Agent Communication, Social Commitment Theory and Polycategories

Research assignment for CPSC 601.68, Fall 2008

Brett Giles
University of Calgary
2500 University Drive NW
Calgary, Alberta, Canada
brett.giles@ucalgary.ca

ABSTRACT
This paper consists of two parts. The first part discusses the formal specification of the CASA library. CASA is a java library implementing agent societies and communication under the umbrella of social commitments. The second part explores the possibility of describing social commitment based agent communication via polycategories.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—Formal Methods; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs—Logics of programs; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical logic—Lambda Calculus and related systems; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Intelligent agents

General Terms
Theory

Keywords
Polycategory theory, Social commitments, Agent communication

1. INTRODUCTION

Formal specification assists implementors of a library to ensure the library is behaving as desired. Additionally, specifications give the library user an alternate documentation of goals and specifics of the library. Object-Z, (Smith 2000; Duke and Rose 2000; Smith 2008), based on the Z specification language (Spivey 1992), is widely used for formal specifications, including specifications for CORBA in (Kreuz 1998) and XSLT in (Yang et al. 2003). Additionally, Object-Z enjoys a formal semantics, (Smith 1995), and a formal mapping between Object-Z and UML (Booch et al. 1999; Kim and Carrington 2000).

The first part of this paper will start a continuation of the work of Flores and Kremer, as originally published in (Flores and Kremer 2001; Flores 2002), by expanding the Object-Z specification presented in those works. The goal of this continuation is to work towards a presentation of the details of the implementation of this specification as done in the java library CASA(Kremer 2008a).

Social commitment theory is an alternative to the FIPA semantics (see (Foundation for Intelligent Physical Agents 2002a)) for agent communication. While social commitments contain all the FIPA message types (e.g., request, inform, etc.), it differs intrinsically in the requirements for sending a message and the requirements for replying. In FIPA, there exist specific pre-conditions for an agent to be allowed to send a message, which depend heavily on the agent being implemented in a BDI model. For details of BDI, see (Foundation for Intelligent Physical Agents 2002b,a) or (Kremer 2008b). These preconditions lead to issues such as the agents needing to maintain an omniscient viewpoint of all agents and requiring an agent handle predicates with numerous repetitions of “I believe you believe I believe . . . ”.

The second part of the paper will explore using polycategories to model agent communication.

Standard computing has enjoyed a categorical description since (Lambek 1969) showed a correspondence between types, propositions in logic and Cartesian closed categories (sometimes referred to as the Curry-Howard-Lambek correspondence). Recent work, in (Cockett and Pastro 2007; Pastro 2004), gives a polycategorical description of concurrent programming semantics. The description provides a two-tier logic — a basic one for message creation corresponding

1 In this paper, we do not consider the added complications of misbehaving agents, which may violate commitments.
Figure 2: Acts for CASA

to classical computation and a second logic on top of that corresponding to message passing. As a prime component of agents is the ability to communicate via messages, this intrigued the author.

2. SOCIAL COMMITMENTS

Object-Z was used in (Flores and Kremer 2001; Flores 2002) to formally describe both the communications by agents and the social commitment rules used to create an operational society. In this section, the paper will first present an updated version of the specifications of the primary illocutionary points, then describe the current social commitment rules in CASA. It will conclude with a definition of an agent conversation, to be used below in section 3.

2.1 CASA message and action ontology

Messages in CASA (Kremer 2008a) contain both a performative, such as inform, request or reply and an act which is the action requested or referred to by the performative. Performatives are illocutionary points in speech-act theory.

In the formal definition of the CASA library, the social commitment rules depend on the message performative and the act. This may be considered the type of the message and as such is describable using the class feature in Object-Z. Since the original papers, Drs. Kremer and Flores have made a number of updates to the performatives modelled in CASA. The current performatives ontology in CASA is shown in diagram 2.1. A subset of the action ontology is shown in 2. Note that all performatives are actions, but they are not included in 2 in this paper as the diagrams would be somewhat unwieldy. Additionally, because of the separation of the diagrams, there are some specific crossovers not shown directly on the figures. E.g., Notify is both a Perform and Inform. Discharge is both a Destroy and a Request and the performatives RequestWhenever and Subscribe are both Requests and RequestPresents.

2.2 Illocutionary Points

In (Flores and Kremer 2001), four main illocutionary points were defined: Propose, Accept, Reject and Counter. A fifth, Inform, is assumed in the paper.

In this section, we define the points Inform, Petition, Request, Propose, Reply, NegativeReply, Agree, Refuse, Accept, Reject and Counter. Note that with the exception of Counter which is not defined in diagram 2.1, these names are drawn either directly from the current ontology of CASA or are obvious contractions of a name in the ontology.

Inform inherits from ConversationalToken, which is the basis of all illocutionary points (labelled as Performative in 2.1). ConversationToken inherits from Data, which is an abstract class that allows for any type of data to be carried in the conversation.

Inform

ConversationalToken

informing : P ↓ Data

Petition is the common basis of illocutionary points that ask another agent to do something, even just agreeing to the sending agent doing something. Petition consists of a reply-by time and an act that is being requested. Note that the class Operation applies to a set of SocialCommitments and typically will add or delete commitments.

Petition

Inform

reply : Interval
act : P ↓ Operation
act = informing

From Petition, there are two direct sub-classes, Propose and Request. The difference between the two is that Propose is used to offer a service to another agent and Request is used to ask an agent to perform a service.

Propose

Petition

proposing : P ↓ Operation
proposing = act

Request

Petition

requesting : P ↓ Operation
requesting = act

In response to messages, we can have either a Reply, which can be an AffirmativeReply or NegativeReply. Reply inherits from Inform.

Reply

Inform

replying : P ↓ Operation
replying = informing

AffirmativeReply

Reply
Figure 1: Message performatives for CASA

NegativeReply

The class *NegativeReply* has two “fail-safe” kinds of sub-types, *NotUnderstood* and *TimeOut*. These two may be used in reply to any kind of *Request* or *Propose* (and their sub-types).

NotUnderstood

NegativeReply

- *didNotUnderstand*: \(P_1 \downarrow \text{Operation} *\)
- *didNotUnderstand* = *replying*

TimeOut

NegativeReply

- *exceededTimeAllowed*: \(P_1 \downarrow \text{Operation} *\)
- *exceededTimeAllowed* = *replying*

The non fail-safe responses to a *Propose* may be one of *Accept* or *Reject*.

Accept

AffirmativeReply

- *accepting*: \(P_1 \downarrow \text{Operation} *\)
- *accepting* = *replying*

Reject

NegativeReply

- *rejecting*: \(P_1 \downarrow \text{Operation} *\)
- *rejecting* = *replying*

A non fail-safe response to a *Request* will be either an *AffirmativeReply* using *Agree* or a *NegativeReply* using *Refuse*.

Agree

AffirmativeReply

- *agreeing*: \(P_1 \downarrow \text{Operation} *\)
- *agreeing* = *replying*

Refuse

NegativeReply

- *refusing*: \(P_1 \downarrow \text{Operation} *\)
- *refusing* = *replying*

Finally, an agent may respond negatively to a *Request* or *Propose* and then give their own *Propose* via a *Counter*.
2.3 Social commitment operators

In (Flores and Kremer 2001), the authors created a set of four policies to create commitments for proposals. This low number of policies was obviously a conscious choice made to allow the reader to see the essence of social commitment theory and not get bogged down in the details. These policies apply to messages in a hierarchy of illocutionary points. In the current CASA implementation, there are a total of ten policies used when computing the commitments incurred or fulfilled by an agent while communicating. This subsection will present an expository description of these ten policies currently in use in the current implementation.

The original four classes that implemented the creation of social commitment operators were:

- **PFP1**: obligates the receiver of a proposal to reply with Accept or Reject.
- **PFP2**: fulfills the receiver’s obligation to reply once they have replied.
- **PFP3**: add or remove commitments based on messages sent and received.
- **PFP4**: add a commitment to propose the discharge of an obligation.

2.3.1 Description of current CASA policies

In the current CASA library, some of the policies depend upon the act of the messages. See Figure 2 for a relevant subset of the current acts as defined in the ontology of CASA. By design, a specific message may have multiple policies that apply. This is effected by the hierarchy of messages. An example of this is given below in sub-section 2.3.2. An English description of each policy follows:

- **CP1**: Applies to any message, fulfills any obligation the sender may have had to send this message.
- **CP2**: Applies to an Agree in reply to a Request a Discharge of an action. Causes the fulfillment of the sender’s commitment to Request (or Petition) to Discharge the action, the sender’s commitment to perform the action and the sender’s commitment to Reply to the original Request for the action.
- **CP3**: Applies to an Agree in reply to a Request something. Adds a commitment on the sender to perform the something and a commitment to Propose the discharge of the perform of the something, cf. PFP4 and PFP3 above.
- **CP4**: Applies to an Agree in reply to a Propose a Discharge of an action. Also see CP2 above. Causes the fulfillment of the receivers commitment to Propose (also a

2.3.2 Example application of policies to a message

Each of these policies has a specific type of message that it applies to. Note, however, that a specific message will likely have multiple policies apply to it. As an example, suppose Alice sends a Request to perform action a to Bob. From figure 2.1, we can see that a Request is a Petition which is a Inform which is a Performative (or ConversationalToken in the Object-Z description).

Because this is a message, CP1 will apply, fulfilling any commitment Alice had to actually send the request. Because the message is an Inform, of sub-type Request and the act is not Discharge, CP8 will apply and a commitment for Bob to Consider the request will be added. Finally, as this is a Petition, CP9 will apply and Bob will have a commitment to Reply to Alice, dependant upon the results of the Consider.

2.4 Agent conversation

Social commitment theory allows us to define an agent conversation. A conversation is the series of messages exchanged between two agents, starting with an initial message and terminating when all social commitments added through policies applied to messages in the conversation are fulfilled, cancelled or expired.

2CASA actually adds the proposal to discharge as a commitment that is dependent on the perform commitment.

3Note this is a dependent commitment, which depends on the receiver considering the act. This consider commitment will be generated by CP8.

4This is also dependent on the receiver’s consider commitment, which will have been generated by CP8.
Table 1: Inform sub-types and Reply required

<table>
<thead>
<tr>
<th>Inform sub-type</th>
<th>MessageAct</th>
<th>Action committed to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>-</td>
<td>Release</td>
</tr>
<tr>
<td>Notify</td>
<td>-</td>
<td>Accept</td>
</tr>
<tr>
<td>Propose</td>
<td>Discharge</td>
<td>Release</td>
</tr>
<tr>
<td>Propose</td>
<td>-</td>
<td>Consider</td>
</tr>
<tr>
<td>Proxy</td>
<td>-</td>
<td>Assemble</td>
</tr>
<tr>
<td>Reply</td>
<td>Discharge</td>
<td>Conclude</td>
</tr>
<tr>
<td>Reply</td>
<td>-</td>
<td>Verify</td>
</tr>
<tr>
<td>Request</td>
<td>Discharge</td>
<td>Release</td>
</tr>
<tr>
<td>Request</td>
<td>-</td>
<td>Consider</td>
</tr>
<tr>
<td>Petition</td>
<td>-</td>
<td>Evaluate</td>
</tr>
<tr>
<td>Inform</td>
<td>-</td>
<td>Accept</td>
</tr>
</tbody>
</table>

3. AGENT COMMUNICATION AS A POLY-CATEGORY

As noted in (Cockett and Pastro 2007), a polycategory provides a categorical model of the semantics of message passing. The intuitional basis for this is that processes (which are represented as the polymaps of the polycategory) may send and receive messages on multiple channels. These channels may be thought of as types and form the objects of the polycategory. Typical descriptions of this type of communication assume the messages (objects) are very low-level, for example, booleans or integers. More complex messages can be built up using type theory for polycategories as noted in (Cockett 2006).

3.1 Category theory preliminaries

This section will give a brief overview of the definitions and terminology made use of in this paper. For a more thorough introduction, please see (Barr and Wells 1995).

A category, C, is defined as an entity having two collections of interest, its objects, O_C, and its arrows, A_C. These collections must obey the following rules:

- **Source, Target** There are total mappings $s, t : A_C \rightarrow O_C$. These map an arrow to its source and target.
- **Identities** For every $o \in O_C$, there is a map 1_o whose source and target is o.
- **Composition** For every pair of arrows $f, g \in A_C$ where the target of f is the source of g, there is another arrow, written as fh, whose source is the source of f and target is the target of g.
- **Associativity** The composition of arrows is an associative operation.

Examples of categories include: Set where the objects are sets and the arrows are functions between them; Grp having groups as objects and the group homomorphisms between them as the arrows; A group may be considered a single object category with the elements of the group being the arrows of the category.

Categories are used to describe various mathematical objects, such as groups, rings, vector spaces, topological spaces and so forth. The typical algebraic structure of these items is described categorically in a variety of ways, including categorical descriptions of products, sums, tensor products, sub-objects and others.

In the field of computing science, computable functions are of particular interest. In (Lambek 1969), it was shown that there is a three-way correspondence between these (as typed lambda calculus, intuitionistic logic and Cartesian closed categories). The latter type of category essentially means that products of objects and the functions between objects exist as other objects in the category. A more precise definition may be found in (Barr and Wells 1995) and others.

This correspondence provides a motivation for finding other categorical descriptions for alternate computing paradigms. Examples of this can be seen in the work (Cockett and Pastro 2007). The (Cockett and Pastro 2007) paper, and similar works, provide the motivation for our examination of agent communication and possible polycategorical interpretations.

3.2 Poly Categories

Ordinary categories provide a mathematical construction describing single maps between single objects. A polycategory provides a way to give a mathematical model of maps that connect multiple source and target objects at the same time.

From (Pastro 2004), a polycategory P is given by

- **Objects** $X_1, \ldots , Y_i \in P_o$
- **Polymaps** which are given as:
 \[
 \forall m, n \in \mathbb{N}, \exists \text{ a set } P(X_1, \ldots , X_m; Y_1, \ldots , Y_n) \]
 which is the set of all polymaps from the Xs to the Ys.
3.3 Circuit diagrams

Circuit diagrams are an accepted way of visualizing and representing polycategories. See figure 5 and 6 for a representation of a polymap and the possible combinations for cut respectively.

Note that the planarity condition on composition leads to 4 possible cases where composition may occur. In the above, the identities are true identity maps and the composition restriction is referred to as the planarity condition.

Note that the planarity condition on composition leads to 4 possible cases where composition may occur. In the above, the identities are true identity maps and the composition restriction is referred to as the planarity condition.

3.3 Circuit diagrams

Circuit diagrams are an accepted way of visualizing and representing polycategories. See figure 5 and 6 for a representation of a polymap and the possible combinations for cut respectively.

Notice this is the opposite from naïve drawings explaining categories where the maps are typically drawn as arrows or connectors and the objects as boxes or circles. At the same time, note that this graphical representation seems, at the very least, relatable to agent communication.

Considering the circuit diagrams as a representation of agent communication, the first correspondence is that boxes would represent agents. The obvious initial choice for the connections would be messages. In the FIPA world, this is likely what we would have to stay with as we attempted to describe this in a polycategorical way. However, this paper’s premise is that the proper level of abstraction for description via polycategories is conversation, as defined above in subsection 2.4. The reasons for this choice will be discussed below.

3.4 Description of agent communication as a polycategory

The goal of this section is to provide a viable polycategorical description of agent communication. It will first discuss the issues associated with a naïve mapping consisting of messages as objects and agents as polymaps, followed by a presentation using conversations as objects and retaining agents as polymaps.

3.4.1 Problems with interpreting messages as objects

The initial appeal of this interpretation is that it seems to more closely match the standard polycategorical interpretation of message passing processes (see, e.g., (Cockett and Pastro 2007)). In fact, the basics of the interpretation (representation as circuits, Identities) are straightforward. For composition, use the time of the message to determine planarity and then cut is fully explicable.

The problem lies in that agents rarely (never when properly following social commitment theory as discussed in section 2) exchange a single message. As seen by the examples in figures 3 and 4, exchanges from start to finish consist of multiple messages. Consider the example of the Inform conversation where ALICE sends the initial Inform to BOB, BOB then replies with an accept. This would appear like figure 7 in the polycategory and would not allow a sensible composition to be made.

Contrast this with the graphical representation of the same Inform conversation when the polycategorical objects are conversations, as shown in figure 8.

3.4.2 Interpretation with conversations as objects

This paper will refer to this potential polycategory as AG. First, AG_o will be the class of all conversations. Second, the polymaps will be agents. Conversations that are initiated by agents will be viewed as outputs of the agent polymap while conversations that are not initiated by an agent will be viewed as inputs to the agent polymap.
Recalling that symmetry essentially states that we can permute the input and output conversations of a polymap, the immediate conclusion is that $ΔG$ would not be a symmetric polycategory. To see this, consider the agent BOB who Accepts an Inform message regarding some external state t. Further suppose that if BOB has received this Inform message, he will respond to a Request about t with an Accept, but if he has not received the Inform, he will respond with a Refuse. Hence, the agent BOB (the polymap) will exhibit different behaviour depending on whether he receives the Inform before or after the Request.

As the above argument is obviously not mathematically rigorous, this is not a proof that agent conversation is not symmetric. Our intuition is that symmetry would not make sense in this setting.

3.5 Conclusions regarding the polycategorical interpretation

In practice, the conversations that agents participate in are not fixed. One might argue that a prime requirement of being an agent is that it be able to interact in a variety of conversations, occurring in varying orders and at varying times. This would seem to imply that a polycategorical description of an agent actually applies only to the particular instance of execution with a fixed set of input and output conversations. However, this seems to be not significantly different from the situation of representing programs and types via closed cartesian categories, (Lambek 1969).

A further question, however, is: What understanding does this give us of agent communication and could it be useful in the design of such systems? At this point, the author is unsure whether further investigation would be a fruitful line of research or not.

4. CONCLUSIONS

4.1 What has been accomplished?

In (Giles 2008), the author proposed three things:

1. Update the Object-Z description of the CASA library.
2. Enhance the specification of the library in some chosen area.
3. Explore whether there might be a polycategorical description of agent communication.

Work on proposal point 2 was not attempted, primarily due to time constraints. Work on proposal point 1 led to the exposition in section 2 where the author further described the current implementation of the social commitment policies in use in CASA, partially using Object-Z and partially via descriptive text and examples. The author views this as interesting work in its own right and a necessary precursor to fully satisfying proposal point 1. The work in section 3 has made significant headway on proposal point 3. While the work is somewhat expository in nature, I feel the decision to interpret conversations, rather than messages, as the objects of the polycategory as a key insight.

4.2 Further potential work

The first obvious piece is to further satisfy proposal point 1, that is, to revise and update the specifications of the social commitments protocol. The addition of dependent

<table>
<thead>
<tr>
<th>Empties</th>
<th>Cut is between ... (Refer to fig. 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Δ_2$, $Γ_1$</td>
<td>The last conversation started by a; which is the first conversation to b.</td>
</tr>
<tr>
<td>$Γ_2$, $Δ_1$</td>
<td>The first conversation started by a; which is the last conversation to b.</td>
</tr>
<tr>
<td>$Δ_1$, $Δ_2$</td>
<td>The only conversation started by a; which is a conversation to b.</td>
</tr>
<tr>
<td>$Γ_1$, $Γ_2$</td>
<td>Some conversation started by a; which is the only conversation to b.</td>
</tr>
</tbody>
</table>

Table 2: Conversation cut / compositions

![Figure 9: Alice composing with Bob](image)

Identities.

Identities in polycategories are simply an identity map on a specific object. In agent communication, this would correspond to each conversation having a "pass-through" agent. Such agents would simply copy the messages of a conversation as it receives them.

Planarity condition and composition.

In order to define composition, the planarity condition for agent conversations must be defined. This paper contends that planarity for agent conversations is a timing constraint. Consider two conversations from ALICE to BOB (ab) and CAROL (ac) respectively. A conversation occurs during an interval of time — from the first message sent by ALICE to the last message of the conversation. If the time interval of ab overlaps the time interval of ac, the object (conversation) connecting ALICE with BOB will cross the object (conversation) connecting ALICE with CAROL and the resulting graph will not be planar.

For the four possible composition cases in a polycategory, this gives us table 2.

As an example, consider the agents ALICE and BOB, where ALICE is the receiver in the set of conversations $Γ$ and starts only one conversation x, which is with BOB. BOB receives the set $Γ_1$ of conversations from other agents before participating in x and then receives the set of conversations $Γ_2$ after participating in x. During his lifetime, BOB also starts the set of conversations $Δ$ with other agents. Composition then tells us there is an agent, $ΔBob$, which is the recipient of the set of conversations $Γ_1 ∪ Γ_2$ and starts the set $Δ$ of outgoing conversations. Obviously, this agent can be physically implemented as a code combination of the two separate agents. This situation is shown in figure 9.

Given the physical implementation of composition (combining the agents), associativity and exchange follow immediately.

Symmetry.
social commitments appears to be an area that would be especially interesting to describe via Object-Z.

Second, the polycategorical representation of agent communication could be explored more rigorously. It would be interesting to continue the work of section 3 further, subjecting it to more mathematical rigor and understanding how the semantics of message passing would relate to this interpretation, if at all. Another interesting avenue for exploration would be how to satisfy the planarity condition in a way that retains a meaningful composition and makes the interpretation a symmetric polycategory.

5. ACKNOWLEDGMENTS

The author gratefully acknowledges the use of the wizard type checker (Johnston 1996a,b), which was used to verify all Object-Z appearing in this paper.

The author also gratefully acknowledges informal discussions regarding message structure and polycategories with Robin Cockett (Cockett 2008).

References

