where αi ∈ Ai for 1 ≤ i ≤ k. Now, since Ai is a
simple algebra with dimension eid

2
i t

2
i over F and has a centre with dimension ei

over F, the above argument implies that the minimal polynomial fi of αi has
degree at most eiditi over F, for all i. However, the minimal polynomial of α
is clearly just the least common multiple of f1, f2, . . . , fk and is a divisor of
the product of f1, f2, . . . , fk. It follows immediately that f has degree at most
d = e1d1t1 + e2d2t2 + · · ·+ ekdktk, as desired. 2

2.6. Matrix Normal Forms

Recall that if
g = xh + gh−1x

h−1 + · · ·+ g1x+ g0 ∈ F[x]

is a monic polynomial with degree h over F (so that gh−1, . . . , g1, g0 ∈ F), then
the companion matrix of g is the h× h matrix

Cg =



0 −g0

1 0 −g1

1 −g2

. . .
...

1 0 −gh−2

0 1 −gh−1


∈ Fh×h.
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The polynomial g is both the minimal polynomial and the characteristic poly-
nomial of Cg.

Consider the Frobenius decomposition of a matrix α ∈ Fm×m:

α = U−1SU for S =


Cg1 0

Cg2

. . .

0 Cg`

 , (6)

where U ∈ Fm×m is a nonsingular matrix, S is a block diagonal matrix with
matrices Cg1 , Cg2 , . . . , Cg` on the diagonal, and where Cgi is the companion ma-
trix of a polynomial gi ∈ F[x] of positive degree such that gi+1 divides gi for
1 ≤ i ≤ `. While the transition matrix U is not unique, the matrix S is, and is
called the Frobenius form of the matrix α. We will call a matrix U a Frobenius
transition matrix for α if it satisfies equation (6) above.

Since the Frobenius form S is unique the polynomials g1, g2, . . . , g` are unique
as well, and are called the elementary divisors of α. As equation (6) should
suggest, g1 is the minimal polynomial of α and the characteristic polynomial
of α is the product g1g2 . . . g`.

Giesbrecht [1995] has provided a Las Vegas algorithm for computation of the
Frobenius form and a Frobenius transition matrix for an arbitrary matrix α ∈
Fm×m over a sufficiently large field, and contributes an analysis of the algorithm
for the case that field elements are chosen uniformly and independently from a
finite subset of the ground field of size m2 when computing the Frobenius form
of an m×m matrix. It will be useful to apply this algorithm when elements are
chosen from a larger set.

Lemma 2.4: Let ε be a constant such that 0 < ε < 1 and let F be any field
with at least m2/ε elements. Given a matrix T ∈ Fm×m, a Las Vegas algorithm
can be used to find the Frobenius form and a Frobenius transition matrix for T
or to report failure — the latter with probability at most ε. The algorithm re-
quires O(MM(m) logm) operations in F, or O(m3) operations using standard
arithmetic.

Proof: See the presentation of Giesbrecht’s algorithm and the proof of Theo-
rem 4.1 given by Giesbrecht [1995]; the complexity analysis does not need to
be changed. The algorithm can fail at only one point — an application of the
subroutine “FindModCycl” — and the fact that this fails with probability at
most ε follows by an application of the Schwartz-Zippel lemma (Theorem 2.1,
above). 2

Recall that a polynomial in F[x] is separable over F if all its roots in any field
extension of F are simple. Equivalently, a polynomial is separable over F if and
only if the polynomial and its first derivative are relatively prime. If a polynomial
is separable over a field then it is also separable over every extension of that field.
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A different matrix normal form for a matrix α ∈ Fm×m will be of use when the
minimal polynomial g1 of α is separable over F. Consider h1, h2, . . . , h` ∈ F[x]
such that

h` = g` and hi = gi/gi+1 for 1 ≤ i ≤ `− 1; (7)

then g1 = h1h2, . . . , h`, so that h1, h2, . . . , h` are pairwise relatively prime and
separable over F. We will call these polynomials (which are clearly well defined
from α, since the elementary divisors are) the power divisors of α. It is easily
checked that

gi = hihi+1 . . . h` for 1 ≤ i ≤ `,

and that the characteristic polynomial of α is h1h
2
2 . . . h

`
`. Let δi = deg(hi) for

1 ≤ i ≤ ` and, when δi > 0, let

α(i) =


Chi 0

Chi
. . .

0 Chi


be a block matrix with i matrices of order δi on the diagonal, so that α(i) ∈ Fiδi×iδi

whenever this matrix is defined. Finally, let

α̂ =


α(1) 0

α(2)

. . .

0 α(`)

 ∈ Fm×m

be a block diagonal matrix whose diagonal blocks are all the matrices α(i) such
that δi > 0. It is easily checked that α and α̂ have the same elementary divi-
sors and hence the same Frobenius form T . Consequently, if U is a Frobenius
transition matrix for α and Û is a Frobenius transition matrix for α̂ then

U−1αU = Û−1α̂Û = T,

so that
α = V −1α̂V for V = ÛU−1. (8)

The matrix α̂ is clearly uniquely determined from α whenever the minimal poly-
nomial of α is separable. Kaltofen et al. [1990] call this the “rational Jordan
form” and investigate its properties in a more general setting. However, since
this name has been used for several different matrix forms in the literature, we
shall call this the power form of α. Any nonsingular matrix V ∈ Fm×m such that
α = V −1α̂V as above will be called a power transition matrix for α. We define a
power decomposition of α to include a power transition matrix for α, the power
form of α, and the orders of the matrices on the diagonal of the power form.
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Theorem 2.5: Let ε be a constant such that 0 < ε < 1 and let F be any
field with at least 2m2/ε elements. Given a matrix α ∈ Fm×m whose minimal
polynomial is separable over F, a Las Vegas algorithm can be used to find a
power decomposition of α or to report failure — the latter with probability at
most ε. The algorithm requires O(MM(m) logm) operations over F, or O(m3)
operations using standard arithmetic.

Proof: The desired Las Vegas algorithm and its analysis are easily described as
follows.

One first computes the Frobenius form and a Frobenius transition matrix U
for α, at the cost stated in Lemma 2.4. Since F includes at least 2m2/ε =
m2/(ε/2) elements, this computation can be implemented to fail with probability
at most ε/2.

Since the elementary divisors of α are now available, the power divisors are
easily computed using equation (7). Since exact division of polynomials can
be performed at asymptotically the same cost as polynomial multiplication, hi
can be computed from gi and gi+1 using O(M(deg(gi))) operations over F for
1 ≤ i ≤ ` − 1 and, since g1g2 . . . g` is the characteristic polynomial of α and
has degree m, all of the power divisors can be computed from the elementary
divisors using O(M(m)) operations in total.

At this point one can simply write down the power form of α by inspecting
the power divisors, using O(m2) operations. The Frobenius form of this matrix

and, more importantly, a Frobenius transition matrix Û for it, can be computed
at the cost stated in Lemma 2.4, failing again with probability at most ε/2.

Finally, a power transition matrix V = ÛU−1 can be generated from the above
transition matrices U and Û using O(MM(m)) additional operations. 2

3. Self-Centralizing Elements and Their Properties

Once again let d be as defined in equation (5).

Definition: An element α of A is a self-centralizing element of A if the minimal
polynomial of α is separable with (maximal) degree d over F.

3.1. Centralizers of Self-Centralizing Elements

Recall that CA(α) is the centralizer of α in A. Clearly F[α] ⊆ CA(α) for all α. The
next result therefore explains the choice of name for “self-centralizing elements.”

Theorem 3.1: If α is a self-centralizing element of A then CA(α) = F[α].

Proof: As in the proof of Lemma 2.3 it will be useful to consider several pro-
gressively more general cases.

Suppose first that A is isomorphic to a full matrix ring over F, and that the
minimal polynomial of α splits into linear factors in F[x]. In this case n = d2
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and A is isomorphic to Fd×d. Let ψ : A → Fd×d be an algebra isomorphism;
then ψ(α) is a d × d matrix whose minimal polynomial over F (the same as
the minimal polynomial of α) is separable with degree d. Since this minimal
polynomial splits into distinct linear factors in F[x], ψ(α) is similar to a diagonal
matrix with distinct entries on its diagonal. Applying a similarity transformation
(and modifying the isomorphism ψ accordingly), we may assume without loss
of generality that ψ(α) is such a diagonal matrix, itself. It is then easily proved
that F[ψ(α)] = ψ(F[α]) and Cψ(A)(ψ(α)) = ψ(CA(α)) are both equal to the set of
diagonal matrices in Fd×d. Since ψ(F[α]) = ψ(CA(α)) and ψ is an isomorphism,
F[α] = CA(α).

Suppose next that A is central simple over F. Then it is useful (again, as in the
proof of Lemma 2.3) to consider the algebra AE over E, where E is an algebraic
closure of F. Once again, AE is isomorphic to Ed×d as an algebra over E.

If α is self-centralizing in A then, by definition, the minimal polynomial of α is
separable with degree d. Since this is also the minimal polynomial of α⊗F 1 ∈ AE

over E, and since this polynomial is separable over E as well as over F, α ⊗F 1
is self-centralizing in AE. The minimal polynomial of this element clearly splits
into linear factors in E[x], since E is algebraically closed. The centralizer of α⊗F 1
is therefore equal to E[α⊗F 1] in AE by the argument given above.

Now, since α has the same minimal polynomial over F as α⊗F 1 has over E, the
dimension of F[α] over F is the same as that of E[α⊗F 1] over E. The dimension
of CA(α) over F is the same as the dimension of CAE(α⊗F 1) over E as well, since
the elements of either set can be obtained as linear combinations of elements of
a basis by solving essentially the same homogeneous system of linear equations.
Therefore F[α] has the same dimension as CA(α) over F and, since F[α] ⊆ CA(α),
F[α] = CA(α).

Next suppose A is simple. In this case, A may regarded as a central simple
algebra over its centre E1. If α is self-centralizing in A then F[α] ⊆ E1[α] and
F[α] has dimension d = e1d1t1 over F. E1[α] therefore has dimension at least
e1d1t1 over F as well. On the other hand, Lemma 2.3 implies that the minimal
polynomial of α over E1 has degree at most d1t1. Suppose therefore that the
degree of this polynomial is r ≤ d1t1. Then E1[α] has dimension r over E1 and,
since [E1 : F] = e1, E1[α] has dimension at most e1r ≤ e1d1t1 over F. Consequently
E1[α] has dimension exactly e1r = e1d1t1 over F, so r = d1t1. Therefore F[α] =
E1[α], again since one of these is a subspace of the other and both have the same
dimension over F.

Now, the minimal polynomial of α over E1 has full degree d1t1 and is separa-
ble, since it is a divisor of the minimal polynomial of α over F. The element α
is therefore self-centralizing in A when A is regarded as a central simple algebra
over E1. Since the centralizer CA(α) is the same regardless of whether A is con-
sidered as an algebra over F or over E1, we now have that CA(α) = E1[α] = F[α]
as desired.

In the general case that A is a separable algebra over F, it suffices to observe,
again, that an element α ∈ A can be written uniquely as α = α1 +α2 + · · ·+αk,
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where αi ∈ Ai for 1 ≤ i ≤ k. Let f be the minimal polynomial of α over F,
let fi be the minimal polynomial of αi over F, and let δi be the degree of fi
over F for all i. Let Bi be the subalgebra of Ai that is generated by αi so
that, if ωi is the identity element of Ai, then Bi has a basis ωi, αi, α

2
i , . . . , α

δi−1
i .

Now, since f is the least common multiple of f1, f2, . . . , fk and has degree d =
e1d1t1 + e2d2t2 + · · ·+ ekdktk (if α is self-centralizing in A),

δ1 + δ2 + · · ·+ δk = deg (f1f2 · · · fk) ≥ deg(f) = e1d1t1 + e2d2t2 + · · ·+ ekdktk.

On the other hand, it follows by Lemma 2.3 that δi ≤ eiditi as well for all i,
so clearly deg(fi) = δi = eiditi for each i. Since fi is a divisor of f and f is
separable, fi is separable as well. Thus αi is self-centralizing in Ai and, since Ai

is simple, it follows by the above argument that

CAi(αi) = Bi (9)

for 1 ≤ i ≤ k.
The above inequalities imply that the product and least common multiple of

f1, f2, . . . , fk have the same degree. Since the latter polynomial is always a factor
of the former, this implies that these are the same. Therefore f1, f2, . . . , fk are
pairwise relatively prime and

F[α] = B1 ⊕B2 ⊕ · · · ⊕Bk. (10)

On the other hand, since A is the direct sum of its simple components,

CA(α) = CA1(α)⊕ CA2(α)⊕ · · · ⊕ CAk(α)

= CA1(α1)⊕ CA2(α2)⊕ · · · ⊕ CAk(αk).
(11)

Equations (9), (10), and (11) clearly imply that F[α] = CA(α) as desired. 2

The next result follows from the above discussion.

Theorem 3.2: Let α = α1 + α2 + · · ·+ αk, where αi ∈ Ai for 1 ≤ i ≤ k. Then
α is self-centralizing in A if and only if αi is self-centralizing in Ai for all i and
the minimal polynomials of α1, α2, . . . , αk over F are pairwise relatively prime.

Proof: As argued above, if α is self-centralizing then, by inspection of the degrees
of the minimal polynomials of α and of α1, α2, . . . , αk, the minimal polynomials of
α1, α2, . . . , αk must be pairwise relatively prime and of maximal degree. They are
also separable since they each divide the minimal polynomial of α. Conversely,
if the minimal polynomials of α1, α2, . . . , αk are pairwise relatively prime and
separable then the least common multiple of these polynomials is also their
product, so that if each of these polynomials also has maximal degree then the
minimal polynomial of α is separable with maximal degree as well. 2
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Suppose next that α is self-centralizing in A ⊆ Fm×m and consider the power
divisors h1, h2, . . . , h` of α as defined in Section 2.6. Let fi be the minimal poly-
nomial of αi for 1 ≤ i ≤ k.

Lemma 3.3: If α is self-centralizing in A and f1, f2, . . . , fk are as above then
each polynomial fi is a divisor of exactly one of the power divisors of α and is
relatively prime with each of the rest. In particular,

ha =
∏

1≤i≤k
disi=a

fi for 1 ≤ a ≤ `. (12)

Proof: Since α is self-centralizing, the polynomials f1, f2, . . . , fk are separable
and pairwise relatively prime. It therefore suffices to prove that every irreducible
factor of fj is a divisor with the same multiplicity djsj of the characteristic poly-
nomial of α, for equation (12) then follows from the definition of h1, h2, . . . , h`
as the power divisors of α.

Since Fm×1 is a direct sum of simple A-modules, as shown in equation (2), and
all simple A-modules that are faithful Ai-modules are isomorphic, there exists a
nonsingular matrix X, whose columns are elements of carefully chosen bases for
the simple modules M

(1)
1 ,M

(1)
2 , . . . ,M

(k)
sk shown in equation (2), such that

X−1αX =


α

(1)
1 0

α
(1)
2

. . .

0 α
(k)
sk

 ,
and where

α
(i)
1 = α

(i)
2 = · · · = α(i)

si
∈ Feid

2
i ti×eid2

i ti

is a matrix that expresses the action of α on each simple module M
(i)
j , for

1 ≤ j ≤ si, with respect to the basis of this module that is included as columns
of X. Consequently, since each M

(i)
j is a faithful and simple Ai-module, the

minimal polynomial of α
(i)
j is the polynomial fi, for 1 ≤ i ≤ k and 1 ≤ j ≤ si.

Now it is necessary and sufficient to establish that each matrix α
(i)
j has Frobenius

form 
Cfi 0

Cfi
. . .

0 Cfi


with di elementary divisors that are all equal to fi. Indeed, it will be sufficient
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to prove that α
(i)
j is similar to a matrix

Ci,j 0
Ci,j

. . .

0 Ci,j

 ∈ Feid
2
i ti×eid2

i ti (13)

for any matrix Ci,j ∈ Feiditi×eiditi at all — for then it will be clear (by a compar-
ison of degrees and taking advantage of the fact that fi is separable) that Ci,j
has minimal polynomial fi and is similar to Cfi as needed.

With this in mind, let us consider Ai as a central simple algebra over its
centre, Ei, and consider M

(i)
j as a simple module of dimension d2

i ti over this
extension of F. Recall that the minimal polynomial of αi over Ei is a separable
polynomial f̂i of degree diti over Ei such that fi is divisible by f̂i in Ei[x] — this
was established and exploited in the proof of Theorem 3.1, above.

Now let Ki be an algebraic closure of Ei and consider the simple algebra AKi
i =

Ai ⊗Ei Ki
∼= Kditi×diti

i , and its module M
(i)
j ⊗Ei Ki, over Ki. The latter module

is a direct sum of di simple AKi
i -modules that each have dimension diti over Ki

and these modules are isomorphic, since they are simple modules over the same
simple algebra. Consequently there exists a basis

vKi
1,1, v

Ki
1,2, . . . , v

Ki
1,diti

, . . . , vKi
di,1
, vKi
di,2
, . . . , vKi

di,diti
∈M (i)

j ⊗Ei Ki

for M
(i)
j ⊗EiKi, consisting of carefully chosen bases for each of the above di simple

modules, such that the action of αi⊗Ei 1 ∈ AKi
i with respect to this basis is given

by a block diagonal matrix
CKi
i,j 0

CKi
i,j

. . .

0 CKi
i,j

 ∈ K
d2
i ti×d2

i ti
i

with di copies of a matrix CKi
i,j ∈ Kditi×diti

i on its diagonal. Since the minimal

polynomial of αi⊗EiKi over Ki is the same as that of αi over Ei, namely f̂i ∈ Ei[x],
and this polynomial has degree diti, the matrix CKi

i,j is similar to the companion

matrix Cf̂i in Kditi×diti
i . Therefore there is also a basis for M

(i)
j ⊗Ei Ki such that

the action of αi ⊗Ei 1 on this module with respect to this basis is given by the
matrix

M̂ =


Cf̂i 0

Cf̂i
. . .

0 Cf̂i

 ∈ E
d2
i ti×d2

i ti
i ⊆ K

d2
i ti×d2

i ti
i . (14)
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Happily, this implies that there exists a basis

v1,1, v1,2, . . . , v1,diti , . . . , vdi,1, vdi,2, . . . , vdi,diti ∈M
(i)
j (15)

for the module M
(i)
j over Ei such that the action on αi over M

(i)
j with respect

to this basis is given by the matrix M̂ as well: The action of αi on M
(i)
j over Ei

with respect to an arbitrary basis is necessarily represented by some matrix M

in E
d2
i ti×d2

i ti
i that is similar to M̂ in K

d2
i ti×d2

i ti
i . Since M̂ and M both belong to

E
d2
i ti×d2

i ti
i they must be similar as matrices in this ring as well, so that a change

of basis for M
(i)
j over Ei will bring the matrix into the desired form.

Now consider the Ei-linear map φi : M
(i)
j →M

(i)
j such that

φi(vr,s) =

{
vr+1,s if 1 ≤ r < di and 1 ≤ s ≤ diti,

v1,s if r = di and 1 ≤ s ≤ diti.

The action of this map with respect to basis in equation (15) is given by the
(permutation) matrix

0diti Iditi
Iditi 0diti

Iditi
. . .

0diti Iditi 0diti

 ∈ E
d2
i ti×d2

i ti
i

where 0diti and Iditi are the zero and identity matrices in Editi×ditii respectively.

Thus the actions of αi and φi on M
(i)
j commute.

Next let u1, u2, . . . , uei ∈ Ei ⊆ Ai be a basis for Ei over F and consider the

action of αi on M
(i)
j , as a module over F, with respect to the basis

u1v1,1, u2v1,1, . . . , ueiv1,1,u1v1,2, u2v1,2, . . . , ueiv1,2, . . .

. . . , u1vdi,diti , u2vdi,diti , . . . , ueivdi,diti
(16)

obtained by replacing each element vi,j of the basis in equation (15), above, by

the block of vectors u1vi,j, u2vi,j, . . . , ueivi,j. Since the subspace of M
(i)
j over Ei

spanned by the vectors vh,1, vh,2, . . . , vh,diti is invariant under αi for 1 ≤ h ≤ di
(see, again, the matrix form in equation (14)), the subspace of M

(i)
j over F

spanned by the vectors

u1vh,1, u2vh,1, . . . , ueivh,1, . . . , u1vh,diti , u2vh,diti , . . . , ueivh,diti

is invariant under αi as well. Thus, the action of αi on M
(i)
j with respect to the
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basis in equation (16) is given by a block-diagonal matrix
C

(1)
i,j 0

C
(2)
i,j

. . .

0 C
(di)
i,j


for matrices C

(1)
i,j , C

(2)
i,j , . . . , C

(di)
i,j ∈ Feiditi×eiditi . Furthermore, the above map φi

commutes with αi as an F-linear map. Since the action of this map with respect
to the above basis is given by a (permutation) matrix

Mφ =


0eiditi Ieiditi
Ieiditi 0eiditi

Ieiditi
. . .

0eiditi Ieiditi 0eiditi

 ∈ Feid
2
i ti×eid2

i ti ,

where 0eiditi and Ieiditi are the zero and identity matrices in Feiditi×eiditi respec-
tively, it follows that

C
(1)
i,j 0

C
(2)
i,j

. . .

0 C
(di)
i,j

 = M−1
φ


C

(1)
i,j 0

C
(2)
i,j

. . .

0 C
(di)
i,j

Mφ

=


C

(2)
i,j 0

C
(3)
i,j

. . .

0 C
(1)
i,j

 ,

so that C
(1)
i,j = C

(2)
i,j = · · · = C

(di)
i,j = Ci,j for some matrix Ci,j ∈ Feiditi×eiditi .

Since the matrix α
(i)
j also expresses the action of αi on the module M

(i)
j with

respect to a basis over F, it now follows that α
(i)
j is similar to a matrix with the

form given in equation (13) above, as desired to complete the proof. 2

Suppose again that α is self-centralizing in A with power divisors h1, h2, . . . , h`
and that the power form α̂ of α is as shown in Section 2.6,

α̂ =


α(1) 0

α(2)

. . .

0 α(`)

 ,
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where each matrix α(j) ∈ Fjδj×jδj for δj = deg(hj) and α(j) has minimal polyno-
mial hj. Let V be any power transition matrix for α, so that α = V −1α̂V , and
let

τi = V −1


∆i,1 0

∆i,2

. . .

0 ∆i,`

V ∈ Fm×m, (17)

where ∆i,j ∈ Fjδj×jδj is the identity matrix if i = j and is the zero matrix other-
wise, for 1 ≤ i, j ≤ `. Clearly τ1, τ2, . . . , τ` are pairwise orthogonal idempotents
in Fm×m whose sum is the identity matrix.

Theorem 3.4: Suppose that α is self-centralizing in A ⊆ Fm×m and that the
idempotents τ1, τ2, . . . , τ` are formed from α as above. Then τ1, τ2, . . . , τ` are cen-
tral idempotents in A.

Proof: Since the polynomials h1, h2, . . . , h` are pairwise relatively prime there
exist polynomials g1, g2, . . . , g` such that

gi ≡

{
1 (mod hj) if j = i,

0 (mod hj) if j 6= i,

for 1 ≤ i, j ≤ `. If α(1), α(2), . . . , α(`) are on the diagonal of the power form α̂
of α, as above, then α(i) has minimal polynomial hi for all i, and gi(α

(j)) = ∆i,j

for 1 ≤ i, j ≤ `. Thus

gi(α̂) =


∆i,1 0

∆i,2

. . .

0 ∆i,`


and gi(α) = gi(V

−1α̂V ) = V −1gi(α̂)V = τi. On the other hand, it follows by
Lemma 3.3 that

gi ≡

{
1 (mod fj) if 1 ≤ j ≤ k and djsj = i,

0 (mod fj) if 1 ≤ j ≤ k and djsj 6= i.

Since α = α1 + α2 + · · · + αk, where αj ∈ Aj with minimal polynomial fj
for 1 ≤ j ≤ k, gi(αj) is the identity element of Aj (and a central primitive
idempotent in A) if djsj = i, and gi(αj) = 0 otherwise. Now since

gi(α) = gi(α1) + gi(α2) + · · ·+ gi(αk),

it follows that τi = gi(α) is the sum of (distinct) central primitive idempotents
in A, so that τi is a central idempotent of A as claimed. 2



W. Eberly and M. Giesbrecht: Efficient Decomposition of Separable Algebras 20

It has been established in the above proof that if ω1, ω2, . . . , ωk are the cen-
tral primitive idempotents of A, and the identity elements of A1,A2, . . . ,Ak,
respectively, then

τi =
∑

1≤j≤k
djsj=i

ωj. (18)

Thus τ1, τ2, . . . , τ` do not depend on the choice of the self-centralizing element α
or the distinct power transition matrix V used to define them.

3.2. Existence and Density of Self-Centralizing Elements

Theorem 3.5: If A is a separable matrix algebra over an infinite field F then
A contains a self-centralizing element.

Proof: It will be useful once again to consider several cases.
Suppose first that A is simple, so that k = 1. In this case A = A1

∼= Dt1×t1
1 ,

where D1 is a division algebra that is central simple over the centre E1 of A

and where the dimension of D1 over E1 is a perfect square. Once again let this
dimension be d2

1, so that n = e1d
2
1t

2
1.

As shown, for example, by Pierce [1982], D1 includes a subfield L that is
separable over E1 such that [L : E1] = d1. Since A is a separable algebra, the field
E1 is separable over F. It follows, for example, by Lemma 10.7a(ii) of Pierce [1982]
that L is also separable over F. Furthermore, [L : F] = [L : E1][E1 : F] = e1d1.
Consequently there exists an element a of L ⊆ D such that F[a] = L and such
that the minimal polynomial of a is separable with degree e1d1 over F.

Now let ψ : A → Dt1×t1
1 be an isomorphism of algebras over F. It suffices to

choose α as

α = ψ−1



a1 0

a2

. . .

0 at1


 (19)

where a1, a2, . . . , at1 ∈ L ⊆ D1 such that F[a1] = F[a2] = · · · = F[at1 ] = L
and the minimal polynomials of a1, a2, . . . , at over F are distinct. Then, since L
is a separable extension of F these minimal polynomials will be separable and
irreducible over F, and the minimal polynomial of α over F will be their product,
a separable polynomial with degree e1d1t1.

If L = F then it suffices to choose a1, a2, . . . , at1 as distinct elements from F.
On the other hand, if L 6= F, then we can set a1 = a for the element a described
above such that F[a] = L. If b ∈ F then F[a+ b] = F[a], since clearly a+ b ∈ F[a]
and a = (a + b) − b ∈ F[a + b]. Furthermore, if g(x) ∈ F[x] is the minimal
polynomial of a over F and g has distinct roots c1, c2, . . . , ce1d1 in an extension
of F, then the minimal polynomial of a+ b over F is g(x− b) and this polynomial
has distinct roots c1 + b, c2 + b, . . . , ce1d1 + b in the same extension. Thus the
minimal polynomial of a+ b is also separable over F. It is therefore sufficient to
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set ai = a + bi, for 2 ≤ i ≤ t1, where b2, b3, . . . , bt1 are chosen from F in such a
way that the minimal polynomials of a1, a2, . . . , at1 over F are pairwise relatively
prime. Since these polynomials are each irreducible in F[x], this will be the case
as long as each polynomial has a root in an extension of F that is not also a
root of any of the rest. Now, since F is infinite, it is clear that suitable elements
b2, b3, . . . , bt1 of F can be found. Thus a self-centralizing element of A exists if A

is simple.
Suppose that A is separable but not simple over an infinite field F. The above

argument implies that a self-centralizing element βi of Ai exists for each of the
simple components A1,A2, . . . ,Ak. It now suffices to set α1 = β1 and to set
αi = βi + biωi, for 2 ≤ i ≤ k, where ωi is the identity element of the simple
component Ai of A, for 1 ≤ i ≤ k, and where b2, b3, . . . , bk are chosen from F
to ensure that the minimal polynomials of α1, α2, . . . , αk are pairwise relatively
prime. Each element αi will be self-centralizing in Ai by essentially the argument
used in the construction of α in the case that A is simple above, and Theorem
3.2 will then be applicable. Since F is infinite it is easy to prove that suitable
elements b2, b3, . . . , bk can be found. 2

The next result establishes that self-centralizing elements of separable algebras
are also easy to find. Once again, let d be as given in equation (5).

Theorem 3.6: Let A ⊆ Fm×m be a separable algebra of dimension n over a
field F, and suppose a self-centralizing element is included in the F-linear span of
elements γ1, γ2, . . . , γh of A. Let S be a finite subset of F with size at least 3d3/2ε,
for ε > 0. If the elements s1, s2, . . . , sh are chosen uniformly and independently
from S then the element

s1γ1 + s2γ2 + · · ·+ shγh

is self-centralizing in A with probability at least 1− ε.

Proof: A polynomial f ∈ F[x1, x2, . . . , xh] \ {0} with total degree at most 3d3/2
will be produced such that, for all elements s1, s2, . . . , sh of F, if f(s1, s2, . . . , sh) 6=
0 then s1γ1 + s2γ2 + · · ·+ shγh is a self-centralizing element of A. The result will
then follow by an application of the Schwartz-Zippel lemma (see Theorem 2.1).

Since the F-linear span of γ1, γ2, . . . , γh includes a self-centralizing element,
there exist elements ŝ1, ŝ2, . . . , ŝh of F such that the element

ŝ = ŝ1γ1 + ŝ2γ2 + · · ·+ ŝhγh

is self-centralizing in A. Let y1, y2, . . . , yh be indeterminates over F and let

σ = y1γ1 + y2γ2 + · · ·+ yhγh ∈ F[y1, y2, . . . , yh]
m×m,

so that ŝ = σ(ŝ1, ŝ2, . . . , ŝh). Now consider the system of polynomial equations

σd + zd−1σ
d−1 + · · ·+ z1σ + z01 = 0 (20)
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in the indeterminates y1, y2, . . . , yh, z0, z1, . . . , zd−1. This includes m2 equations
(since σi is an m×m matrix) that are linear in the indeterminates z0, z1, . . . , zd−1.
Replacing each indeterminate yi by the field element ŝi, for 1 ≤ i ≤ h, we obtain
a system of linear equations

ŝd + zd−1ŝ
d−1 + · · ·+ z1ŝ+ z01 = 0 (21)

in the indeterminates z0, z1, . . . , zd−1. This system has a unique solution whose
entries (and the leading term, 1) are the coefficients of the minimal polynomial
of ŝ over F. Therefore there is a subset of d of these equations with full rank d.
The corresponding equations in the system (20) form a system

M


z0

z1
...

zd−1

 = v (22)

where M ∈ F[y1, y2, . . . , yh]
d×d and v ∈ F[y1, y2, . . . , yh]

d×1.
Let g = detM ∈ F[y1, y2, . . . , yh]; then g is not identically zero, since a non-

singular matrix in Fd×d is obtained from M by replacing yi with ŝi for all i.
Furthermore if s1, s2, . . . , sh ∈ F such that g(s1, s2, . . . , sh) 6= 0 then it follows by
the definition of g that the elements

1, σ(s1, s2, . . . , sh), σ(s1, s2, . . . , sh)
2, . . . , σ(s1, s2, . . . , sh)

d−1

of A are linearly independent over F. In this case, Lemma 2.3 implies that the
the minimal polynomial of σ(s1, s2, . . . , sh) = s1γ1 + s2γ2 + . . . shγh over F has
degree exactly d.

Cramer’s rule can now be applied to the system shown in (22) to obtain
polynomials h0, h1, . . . , hd−1 ∈ F[y1, y2, . . . , yh] such that the minimal polynomial
of s1y1 + s2y2 + · · ·+ shyh over F is

xd +
hd−1(s1, s2, . . . , sh)

g(s1, s2, . . . , sh)
xd−1 + · · ·+ h1(s1, s2, . . . , sh)

g(s1, s2, . . . , sh)
x+

h0(s1, s2, . . . , sh)

g(s1, s2, . . . , sh)

whenever s1, s2, . . . , sh ∈ F such that g(s1, s2, . . . , sh) 6= 0. Consider the polyno-
mials

h = gxd + hd−1x
d−1 + · · ·+ h1x+ h0 ∈ F[x, y1, y2, . . . , yh]

and

f =

{
Resx

(
h, ∂h

∂x

)
∈ F[y1, y2, . . . , yh] if d 6= 0 in F,

g · Resx
(
h, ∂h

∂x

)
∈ F[y1, y2, . . . , yh] otherwise.

Since h(ŝ1, ŝ2, . . . , ŝh) ∈ F[x] is the product of g(ŝ1, ŝ2, . . . , ŝh) and the minimal
polynomial of ŝ1γ1 + ŝ2γ2 + · · ·+ ŝhγh, h(ŝ1, ŝ2, . . . , ŝh) is a separable polynomial
in F[x]. Therefore f(ŝ1, ŝ2, . . . , ŝh) 6= 0.
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Conversely, let s1, s2, . . . , sh ∈ F such that f(s1, s2, . . . , sh) is nonzero. Since
g divides f (because f is the determinant of a Sylvester matrix of polynomials
whose entries in one row are all divisible by g when d 6= 0, and by definition
otherwise), g(s1, s2, . . . , sh) is nonzero as well, so the minimal polynomial of
s1γ1 + s2γ2 + · · ·+ shγh has maximal degree d, and h(s1, s2, . . . , sh) is the prod-
uct of this minimal polynomial and g(s1, s2, . . . , sh). Since f(s1, s2, . . . , sh) 6= 0,
h(s1, s2, . . . , sh) is a separable polynomial in F[x] and the minimal polynomial
of s1γ1+s2γ2+· · ·+shγh is therefore separable as well. Thus, s1γ1+s2γ2+· · ·+shγh
is self-centralizing in A, as desired.

It remains only to bound the total degree of f . The entries of the matrix σi

each have total degree at most i in y1, y2, . . . , yh, for 0 ≤ i ≤ d. Therefore each
entry in the ith column of the matrix M shown in equation (22) has total degree
at most i− 1 in these indeterminates, and the entries of the vector v have total
degree at most d. The determinant g of M , and the polynomials h0, h1, . . . , hd−1

obtained by an application of Cramer’s rule to this system, therefore each have
total degree at most

(
d+1

2

)
in y1, y2, . . . , yh. Since f is a factor of the determinant

of a (2d−1)×(2d−1) Sylvester matrix whose nonzero entries are scalar multiples
of these polynomials∗, it follows as required that f has total degree at most

(2d− 1)

(
d+ 1

2

)
=

2d3 + d2 − d
2

≤ 3d3

2
. 2

3.3. Certification of Self-Centralizing Elements

Theorem 3.6 yields a simple Monte Carlo algorithm to generate a self-centralizing
element: Choose a random linear combination of a set of elements of A whose
F-linear span is known to include such an element.

In this section we describe a method to either certify that a given element α
of A is self-centralizing or reject the element, assuming that a basis for A over F
is available. This method is also randomized and may only fail by rejecting
an element that is, indeed, self-centralizing. Another method that is somewhat
slower, but guaranteed never to give an incorrect answer, is mentioned at the
end of the section.

Once again consider an element α of A. The minimal polynomial f of α over F
is easily computed by generating the Frobenius form of α and, since f is separable
if and only if f and f ′ are relatively prime, one can efficiently detect and reject
any element whose minimal polynomial is not separable over F.

If α’s minimal polynomial is separable, and the degree bound d is known, then
it is easy to complete our procedure — we simply compare the degree of f to d,
accepting α if the degree equals d and rejecting α otherwise. We will therefore
continue by giving a method that can be used when d is unknown, noting that
∗Indeed, if the characteristic of F does not divide d, so that ∂h/∂x has degree d− 1, then

f is equal to this determinant. Otherwise this matrix is block triangular and its determinant
is the product of f and a nonnegative power of g.
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it is never necessary to use this again after a self-centralizing element of A has
been found and certified, since d is available after that.

The following (partial) converse of Theorem 3.1 will serve as the basis for our
test.

Theorem 3.7: If α is an element of A whose minimal polynomial over F is
separable but has degree less than d then F[α] is a proper subset of CA(α).

Proof: Suppose the centre of A is contained in F[α] (the result is trivial oth-
erwise). As usual, let α = α1 + α2 + · · · + αk, where αi is a member of the
simple component Ai of A, and let fi be the minimal polynomial of αi over F for
1 ≤ i ≤ k.

Suppose f1, f2, . . . , fk are not pairwise relatively prime; then there exist dis-
tinct integers i and j between 1 and k such that the greatest common divisor gi,j
of fi and fj has positive degree. However, since the identity element ωi of Ai is
in the centre of A, and this is contained in F[α] by assumption, ωi = h(α) for
some polynomial h ∈ F[x]. Since i 6= j and h(α) ∈ Ai, h(αj) = 0 in Aj, implying
that h is divisible by fj and therefore by its factor gi,j. On the other hand, since
h(αi) = ωi in Ai, h ≡ 1 (mod fi), implying that h is relatively prime with fi
and therefore with its factor gi,j. This clearly contradicts the fact that gi,j has
positive degree. Thus f1, f2, . . . , fk are pairwise relatively prime, the minimal
polynomial of α over F is their product, and

F[α] = B1 ⊕B2 ⊕ · · · ⊕Bk

where, once again, Bi is the subalgebra of Ai generated by αi, for 1 ≤ i ≤ k.
Since the centre Ei of Ai is contained in Bi, Bi = Ei[αi]. Suppose the mini-

mal polynomial of αi over Ei has degree n̂i; then this is also the dimension of
Ei[αi] over Ei. Since Ei is a field extension with degree ei over F, Bi clearly has
dimension ein̂i over F, so that the minimal polynomial fi of αi over F has degree
ein̂i. Since the minimal polynomial of α over F is the product of f1, f2, . . . , fk,
this minimal polynomial has degree

e1n̂1 + e2n̂2 + · · ·+ ekn̂k < d = e1d1t1 + e2d2t2 + . . . ekdktk.

It follows that n̂i < diti for at least one integer i. Fix any such i.
It now remains only to prove that there is an element βi of Ai such that

αiβi = βiαi but βi /∈ Bi. For the remainder of the proof, let us consider Ai

as a central simple algebra over its centre Ei; it now suffices to show that the
dimension of the centralizer of αi in Ai over Ei is strictly greater than n̂i. We
will do this by showing that the dimension is greater than or equal to diti.

Since the dimensions are invariant under extension of scalars, it suffices to
show that the dimension of the centralizer of αi⊗Ei 1 in AKi

i = Ai⊗Ei Ki over Ki

is at least diti, for some field extension Ki of Ei. In particular, it is sufficient to
prove this when Ki is an algebraic closure of Ei, so that

AKi
i = Ai ⊗Ei Ki

∼= Kditi×diti
i .
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Let
ψ : AKi

i → Kditi×diti
i

be an isomorphism of algebras over Ki and consider the matrix ψ(αi ⊗Ei 1) ∈
Kditi×diti
i . The minimal polynomial of this matrix over Ki is the same as the

minimal polynomial of αi over Ei and, since this is a factor of the minimal
polynomial fi of αi over F, this polynomial is separable over both Ei and Ki.
Since its degree is strictly less than diti, the matrix ψ(αi⊗Ei 1) is diagonalizable
in Kditi×diti

i but is similar to a diagonal matrix ∆i whose diagonal entries are not
distinct. Now

∆i = X−1ψ(αi ⊗Ei 1)X

for some nonsingular matrix X ∈ Kditi×diti
i . The matrix ∆i commutes with all

diagonal matrices, so that its centralizer has dimension at least diti over Ki. Since
a matrix β commutes with ∆i if and only XβX−1 commutes with ψ(αi ⊗Ei 1),
and ψ is an algebra isomorphism, the dimension of the centralizer of αi ⊗Ei 1
over Ki is also at least diti, and the dimension of the centralizer of αi over Ei is
at least diti as well. 2

If a basis γ1, γ2, . . . , γn for A over F is available, then we may complete the pro-
cess of deciding whether α is self-centralizing by checking whether the dimension
of the space of solutions of the homogeneous system of linear equations

α

(
n∑
i=1

xiγi

)
−

(
n∑
i=1

xiγi

)
α = 0,

in unknowns x1, x2, . . . , xn, is the same as the degree of the minimal polynomial
of α over F. It therefore suffices to consider a system with m2 equations in n
unknowns. However, as suggested in Section 2.4, it may be possible to improve
on this by inspecting matrix-vector products instead of the entries of matrices
in A. Consider the algorithm shown in Figure 2 on page 26.

Lemma 3.8: If α ∈ A is not self-centralizing, and the algorithm in Figure 1 is
executed with α and a basis for A as input, then the algorithm returns the answer
No.

Proof: Since α is not self-centralizing, either its minimal polynomial f is not
separable, or it is separable but the degree d̂ of f is less than d. In the former
case gcd(f, f ′) has positive degree, so the test in step 1 will fail and step 10 will
be executed to reject α. In the latter case Theorem 3.7 implies that F[α] is a
proper subset of the centralizer of α in A. It follows that the dimension of the
solution space of the homogeneous system of linear equations considered at line 5
will never be less than d̂ + 1, and the test at line 6 will always fail. Therefore
the test at line 8 will eventually succeed, either because two dimensions δi−1

and δi coincide, or because min(m,n) + 1 vectors have been considered (so that
i > min(m,n)). Thus the algorithm will eventually return the answer No (by
executing line 9) in this case as well. 2
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Input: • An element α of a separable algebra A ⊆ Fm×m whose
minimal polynomial f has degree d̂ over the field F

• A basis γ1, γ2, . . . , γn for A over F

• A real number ε such that 0 < ε < 1

Question: Is α self-centralizing in A?

(Always returns No if α is not self-centralizing in A, and
returns Yes with probability at least 1 − ε if α is self-
centralizing in A.)

Constants Used: A finite subset S of F with size at least dn/εe

1. if gcd(f, f ′) = 1 then
2. i := 0; δi := n

loop
3. i := i+ 1
4. Randomly choose a vector vi ∈ Sm×1

5. Compute the dimension δi over F of the space of solutions for the
homogeneous system of linear equations

n∑
j=1

xj(αγjv` − γjαv`) = 0 for 1 ≤ ` ≤ i

in the n unknowns x1, x2, . . . , xn

6. if δi = d̂ then
7. answer Yes

else
8. if (δi = δi−1 or i > min(m,n)) then
9. answer No

end if
end if

end loop
else

10. answer No
end if

Figure 2: Certification of a Self-Centralizing Element

For i ≥ 1, let Ri be the maximum (over all choices of the vectors v1, v2, . . . , vi ∈
Fm×1) of the rank of the coefficient matrix of the system of linear equations
shown at line 5 on the ith execution of the loop body. Clearly Ri ≤ Ri+1 for
i ≥ 1. Furthermore, since the vector [s1, s2, . . . , sn]t is a solution for this system
whenever s1γ1 + s2γ2 + · · ·+ snγn belongs to the centralizer of α ∈ A, Ri ≤ n− δ
for all i ≥ 1 where δ is the dimension of this centralizer.
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Let N be as defined in equation (4) on page 6.

Lemma 3.9: RN = RN+1 = n− δ.

Proof: Since RN ≤ RN+1 ≤ n− δ, it suffices to show that RN ≥ n− δ.
Consider the given system when i = N and suppose v1, v2, . . . , vN is a dis-

tinguishing set for A. In this case, for every element β of A, (βα − αβ)vi for
1 ≤ i ≤ N if and only if β commutes with α, so that [s1, s2, . . . , sn]t is a solution
for the given system if and only if s1γ1 + s2γ2 + · · ·+ snγn is in the centralizer.
Thus the rank of the coefficient matrix of the system is n−δ. This clearly implies
that RN ≥ n− δ, as needed. 2

Lemma 3.10: If α is not in the centre of A then R1 > 0 and, in general, if
1 ≤ i < N such that Ri < n− δ then Ri+1 ≥ Ri + 1.

Proof: Consider the second claim first, suppose to the contrary that Ri = Ri+1 <
n − δ, and let v1, v2, . . . , vi be vectors such that the system given in line 5 (on
the ith execution of the loop body) has rank Ri when these vectors are used.
Then, since Ri+1 = Ri, the additional equations obtained by considering any
other vector v must be linear combinations of the equations that have already
been obtained, implying that Ri = Ri+1 = Ri+2 = · · · = RN , and contradicting
Lemma 3.9.

The first claim follows by essentially the same argument, since it can be used
to show that if R1 = 0 then Ri = 0 as well for all i ≥ 1, contradicting Lemma 3.9
and the fact that δ < n when α is not in the centre of A. 2

Now let Nα be the smallest positive integer such that RNα = n − δ, so that
Nα ≤ N by Lemma 3.9.

Lemma 3.11: Let ε be a real number such that 0 < ε < 1, and suppose S is a
finite subset of F that includes at least n/ε distinct elements. If the algorithm
shown in Figure 2 is executed with inputs α, a basis for A, and ε, and the
entries of the vectors v1, v2, . . . used by this algorithm are selected uniformly and
independently from S, then all three of the following conditions are satisfied with
probability at least 1− ε.
• If α is self-centralizing in A then the loop body of the algorithm is executed

exactly ` = Nα times, and the algorithm returns the answer Yes.

• If α is not self-centralizing in A then the loop body of the algorithm is
executed exactly ` = 1 + Nα times, and the algorithm returns the answer
No.

• If ` is defined as in the above two statements, then the linear system con-
sidered on the ith execution of the loop body has rank Ri, for 1 ≤ i ≤ `.
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Proof: The claim is trivial if α is in the centre of A, because the coefficient
matrix of every system that can be considered has rank zero in this case: If α
is also self-centralizing then d̂ = d = n = δ1, regardless of the choice of v1, and
the test at line 6 will succeed on the first execution of the loop body. If α is not
self-centralizing then δ2 = δ1 = n = d 6= d̂, so that the test at line 8 will succeed
on the second execution. All three conditions are satisfied in either case.

Suppose, therefore, that α is not in the centre.
In this case, δ 6= n and R1 > 0. Since the centralizer of α in A has dimension δ,

the set of elements βα − αβ such that β ∈ A has dimension n − δ over F. Let
β1, β2, . . . , βn−δ ∈ A such that β1α − αβ1, β2α − αβ2, . . . , βn−δα − αβn−δ are
linearly independent and therefore form a basis for this set.

Let v be an m-dimensional vector whose entries are distinct indeterminates
over F. To prove that the coefficient matrix for the system considered on the
first execution of the loop body has rank R1 with high probability, consider the
m× (n− δ) matrix of polynomials[

(β1α− αβ1)v (β2α− αβ2)v . . . (βn−δα− αβn−δ)v
]
.

The definition of R1 implies that there is a vector v ∈ Fm×1 such that, if v
were replaced by v in the above matrix, then the resulting matrix would have
rank R1. This matrix would therefore have a nonsingular R1 × R1 submatrix.
The corresponding submatrix of the above matrix of polynomials is thus an
R1×R1 matrix whose determinant is a nonzero polynomial g1 with total degree at
most R1 in the entries of v. Furthermore, it is clear by the definitions of g1 and R1

that if v̂ ∈ Fm×1 such that g1(v̂) 6= 0, then the matrix obtained from the above
by replacing v with v̂ has rank R1, as does the coefficient matrix of the system
obtained on the first execution of the loop body if v̂ is the first vector selected.
It follows by an application of the Schwartz-Zippel lemma (Theorem 2.1) that if
v1 is randomly selected as described in the claim, then the probability that the
first system has rank less than R1 is at most εR1/n.

Suppose next that 1 ≤ i < Nα and that vectors v1, v2, . . . , vi have been chosen
so that the coefficient matrix of the system considered at line 5 on the jth execu-
tion of the loop body (involving vectors v1, v2, . . . , vj) has rank Rj for 1 ≤ j ≤ i.
Now, the tests at lines 6 and 8 will both fail on the ith execution of the loop
body since δ0 = n, 1 ≤ R1 < R2 < · · · < Ri < RN = δ, and δj = n − Rj for
1 ≤ j ≤ i. An i+ 1st execution will therefore be performed. Let v be a vector of
indeterminates as before, and consider the matrix

(β1α− αβ1)v1 (β2α− αβ2)v1 . . . (βn−δα− αβn−δ)v1

(β1α− αβ1)v2 (β2α− αβ2)v2 . . . (βn−δα− αβn−δ)v2
...

...
. . .

...
(β1α− αβ1)vi (β2α− αβ2)vi . . . (βn−δα− αβn−δ)vi
(β1α− αβ1)v (β2α− αβ2)v . . . (βn−δα− αβn−δ)v

 .
The submatrix including all columns and the top mi rows has rank Ri by the
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choice of v1, v2, . . . , vi, and it follows by the definition of Ri+1 that there exists
a vector vi+1 such that the matrix obtained from the above by replacing v with
vi+1 has rank Ri+1. This matrix would have a nonsingular Ri+1×Ri+1 submatrix
such that the top Ri rows of this submatrix are selected from the top mi rows of
the entire matrix. A consideration of the corresponding submatrix of the above
matrix of polynomials and another application of Theorem 2.1 lemma establish
that if a matrix v̂i+1 is randomly selected as described in the claim, and v̂i+1

replaces v, then the resulting matrix has rank less than Ri+1 with probability at
most ε(Ri+1−Ri)/n. This also bounds the probability that the system generated
on the i + 1st execution of the loop body has rank less than Ri+1 if the system
obtained on the ith execution had full rank Ri.

It follows by induction on i that if 1 ≤ i ≤ Nα and v1, v2, . . . , vi are chosen as
described then the probability that the jth coefficient matrix has rank Rj for all
j between 1 and i is at least 1−ε(Ri/n). In particular, the system obtained after
Nα executions of the loop body has maximal rank RNα = n− δ with probability
at least 1− ε(RNα/n) ≥ 1− ε. Suppose for the remainder of the argument that
this system does have maximal rank.

Now, if α is self-centralizing then the algorithm will terminate on the N th
α

execution of the loop body, returning the answer Yes, because the test at line 6
will succeed. If α is not self-centralizing, then it will terminate on the Nα + 1st

execution of the loop body instead, returning the answer No, because the ranks
of the last two systems considered must be the same, but must also be less than
n− δ.

Therefore all three conditions are satisfied with probability at least 1 − ε, as
claimed. 2

A final lemma concerns the cost of implementing this algorithm.

Lemma 3.12: The algorithm shown in Figure 2 can be implemented in such
a way that each execution of the loop body can be performed using O(nm2 +
n2

m2MM(m)) operations, or O(nm2 + n2m) operations if standard arithmetic is
used.

Proof: Consider the ith execution of the loop body. If i = 1 this requires that a
homogeneous system of m equations in n unknowns x1, x2, . . . , xn be formed and
examined, while if i > 1 then it involves the addition of another m equations in
these unknowns to a system that has been constructed in previous executions of
the loop body. The loop body can be implemented to have the above complexity,
provided that information about the previous system is maintained and used.

Suppose, in particular, that the coefficient matrix of this system has rank r
(so that r = n − δi just after the ith execution of the loop). It will be assumed
that r linearly independent rows of the coefficient matrix, the indices of r linearly
independent columns specifying a nonsingular r×r submatrix X, and the inverse
of this submatrix are maintained.
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Since r = 0 before the first execution of the loop body, this information can
be initialized in constant time before this first execution begins.

The beginning of the ith execution of the loop body involves the incrementing
of a variable and the selection of a vector vi from Fm×1, and this can clearly be
performed at the stated cost. The equations to be added to the system at this
point have the form

n∑
j=1

xj(αγjvi − γjαvi) = 0,

where γ1, γ2, . . . , γn is a basis for A, and these can be formed using at most 4n
multiplications of m×m matrices (in A) by the vector vi, at cost O(nm2).

Now it remains only to compute the rank r = n− δi of the current system and
to generate the data that will be needed for the next execution of the loop —
for, once δi is known (and δi−1 is recalled), the remaining steps of the loop body
can be executed using a constant number of operations.

Suppose m ≥ n; then the new equations can be split into dm/ne sets of at
most n equations each and added to the previous system in dm/ne stages, one
set at a time. Since each intermediate system has rank at most n, the system will
include at most 2n equations in n unknowns at each stage. Therefore the process
of computing the rank of each intermediate system, and selecting and inverting a
nonsingular submatrix of maximal size, can be implemented using O(MM(n))
operations, using the asymptotically fast methods of Ibarra et al. [1982] to choose
linearly independent rows and columns, and the method of Bunch and Hopcroft
[1974] to invert the resulting nonsingular matrix. Since O(m/n) stages are re-
quired, the entire process can be completed using O(m

n
MM(n)) = O(mn2)

operations. Since m ≥ n, the number of operations used is in O(nm2) in this
case.

Suppose instead that m < n. In this case, one should begin if i > 1 by elim-
inating the entries in the new rows of the current system’s coefficient matrix
that lie in the columns that were used to form the nonsingular matrix X cur-
rently in use. Since X−1 is available, this elimination can be performed using
O( n

2

m2MM(m)) operations. The resulting m equations can then be inspected to
determine which new equations should be added to the set that will be used in
the next execution of the loop, as well as the rows and columns that should be
added to the nonsingular submatrix X, using the method of Ibarra et al. [1982],
with O(MM(m)) operations.

Suppose that a matrix

X̂ =

[
X C
R Y

]
has now been selected. Since X is a nonsingular (n − δi−1) × (n − δi−1) matrix

and X̂ is a nonsingular (n − δi) × (n − δi) matrix, C ∈ F(n−δi−1)×(δi−1−δi), R ∈
F(δi−1−δi)×(n−δi−1), and Y ∈ F(δi−1−δi)×(δi−1−δi). Furthermore n − δi−1 ≤ n and
δi−1 − δi ≤ m, because δi−1 ≥ 0 and the new system has been obtained by
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adding only m new equations to the previous one. It is well known (and easily
verified) that

X̂ =

[
I(n−δi−1) 0
RX−1 I(δi−1−δi)

] [
X 0
0 Z

] [
I(n−δi−1) X−1C

0 I(δi−1−δi)

]
and

X̂−1 =

[
I(n−δi−1) −X−1C

0 I(δi−1−δi)

] [
X−1 0

0 Z−1

] [
I(n−δi−1) 0
−RX−1 I(δi−1−δi)

]
=

[
X−1 +X−1CZ−1RX−1 −X−1CZ−1

−Z−1RX−1 Z−1

]
for Z = Y −RX−1C ∈ F(δi−1−δi)×(δi−1−δi).

Given the matrices X̂ and X−1 (and the above decomposition of X̂), the ma-
trices X−1C and RX−1 can be computed using O( n

2

m2MM(m)) operations. The
matrix RX−1C can next be computed from R and X−1C using O( n

m
MM(m))

operations. The matrix Z can then be obtained using a further O(m2) operations.
Z can be inverted with O(MM(m)) operations using the method of Bunch

and Hopcroft [1974].
The matrices Z−1RX−1 and X−1CZ−1 (and their negations) can then be

computed from Z−1, RX−1 and X−1C using O( n
m
MM(m)) operations. The

matrix X−1CZ−1RX−1 can then be computed from X−1C and Z−1RX−1 using
O( n

2

m2MM(m)) operations. Finally, X−1 + X−1CZ−1RX−1 can be generated

using O(n2) additional operations, in order to complete the computation of X̂−1.

Since n > m, this has been computed from X̂ and X−1 using O( n
2

m2MM(m))
operations, or using O(n2m) operations with standard matrix arithmetic, as
required. 2

Now we can bound the cost to certify a self-centralizing element.

Theorem 3.13: Suppose as usual that A ⊆ Fm×m is a separable algebra with
dimension n over a field F, and let γ1, γ2, . . . , γn be a basis for A over F. Suppose
as well that ε is a real number such that 0 < ε < 1 and that S is a finite subset
of F including at least n/ε distinct elements.

Let α ∈ A, and suppose that the algorithm shown in Figure 2 is executed on
inputs α and γ1, γ2, . . . , γn, in such a way that the entries of the vectors v1, v2, . . .
used by this algorithm are chosen uniformly and independently from S. Then each
of the following conditions is satisfied.

• The algorithm always terminates and returns either Yes or No as out-

put, after performing O
((
nm2 + n2

m2MM(m)
)

min(m,n)
)

operations, or

O((nm2 + n2m) min(m,n)) operations using standard arithmetic.

• If α is not self-centralizing in A then the algorithm’s output is always No.
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• If α is self-centralizing in A then the algorithm’s output is Yes with proba-
bility at least 1− ε.
• The algorithm will terminate after O(Nnm2 + N n2

m2MM(m)) operations,
or O(Nnm2 +Nn2m) operations using standard arithmetic, with probability
at least 1− ε.

Proof: It is clear by inspection of the algorithm that, if it terminates at all, then
it does so by returning either Yes or No (but not both). Furthermore, since the
parameter i is incremented on each execution of the loop, a glance at line 8 will
confirm that the loop is never executed more than min(m,n)+1 times. This, and
Lemma 3.12, are sufficient to establish the first claim — for the cost of executing
the loop clearly dominates the cost of executing the other steps.

The second claim is a consequence of Lemma 3.8, and the third is a conse-
quence of Lemma 3.11.

Finally, the last claim follows from Lemma 3.11, which implies that with high
probability the loop body will be executed at most Nα + 1 ≤ N + 1 times, and
Lemma 3.12, which bounds the cost of each execution of this loop. 2

As noted above, the algorithm may return No with small probability when its
input α is self-centralizing in A. This is perfectly acceptable for the applications
discussed in this paper, since it does still imply that the Monte Carlo algorithm
from the previous subsection and the certification algorithm given above can be
combined to obtain a Las Vegas algorithm to randomly choose and certify a self-
centralizing element: The algorithm would fail if either the chosen element was
not self-centralizing at all, or if it was, but the certification process failed. One
could then simply use repeated trials of the process (until a trial succeeded), to
obtain a self-centralizing algorithm using an expected number of operations as
given in Theorem 3.13, above.

However, if self-centralizing elements are of independent interest, it should
be noted that the algorithm could be modified so that it checks the system of
equations

n∑
i=1

(xiγiα− xiαγi) = 0

at any point in the loop body when the original algorithm would return No; if the
dimension of the solution space for this system equals the degree of the minimal
polynomial of α then (since it has already been confirmed that this minimal
polynomial is separable), the algorithm should return the answer Yes. On the
other hand, No should be returned if the dimension and degree are different.
Theorems 3.1 and 3.7 imply that the modified algorithm would always return a
correct output.

With an appropriate choice of ε, the worst case expected number of operations
needed to confirm that a given element is self-centralizing (that is, to return the
answer Yes), would not be changed, because the probability that one would need
to check the above system could be kept small.
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However, the cost to reliably return the answer No would increase to that of
computing the rank of an m2 × n matrix. Since n ≤ m2, this could be carried
out using O(m

2

n
MM(n)) operations, by the method of Ibarra et al. [1982], or

using O(m2n2) operations with standard matrix arithmetic.

3.4. Invariance under Field Extensions

Consider, again, the degree of the minimal polynomial of any self-centralizing
element in A:

d = e1d1t1 + e2d2t2 + · · ·+ ekdktk.

Let E be a field extension of F, and consider the algebra AE = A ⊗F E over E
obtained from A by extension of scalars. Let dE be the degree of the minimal
polynomial of any self-centralizing element in AE. In general, not even the num-
ber k of simple components of the algebra is preserved by the action of extension
of scalars. Therefore, while the following result can be established by a careful
analysis of A and AE, it is not immediate:

Lemma 3.14: d = dE.

Proof: Suppose γ1, γ2, . . . , γn is a basis for A over F; γ1⊗F 1, γ2⊗F 1, . . . , γn⊗F 1
is then a basis for AE over E.

Theorem 3.5 implies both that there exists a self-centralizing element of A that
is an F-linear combination of γ1, γ2, . . . , γn, and there exists a self-centralizing
element of AE that is an E-linear combination of γ1 ⊗F 1, γ2 ⊗F 1, . . . , γn ⊗F 1.

Now let S be a finite subset of F with size at least 9n3/2, and note that
S is also a finite subset of E. Suppose s1, s2, . . . , sn are chosen uniformly and
independently from S. Since d ≤ n, it follows by Theorem 3.6 that the element

α = s1γ1 + s2γ2 + · · ·+ snγn

is not self-centralizing in A with probability at most 1/3, and, since dE ≤ n, it
follows by the same theorem that

α⊗F 1 = s1γ1 ⊗F 1 + s2γ2 ⊗F 1 + · · ·+ snγn ⊗F 1

is not self-centralizing in E with probability at most 1/3 as well.
Therefore, α and α⊗F1 are both self-centralizing (in A and in AE, respectively)

with probability at least 1−1/3−1/3 = 1/3 > 0, implying that there does exist
an element α ∈ A that is self-centralizing in A, such that α ⊗F 1 is also self-
centralizing in AE.

Since the minimal polynomial of α over F is also the minimal polynomial
of α⊗F 1 over E, these minimal polynomials must have the same degree, implying
the claim. 2

Since a polynomial in F[x] is separable if and only if it also separable, when
considered as a polynomial in E[x] for any field extension E of F, the following
is now immediate (and will be of use in the sequel).
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Corollary 3.15: If A is a separable algebra over an infinite field F, and E is a
field extension of F, then an element α of A is self-centralizing in A if and only
if the corresponding element α⊗F 1 of E is self-centralizing in E.

4. Centering Pairs and Their Properties

4.1. Definitions

It turns out that certain pairs of self-centralizing elements are more useful in
combination than any one such element.

Definition: A pair of elements α and β of A is a centering pair if α and β are
both self-centralizing in A and

Centre(A) = CA(α) ∩ CA(β) = F[α] ∩ F[β]. (23)

Having a centering pair α and β for A is clearly of use in computing the
centre of A, since a basis for the centre over F could be obtained by solving the
homogeneous system of linear equations

(y0 + y1α + · · ·+ yd−1α
d−1)β − β(y0 + y1α + · · ·+ yd−1α

d−1) = 0

for the unknowns y0, y1, . . . , yd−1 in F: Every solution [s0, s1, . . . , sd−1]t ∈ Fd

determines an element
s0 + s1α + · · ·+ sd−1α

d−1

of F[α] that commutes with β. Since β is self-centralizing in A, this implies that
the above element belongs to F[β] as well. It therefore belongs to F[α] ∩ F[β]
which is the centre of A by definition. Conversely, every element of the centre
belongs to the set {s0 + s1α + · · ·+ sd−1αd−1 : s0, s1, . . . , sd−1 ∈ F} and specifies
a solution for this system.

While it is plausible that this method is faster than previous general methods
for computation of the centre, it requires that we form and solve a system of
m2 linear equations in d unknowns. We can do considerably better than this by
projecting from the space of matrices to the space of vectors. It will be shown
in the sequel that with high probability the desired relationships still hold, and
this motivates the following definition.

Definition: A pair α and β of elements of a separable matrix algebra A ⊆ Fm×m

is a complemented centering pair for A if this pair is a centering pair for A and,
furthermore, there exists a pair of vectors u and v in Fm×1 such that

(µu = νu and µv = νv) =⇒ µ = ν ∈ F[α] ∩ F[β] (24)

for all µ ∈ F[α] and all ν ∈ F[β]. Any pair of vectors u and v satisfying condi-
tion (24), above, is said to complement the centering pair α and β.
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4.2. Existence and Density of Centering Pairs

Once again let d be as given in equation (5).

Theorem 4.1: Let A ⊆ Fm×m be a separable matrix algebra over a field F. If F
is infinite then A includes a complemented centering pair of elements α and β.

Theorem 4.2, below, will be used to prove Theorem 4.1 and will therefore be
proved first.

Theorem 4.2: Let A be as above, and suppose γ1, γ2, . . . , γh ∈ A such that there
is a complemented centering pair α and β in the F-linear span of γ1, γ2, . . . , γh.
Let ε be a real number such that 0 < ε < 1 and suppose S is a finite subset of F
that includes at least 5d3/ε distinct elements. Then, if elements

a1, a2, . . . , ah, b1, b2, . . . , bh, c1, c2, . . . , cm, d1, d2, . . . , dm

are chosen uniformly and independently from S, then the elements

a1γ1 + a2γ2 + · · ·+ ahγh and b1γ1 + b2γ2 + · · ·+ bhγh

form a complemented centering pair in A, complemented by the vectors

[c1, c2, . . . , cm]t and [d1, d2, . . . , dm]t

in Fm×1, with probability at least 1− ε.

Proof (of Theorem 4.2): Suppose that s1, s2, . . . , sh, t1, t2, . . . , th, u1, u2, . . . , um,
and v1, v2, . . . , vm are indeterminates over the field F. It is given that there exist
elements ŝ1, ŝ2, . . . , ŝh, t̂1, t̂2, . . . , t̂h ∈ F such that the elements

ŝ = ŝ1γ1 + ŝ2γ2 + · · ·+ ŝhγh and t̂ = t̂1γ1 + t̂2γ2 + · · ·+ t̂hγh

of A form a complemented centering pair. Consider matrices of polynomials

σ = s1γ1 + s2γ2 + · · ·+ shγh and τ = t1γ1 + t2γ2 + · · ·+ thγh,

so that ŝ = σ(ŝ1, ŝ2, . . . , ŝh) and t̂ = τ(t̂1, t̂2, . . . , t̂h). Clearly

σ(r1, r2, . . . , rh) = τ(r1, r2, . . . , rh) = r1γ1 + r2γ2 + · · ·+ rhγh ∈ A

for all r1, r2, . . . , rh ∈ F.
It can be established as in the proof of Theorem 3.6 that there exist nonzero

polynomials fα ∈ F[s1, s2, . . . , sh] and fβ ∈ F[t1, t2, . . . , th] (formed using ŝ and
t̂ respectively) such that fα(ŝ1, ŝ2, . . . , ŝh) 6= 0, fβ(t̂1, t̂2, . . . , t̂h) 6= 0, each poly-

nomial has total degree at most 2d3+d2−d
2

in its indeterminates, and such that
for all r1, r2, . . . , rh ∈ F, if either fα(r1, r2, . . . , rh) or fβ(r1, r2, . . . , rh) is nonzero
then r1γ1 + r2γ2 + · · ·+ rhγh is self-centralizing in A.
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Since ŝ and t̂ form a complemented centering pair, there also exist vectors

û =


û1

û2
...
ûm

 ∈ Fm and v̂ =


v̂1

v̂2
...
v̂m

 ∈ Fm

that complement ŝ and t̂. Thus there exists a homogeneous system of 2m linear
equations

(x01 + x1ŝ+ x2ŝ
2 + · · ·+ xd−1ŝ

d−1)û

− (y01 + y1t̂+ y2t̂
2 + · · ·+ yd−1t̂

d−1)û = 0,

(x01 + x1ŝ+ x2ŝ
2 + · · ·+ xd−1ŝ

d−1)v̂

− (y01 + y1t̂+ y2t̂
2 + · · ·+ yd−1t̂

d−1)v̂ = 0

(25)

in 2d indeterminates x0, x1, . . . , xd−1, y0, y1, . . . , yd−1, such that

a01 + a1ŝ+ · · ·+ ad−1ŝ
d−1 = b01 + b1t̂+ · · ·+ bd−1t̂

d−1

for each solution [a0, a1, . . . , ad−1, b0, b1, . . . , bd−1]t ∈ F2d of this system, with the
above element a01 + a1ŝ + · · · + ad−1ŝ

d−1 of A in the centre of A. Conversely,
every element of the centre is equal both to a01 + a1ŝ + · · · + ad−1ŝ

d−1 and
to b01 + b1t̂ + · · · + bd−1t̂

d−1 for some solution [a0, a1, . . . , ad−1, b0, b1, . . . , bd−1]t.
Writing

~x =


x0

x1
...

xd−1

 and ~y =


y0

y1
...

yd−1

 ,
the system of linear equations shown in (25), above, can be expressed as

Â

[
~x
~y

]
= 0

where Â ∈ F2m×2d. Since the space of solutions of this system has the same
dimension e as the centre of A, Â has rank 2d−e. Therefore, Â has a nonsingular
(2d− e)× (2d− e) submatrix B̂.

Now set

χ =


u1

u2
...
um

 ∈ F[u1, u2, . . . , um]m×1 and ψ =


v1

v2
...
vm

 ∈ F[v1, v2, . . . , vm]m×1,
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so that û = χ(û1, û2, . . . , ûm) and v̂ = ψ(v̂1, v̂2, . . . , v̂m), and consider the system
of equations

(x01 + x1σ + x2σ
2 + · · ·+ xd−1σ

d−1)χ

− (y01 + y1τ + y2τ
2 + · · ·+ yd−1τ

d−1)χ = 0,

(x01 + x1σ + x2σ
2 + · · ·+ xd−1σ

d−1)ψ

− (y01 + y1τ + y2τ
2 + · · ·+ yd−1τ

d−1)ψ = 0;

(26)

this can be written as

A

[
~x
~y

]
where A ∈ F[s1, s2, . . . , sh, t1, t2, . . . , th, u1, u2, . . . , um, v1, v2, . . . , vm]2m×2d such
that

A(ŝ1, ŝ2, . . . , ŝh, t̂1, t̂2, . . . , t̂h, û1, û2, . . . , ûm, v̂1, v̂2, . . . , v̂m) = Â ∈ F2m×2d.

Choosing the same rows and columns as were used to define B̂ from Â, one can
define B ∈ F[s1, s2, . . . , sh, t1, t2, . . . , th, u1, u2, . . . , um, v1, v2, . . . , vm](2d−e)×(2d−e)

such that

B(ŝ1, ŝ2, . . . , ŝh, t̂1, t̂2, . . . , t̂h, û1, û2, . . . , ûm, v̂1, v̂2, . . . , v̂m) = B̂ ∈ Fd×d.

Consider now the polynomial

f = fαfβ detB ∈ F[s1, s2, . . . , sh, t1, t2, . . . , th, u1, u2, . . . , um, v1, v2, . . . , vm].

By construction, f(ŝ1, ŝ2, . . . , ŝh, t̂1, t̂2, . . . , t̂h, û1, û2, . . . , ûm, v̂1, v̂2, . . . , v̂m) 6= 0,
so this polynomial is nonzero. On the other hand, if s1, s2, . . . , sh, t1, t2, . . . , th,
u1, u2, . . . , um, and v1, v2, . . . , vm are elements of F such that

f(s1, s2, . . . , sh, t1, t2, . . . , th, u1, u2, . . . , um, v1, v2, . . . , vm) 6= 0, (27)

then clearly fα(s1, s2, . . . , sh) and fβ(t1, t2, . . . , th) are both nonzero, so that the
elements

α = s1γ1 + s2γ2 + · · ·+ shγh and β = t1γ1 + t2γ2 + · · ·+ thγh

of A are both self-centralizing. Furthermore, the determinant of the matrix

B(s1, s2, . . . , sh, t1, t2, . . . , th, u1, u2, . . . , um, v1, v2, . . . , vm)

is nonzero. If we set

u =


u1

u2
...
um

 and v =


v1

v2
...
vm

 ,
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then this implies that the coefficient matrix of the homogeneous system of 2m
linear equations

[
u α u . . . αd−1u −u −βu . . . −βd−1

u

v α v . . . αd−1v −v −βv . . . −βd−1
v

]


x0
...

xd−1

y0
...

yd−1


=


0
0
...
0



in 2d unknowns x0, x1, . . . , xd−1, y0, y1, . . . , yd−1 has (maximal) rank 2d− e, and
that the space of solutions for this system has dimension e over F.

It now follows that α and β form a centering pair in A: Since α and β are both
self-centralizing, the centre of A is contained in F[α]∩ F[β], and is only a proper
subset of this vector space if the dimension of F[α] ∩ F[β] exceeds e. However,
for every element

a01 + a1α + · · ·+ ad−1α
d−1 = b01 + b1β + · · ·+ bd−1β

d−1

of F[α]∩F[β] there is a (distinct) solution [a0, . . . , ad−1, b0, . . . , bd−1]t for the above
system, so the fact that the space of solutions for the system has dimension e im-
plies that F[α]∩F[β] also has dimension at most e. Thus F[α]∩F[β] = Centre(A)
as needed.

The fact that the solution space for the system has dimension e also implies
that, for all µ ∈ F[α] and ν ∈ F[β],

(µu = νu and µv = νv) =⇒ µ = ν ∈ F[α] ∩ F[β],

for the dimension of the solution space would exceed that of F[α]∩F[β] otherwise.
Thus the vectors u and v complement the centering pair α and β.

It remains only to bound the degree of the above polynomial f and to apply
the Schwartz-Zippel lemma (Theorem 2.1) in order to establish the result. An
inspection of the above system confirms that each entry of the matrix A, and
its submatrix B, has total degree at most d in the indeterminates s0, . . . , sh,
t0, . . . , th, u1, . . . , um, and v1, . . . , vm. Since B is a matrix with order 2d−e < 2d,
its determinant is a polynomial with total degree at most (2d − e)d < 2d2 in
these indeterminates. Since f = fαfβ detB, the degree bounds given above for
fα and fβ imply that f has total degree less than 5d3, as required. 2

It remains for us to prove Theorem 4.1.

Lemma 4.3: Let A ⊆ Fm×m be a separable algebra with simple components
A1,A2, . . . ,Ak over F, and let ω1, ω2, . . . , ωk be the central primitive idempotents
of A and the identity elements of algebras A1,A2, . . . ,Ak respectively. Suppose

α = α1 + α2 + · · ·+ αk and β = β1 + β2 + · · ·+ βk
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where as usual αi, βi ∈ Ai for all i, and suppose α and β are both self-centralizing
in A.

Consider αi and βi as elements of Ai (so F[αi] has spanning set ωi, αi, α
2
i , . . .

and F[βi] is spanned by ωi, βi, β
2
i , . . . ). If

F[αi] ∩ F[βi] = Centre(Ai)

for all i, so that αi and βi form a centering pair in Ai for all i, then α and β
form a centering pair in A.

Furthermore, if for all i there exist vectors ~ui and ~vi such that, for all µi ∈
F[αi] ⊆ Ai and for all νi ∈ F[βi] ⊆ Ai,

(µiωi~ui = νiωi~ui and µiωi~vi = νiωi~vi) =⇒ µi = νi ∈ F[αi] ∩ F[βi],

then α and β form a complemented centering pair that is complemented by the
vectors

u = ω1~u1 + ω2~u2 + · · ·+ ωk~uk and v = ω1~v1 + ω2~v2 + · · ·+ ωk~vk.

Proof: Since α and β are self-centralizing,

F[α] = F[α1]⊕ F[α2]⊕ · · · ⊕ F[αk] and F[β] = F[β1]⊕ F[β2]⊕ · · · ⊕ F[βk].

Since A has simple components A1,A2, . . . ,Ak,

Centre(A) = Centre(A1)⊕ Centre(A2)⊕ · · · ⊕ Centre(Ak)

as well. It follows immediately that, if F[αi] ∩ F[βi] = Centre(Ai) in Ai for all i,
then (in A)

F[α] ∩ F[β] = (F[α1]⊕ F[α2]⊕ · · · ⊕ F[αk]) ∩ (F[β1]⊕ F[β2]⊕ · · · ⊕ F[βk])

= (F[α1] ∩ F[β1])⊕ (F[α2]⊕ F[β2])⊕ · · · ⊕ (F[αk]⊕ F[βk])

= Centre(A1)⊕ Centre(A2)⊕ · · · ⊕ Centre(Ak) = Centre(A),

establishing the first part of the claim.
Suppose next that there exist vectors ~ui and ~vi for all i with the stated prop-

erty, and let u and v be as above. Suppose as well that µ ∈ F[α] and ν ∈ F[β],
and write

µ = µ1 + µ2 + · · ·+ µk and ν = ν1 + ν2 + · · ·+ νk

where as usual µi, νi ∈ Ai for all i. If µu = νu and µv = νv then ωiµu = ωiνu
and ωiµv = ωiνv for all i and, since ωiµj = ωiνj = 0 whenever i 6= j, this implies
that ωiµiωi~ui = ωiνiωi~ui and ωiµiωi~vi = ωiνiωi~vi. Now, since ωi is central in A

and is an idempotent, it follows that µiωi~ui = νiωi~ui and µiωi~vi = νiωi~vi, so that
µi = νi ∈ F[αi] ∩ F[βi] = Centre(Ai) in Ai for each i. Therefore

µ = ν ∈ Centre(A1)⊕ Centre(A2)⊕ · · · ⊕ Centre(Ak)

= Centre(A) = F[α] ∩ F[β],

as required. 2
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Suppose now that E is a field extension of F. Given a vector

~u =


u1

u2
...
um

 ∈ Fm×1

(for u1, u2, . . . , um ∈ F), let us denote by ~u⊗F 1 the vector

~u⊗F 1 =


u1 ⊗F 1
u2 ⊗F 1

...
um ⊗F 1

 ∈ Em×1.

Lemma 4.4: If A is a separable algebra over an infinite field F, and E is a field
extension of F, then the following properties are satisfied, for all α, β ∈ A and
~u,~v ∈ Fm×1.

1. The pair of elements α and β form a centering pair in A if and only if the
pair of elements α⊗F 1 and β ⊗F 1 form a centering pair in AE.

2. The pair of elements α and β form a complemented centering pair in A

that are complemented by the vectors ~u,~v ∈ Fm×1 if and only if the pair of
elements α⊗F 1 and β⊗F 1 form a complemented centering pair in AE that
are complemented by the vectors ~u⊗F 1, ~v ⊗F 1 ∈ Em×1.

Proof: Recall, by Corollary 3.15, that α (respectively, β) is self-centralizing in A

if and only if α ⊗F 1 (respectively, β ⊗F 1) is self-centralizing in AE. The first
property now follows by the observation that the dimension over F of the so-
lution space of the homogenous system of linear equations (in indeterminates
x0, x1, . . . , xd−1, y0, y1, . . . , yd−1)

(x0 + x1α + x2α
2 + · · ·+ xd−1α

d−1)− (y0 + y1β + y2β
2 + · · ·+ yd−1β

d−1) = 0

is the same as the dimension over E of the solution space of the homogeneous
system of linear equations

(x0 + x1(α⊗F 1) + x2(α⊗F 1)2 + · · ·+ xd−1(α⊗F 1)d−1)

− (y0 + y1(β ⊗F 1) + y2(β ⊗F 1)2 + · · ·+ yd−1(β ⊗F 1)d−1) = 0.

Thus, if α and β are self-centralizing in A, then

Centre(A) = F[α] ∩ F[β]

if and only if
Centre(AE) = E[α⊗F 1] ∩ E[β ⊗F 1],

as required to establish the first condition.
The second property can now be established by a similar argument. 2
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Proof (of Theorem 4.1): Suppose first that A is simple and isomorphic to Fn×n

over F. Then there exist distinct elements λ1, λ2, . . . , λn of F and an element α
of A whose minimal polynomial is

f =
n∏
i=1

(x− λi) ∈ F[x].

Furthermore any simple A-module contains elements x1, x2, . . . , xn such that
αxi = λixi for 1 ≤ i ≤ n. These elements are linearly independent since they
are eigenvectors corresponding to distinct eigenvalues of α and, since any simple
A-module has dimension n over F, they form a basis for the module containing
them. The action of α on the module with respect to the basis x1, x2, . . . , xn is
given by the matrix

φ(α) =


λ1 0

λ2

. . .

0 λn

 ∈ Fn×n.

Suppose f = xn+fn−1x
n−1+· · ·+f1x+f0, for f0, f1, . . . , fn ∈ F. Since A ∼= Fn×n,

there exists an element β of A whose action on the module with respect to the
basis x1, x2, . . . , xn is given by the companion matrix of f :

φ(β) = Cf =



0 −f0

1 0 −f1

1 −f2

. . .
...

1 0 −fn−2

0 1 −fn−1


.

In this case, βxi = xi+1 for 1 ≤ i ≤ n − 1, so that if 0 ≤ j ≤ n − 1 then
βjx1 = xj+1. Now let u = x1 and v = x1 +x2 + · · ·+xn, and suppose f1, f2 ∈ F[x]
such that f1(α)u = f2(β)u and f1(α)v = f2(β)v. It suffices to consider the

case that f1 and f2 both have degree less than n, since f1(α) = f̂1(α) and

f2(β) = f̂2(β) for f̂1 ≡ f1 mod f and f̂2 ≡ f2 mod f . Therefore, let

f1 = f1,n−1x
n−1 + f1,n−2x

n−2 + · · ·+ f1,1x+ f1,0

and let
f2 = f2,n−1x

n−1 + f2,n−2x
n−2 + · · ·+ f2,1x+ f2,0.

Since u = x1 is an eigenvector of α for eigenvalue λ1, f1(α)u = f1(λ1)x1. On the
other hand, it follows by the above equations that

f2(β)u =
n−1∑
i=0

f2,iβ
ix1 =

n−1∑
i=0

f2,ixi+1.
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Since f1(α)u = f2(β)u and x1, x2, . . . , xn are linearly independent over F, this
implies that f1(λ1) = f2,0 and that f2,i = 0 for 1 ≤ i ≤ n−1, so f2(x) = f1(λ1) ∈
F and f2(β) = f1(λ1)In is in the centre of A.

On the other hand, since v = x1 + x2 + · · ·+ xn,

f1(α)v = f1(λ1)x1 + f1(λ2)x2 + · · ·+ f1(λn)xn,

by the choice of x1, x2, . . . , xn, while

f2(β)v = f1(λ1)Inv = f1(λ1)x1 + f1(λ1)x2 + · · ·+ f1(λ1)xn.

The linear independence of x1, x2, . . . , xn and the condition that f1(α)v = f2(β)v
imply (by a comparison of the coefficients of x1, x2, . . . , xn in the above expres-
sions) that

f1(λ1) = f1(λ2) = · · · = f1(λn).

Since f1 has degree less than n and λ1, λ2, . . . , λn are distinct, it follows that
f1,0 = f1(λ1) and f1,i = 0 for 1 ≤ i ≤ n−1 as well, so that f1(x) = f1(λ1) = f2(x),
and

f1(α) = f1(λ1)In = f2(β)

with both in the centre of A. Thus α and β form a complemented centering pair
that is complemented by the vectors u and v in this case.

Lemma 4.3 can now be applied to establish the result for the case that A is
separable over an infinite field F, such that each simple component is isomorphic
to a full matrix ring over F. In particular, this can be used to prove the result
for the case that A is separable over F and F is algebraically closed.

It remains to consider the case that A is separable over an arbitrary infinite
field F. Let E be an algebraic closure of F and consider the algebra AE obtained
from A by extension of scalars. Let γ1, γ2, . . . , γn be a basis for A over F, so that
γ1 ⊗F 1, γ2 ⊗F 1, . . . , γn ⊗F 1 form a basis for AE over E. Let S be a finite subset
of F with size at least 10d3; since F is infinite some such set exists.

Now, suppose s1, s2, . . . , sn, t1, t2, . . . , tn, u1, u2, . . . , um, and v1, v2, . . . , vm are
chosen uniformly and independently from S. Let

α = s1γ1 + s2γ2 + · · ·+ snγn and β = t1γ1 + t2γ2 + · · ·+ tnγn,

and note that

α⊗F 1 = s1(γ1 ⊗F 1) + s2(γ2 ⊗F 1) + · · ·+ sn(γn ⊗F 1)

and
β ⊗F 1 = t1(γ1 ⊗F 1) + t2(γ2 ⊗F 1) + · · ·+ tn(γn ⊗F 1)

as well.
Since E is algebraically closed and AE is a separable algebra over E, it follows
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by the argument given above that AE has a complemented centering pair. Theo-
rem 4.2 therefore implies that α⊗F 1 and β⊗F 1 form a complemented centering
pair of AE, that is complemented by the vectors

~u⊗F 1 =


u1 ⊗F 1
u2 ⊗F 1

...
um ⊗F 1

 and ~v ⊗F 1 =


v1 ⊗F 1
v2 ⊗F 1

...
vm ⊗F 1

 ∈ Em×1,

with probability at least 1
2
. However, this would imply by Lemma 4.4 that α

and β form a complemented centering pair in A that are complemented by the
corresponding vectors ~u and ~v, as well.

Since a complemented centering pair of A can be randomly chosen with posi-
tive probability, a complemented centering pair must clearly exist. 2

4.3. A Monte Carlo Algorithm for a Complemented Centering Pair and
Generator for the Centre

A randomized (Monte Carlo) algorithm to compute a complemented centering
pair α and β, vectors u and v that complement this pair, and a generator γ for
the centre of a separable algebra A over F is shown in Figure 3 on page 44. Its
analysis yields the following result.

Theorem 4.5: Let A ⊆ Fm×m be a separable algebra with dimension n over
an infinite field F, let ε be a real number such that 0 < ε < 1, and suppose
S is a finite subset of F that includes at least 8m3/ε distinct elements. Then a
randomized (Monte Carlo) algorithm can be used to compute elements α, β and
γ of A and vectors u, v ∈ Fm×1 such that α and β form a complemented centering
pair for A complemented by the vectors u and v, and such that γ generates the
centre of A, with probability at least 1 − ε, using O(MM(m) logm + R(A))
operations, or O(m3 + R(A)) operations if standard arithmetic is used. Here
R(A) is the cost to compute an S-linear combination of a set of elements of A

whose F-linear span includes a complemented centering pair.

Recall that Theorem 4.1 implies that a complemented centering pair exists.
Thus if a basis for A is available we can set R(A) = nm2.

Proof (of Theorem 4.5): Consider the algorithm shown in Figure 3. Theorem 4.1
implies that a complemented centering pair for A exists. Theorem 4.2 implies
that the elements α and β chosen in step 1 form a complemented centering pair
for A, complemented by the vectors u and v chosen in step 3, with probability at
least 1− 5ε

8
, when α and β are chosen as S-linear combinations of elements of A as

described above and the entries of the vectors u and v are chosen uniformly and
independently from S. Thus the probability of failure to find a complemented
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Input: • A separable matrix algebra A ⊆ Fm×m over an infinite field F

• A real number ε such that 0 < ε < 1

Output: Elements α, β and γ of A, vectors u and v in Fm×1, and a positive
integer e such that α and β form a complemented centering pair for A

complemented by the vectors u and v, γ is a generator for the centre
of A, and e is the dimension of the centre with probability at least
1− ε

Constants Used: A finite subset S of F with size at least d8m3/εe
1. Choose elements α and β as random S-linear combinations of a basis for A.

2. Compute the degree d of the minimal polynomial of α over F.

3. Randomly choose vectors u, v ∈ Sm×1.

4. Compute the dimension e and a basis

a1,0
...

a1,d−1

b1,0
...

b1,d−1


,



a2,0
...

a2,d−1

b2,0
...

b2,d−1


, . . . ,



ae,0
...

ae,d−1

be,0
...

be,d−1


∈ F2d×1

for the set of solutions of the homogeneous system of linear equations

[
u αu . . . αd−1u −u −βu . . . −βd−1u
v αv . . . αd−1v −v −βv . . . −βd−1v

]


y0
...

yd−1

z0
...

zd−1


=


0
0
...
0


in the indeterminates y0, . . . , yd−1, z0, . . . , zd−1.

5. Randomly choose elements c1, c2, . . . , ce from S.

6. Set si =
e∑
j=1

cjaj,i for 0 ≤ i ≤ d− 1 and set γ =
d−1∑
i=0

siα
i.

7. Return the above elements α, β and γ of A, vectors u and v, and integer e.

Figure 3: A Monte Carlo Algorithm for a Centering Pair and the Centre

centering pair and complementing vectors is at most 5ε/8. The cost of steps 1
and 3 is clearly at most O(R(A) +m).

The degree d of the minimal polynomial of α is readily available if the Frobe-
nius form of α can be computed. It therefore follows by Lemma 2.4 that step 2
of the algorithm can be performed using O(MM(m) logm) operations in F, or
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O(m3) operations using standard arithmetic, by a Las Vegas algorithm that fails
with probability at most ε/8m ≤ ε/8.

Now consider the homogeneous system of linear equations that is formed and
solved in step 4. The cost of forming this system is dominated by the cost
of computing matrix-vector products v, αv, α2v, . . . , αd−1v for a given element
α of A ⊆ Fm×m and a given vector v ∈ Fm×1, and thus the system can be
formed usingO(M(m) logm) operations (see, for example, Keller-Gehrig [1985]),
or at cost O(m3) using standard arithmetic by forming fewer than m matrix-
vector products. The system includes 2m equations in 2d unknowns and, since
m ≥ d, this system can be solved using O(MM(m)) operations. It follows by
the definition of a complemented centering pair that if α and β form such a pair
that is complemented by the vectors u and v, and if the set of vectors

a1,0
...

a1,d−1

b1,0
...

b1,d−1


,



a2,0
...

a2,d−1

b2,0
...

b2,d−1


, . . . ,



ae,0
...

ae,d−1

be,0
...

be,d−1


is a basis for the set of solutions for this system (as in step 4), then the set

d−1∑
j=0

a1,jα
j,

d−1∑
j=0

a2,jα
j, . . . ,

d−1∑
j=0

ae,jα
j

of elements of A forms a basis for the centre of A over F. In this case, the
element γ that is generated in step 6 is a random linear combination of the
elements of such a basis, so that γ ∈ Centre(A) and, furthermore, it follows by
Theorems 3.5 and 3.6 that γ is a self-centralizing element in Centre(A) with
probability at least 1 − 3ε/16 > 1 − ε/4. That is, the probability that γ is not
self-centralizing in the centre is less than ε/4. Now, since any self-centralizing
element of a commutative algebra is a generator for the algebra, this implies
that the probability that F[γ] 6= Centre(A) is at most ε/4, if steps 1–4 of the
algorithm succeeded.

Finally, note that γ = g(α) where g(x) = sd−1x
d−1 + sd−2x

d−2 + · · · + s0 and
where the coefficients sd−1, sd−2, . . . , s0 are as computed in step 6 of the algo-
rithm. These coefficients can be computed from the values generated in earlier
steps using O(ed) = O(m2) operations. Since a Frobenius form and transition
matrix for α have been computed in earlier steps, γ can be computed by evaluat-
ing the polynomial g at the matrix α deterministically using O(MM(m) logm)
steps, or O(m3) operations using standard arithmetic, if the earlier steps suc-
ceeded (see Section 6 of Giesbrecht [1995]).

Thus the entire algorithm can be implemented at the cost that has been
claimed, and the probability of failure is at most 5ε/8 + ε/8 + ε/4 = ε, as
required. 2
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Input: • A basis γ1, γ2, . . . , γn for a separable matrix algebra A ⊆ Fm×m

over an infinite field F, and a set of generators ζ1, ζ2, . . . , ζs for
A over F

• A real number ε such that 0 < ε < 1

Output: Either
• Elements α, β, and γ of A and vectors u and v in Fm×1 such

that α and β form a complemented centering pair for A comple-
mented by the vectors u and v, and such that the centre of A is
F[γ]

or
• failure (with probability at most ε)

Constants Used: A finite subset S of F with size at least d10m3/εe

1. Apply the algorithm shown in Figure 3, choosing elements of A by form-
ing S-linear combinations of γ1, γ2, . . . , γn, to generate α, β, γ, u, v, and
an estimate e for the dimension of the centre of A, failing to do so with
probability at most 4ε/5.

2. Apply the algorithm shown in Figure 2 on inputs α and γ1, γ2, . . . , γn
(again, using the above finite set S) to try to certify α as self-centralizing
in A, failing with probability at most nε/(10m3) ≤ ε/(10m).

3. Return α, β, γ, u and v as output if all five of the following conditions are
satisfied; return failure otherwise.

(a) The executions of algorithms in steps 1 and 2 completed successfully
(that is, no application of a Las Vegas algorithm failed).

(b) The execution of the algorithm in step 2 generated the answer Yes.

(c) The minimal polynomial of β is separable over F and has the same
degree as the minimal polynomial of α over F.

(d) The minimal polynomial of γ is separable with degree e over F.

(e) ζiγ = γζi for 1 ≤ i ≤ s.

Figure 4: A Las Vegas Algorithm for a Centering Pair and the Centre

4.4. A Las Vegas Algorithm for a Complemented Centering Pair and Gen-
erator for the Centre

A Las Vegas algorithm to compute these values is shown in Figure 4. In this case,
both a basis and a set of generators for the algebra A are specified as input. Of
course, one could use the elements of the basis as the generators and execute
the algorithm using the basis alone as input. However, the complexity of the
algorithm improves substantially if a smaller set of generators is supplied. The
analysis of the algorithm yields the following result.

Theorem 4.6: Let A ⊆ Fm×m be a separable algebra with dimension n over an
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infinite field F. Let ε be a real number such that 0 < ε < 1, and suppose that S
is a finite subset of F with size at least 10m3/ε. Then a complemented centering
pair for A, complementing vectors, and a single generator γ of the centre of A

can be computed from a basis and a set of s generators for A, by a Las Vegas
algorithm that samples the algebra A by computing S-linear combinations of the
given basis, and that either returns the desired values or with probability at most ε
reports failure.

This can be performed using O
((
nm2 + n2

m2MM(m)
)

min(n,m)
)

operations,

or O((nm2 +n2m) min(n,m)) operations using standard arithmetic, in the worst
case. Furthermore, O(Nnm2 + (N n2

m2 + s+ logm)MM(m)) operations are used,
or O(N(nm2+n2m)+sm3) operations using standard arithmetic, with probability
at least 1− ε.

Proof: Consider the above algorithm, and suppose that all five of the conditions
listed in step 3 are satisfied, so that values α, β, and γ of A and vectors u and
v are returned.

Since conditions 3(a) and 3(b) are satisfied, it follows by Theorem 3.13 that
α is self-centralizing in A.

Since condition 3(c) is satisfied, β is self-centralizing in A as well, so that the
centre of A is contained in F[α] ∩ F[β].

Condition 3(d) implies that F[α]∩F[β] ⊆ F[γ], so that F[γ] includes the centre
of the algebra.

Finally, condition 3(e) confirms that γ is in the centre, so F[γ] = Centre(A).
Since the vectors u and v were used with α and β to compute γ in step 1, this
confirms that α and β form a complemented centering pair complemented by
the vectors u and v. Thus, either the algorithm reports failure or its outputs are
correct.

Since condition 3(e) can be checked deterministically using O(s) matrix mul-
tiplications, the error probability and complexity results stated in the claim are
consequences of Lemma 2.4 and Theorems 3.13 and 4.5, which can be used to
bound the failure probability and complexity of each of the remaining steps —
assuming that the minimal polynomials of β and γ are computed and certified
by a computation of the Frobenius forms of these matrices, and assuming m ≥ 2
(since the computation is trivial, otherwise). 2

5. Wedderburn Decomposition of Separable Algebras

Suppose once again that A ⊆ Fm×m is a separable algebra over F, with simple
components A1,A2, . . . ,Ak, and that γ is a generator for the centre of A. Then
γ is a “splitting element” for the algebra A, as defined by Eberly [1991], and
the simple components of A can be generated from γ in polynomial time if a
factorization of the minimal polynomial of γ in F[x] is available. Indeed, the
algorithm for the Wedderburn decomposition of semi-simple algebras over large
perfect fields in Section 3 of Eberly [1991] can also be applied to separable
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algebras over arbitrary large fields, since the centre of the algebra is a direct
sum of simple extensions of F in this case. Using this process one can obtain
bases for each of the simple components.

A rather different data structure to identify the simple components of a matrix
algebra is discussed by Eberly and Giesbrecht [2000]. In particular a semi-simple
transition matrix is considered, that is, a matrix X ∈ Fm×m whose columns in-
clude the elements of bases for A1Fm×1,A2Fm×1, . . . ,AkFm×1, and a semi-simple
transition, which includes this matrix and the dimensions of the above subspaces
A1Fm×1,A2Fm×1, . . . ,AkFm×1 of Fm×1 (see Definition 3.1 of Eberly and Gies-
brecht [2000]). This can be computed quite efficiently if γ and a factorization of
the minimal polynomial of γ are available.

Theorem 5.1: Suppose ε is a real number such that 0 < ε < 1 and that F is a
field including at least 2m2/ε distinct elements. Given a generator γ for the centre
of a separable algebra A ⊆ Fm×m and a factorization of the minimal polynomial
of γ in F[x], a semi-simple transition matrix for A can be computed using a Las
Vegas algorithm that fails with probability less than ε, using O(MM(m) logm)
operations, or O(m3) operations using standard arithmetic.

Proof: By Lemma 2.4, a Frobenius decomposition for γ can be generated at the
above cost using a Las Vegas algorithm that fails with probability at most ε/2.
The characteristic polynomial of γ can be computed from the Frobenius form of
this matrix using O(mM(m)) operations, and since the factorization of the min-
imal polynomial of γ is available, a factorization of the characteristic polynomial
of γ can be computed using a divide and conquer strategy with O(mM(m)) ⊆
O(MM(m)) operations as well.

Now, since γ generates the centre of A, γ = γ1 + γ2 + · · · + γk where γi ∈ Ai

for 1 ≤ i ≤ k and where the minimal polynomials of γ1, γ2, . . . , γk are each irre-
ducible in F[x] and are pairwise relatively prime. Thus, these are the irreducible
factors of the minimal polynomials of γ, and γ is similar to a matrix

γ̂ =


γ̂1 0

γ̂2

. . .

0 γ̂k

 ,
where γ̂i is a block diagonal matrix whose diagonal blocks are copies of the
companion matrix of the minimal polynomial of γi. The order of the matrix γ̂i
can be deduced from the factorization of the characteristic polynomial of γ.

A Frobenius decomposition of γ̂ can now be computed by a Las Vegas algo-
rithm failing with probability ε/2. At this point, matrices X1 and X2 are known
such that X1γX

−1
1 and X2γ̂X

−1
2 are both equal to the common Frobenius form

of γ and γ̂, and it is easily confirmed that X−1
2 X1 is a semi-simple transition ma-

trix for A, and that the orders of the matrices γ̂1, γ̂2, . . . , γ̂k are the dimensions
of A1Fm×1,A2Fm×1, . . . ,AkFm×1 as needed. 2
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Of course, the factorization of the minimal polynomial of γ is required above,
and the cost to factor this polynomial may dominate the cost of the other oper-
ations. However, a self-centralizing element may help to reduce the cost of this
factorization as well.

Suppose in particular that gi is the minimal polynomial of γi for 1 ≤ i ≤ k,
for γ1, γ2, . . . γk as above, so that the minimal polynomial g of γ is the product
of g1, g2, . . . , gk. For i, j ≥ 1, let

ĝi,j =
∏

1≤h≤k
dhth=i
dhsh=j

gh. (28)

Clearly,

g =
∏
i,j≥1

ĝi,j.

Theorem 5.2: Let ε be a real number such that 0 < ε < 1 and suppose F is a
field including at least 4m2/ε distinct elements. If A, α, γ, and g are as above,
then the above factors ĝi,j of g of positive degree can be computed by a Las Vegas
algorithm that fails with probability at most ε, using (MM(m) logm) operations
over F, or using O(m3) operations using standard arithmetic.

Proof: Let X be a power transition matrix for the self-centralizing element α.
Then, as noted in Section 3.1,

X−1γX =


γ(1) 0

γ(2)

. . .

0 γ(`)


for matrices γ(1), γ(2), . . . , γ(`) — for, otherwise, the idempotents τ1, τ2, . . . , τ`
considered in Theorem 3.4 would not be central in A. Furthermore, γ(j) has
minimal polynomial ∏

1≤h≤k
dhsh=j

gh,

order jδj (where δj is the degree of the jth power divisor of γ), and characteristic
polynomial ∏

1≤h≤k
dhsh=j

gjdhthh =
∏
i≥1

ĝ iji,j.

Since the polynomials ĝi,j are separable and pairwise relatively prime, it is clear
that the power divisors of γ(j) with positive degree are exactly the polynomials
ĝi,j with positive degree.
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These polynomials can therefore be obtained by computing a power decompo-
sition for α, applying the power transition matrix X to γ to generate the matrices
γ(1), γ(2), . . . , γ(`), and then computing the power decompositions of each of these
matrices. Since the sum of the orders of the matrices γ(1), γ(2), . . . , γ(`) is m and
F contains at least 4m2/ε elements, the complexity and failure bounds in the
claim now follow from Theorem 2.5. 2
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