
Multiprocessor Synchronization and Concurrent

Data Structures

Maurice Herlihy Nir Shavit

September 4, 2005

Chapter 3

Mutual Exclusion

This chapter covers a number of “classical” mutual exclusion algorithms
that work by reading and writing shared memory. Although these algo-
rithms are not used in practice, we study them because they provide an
ideal introduction to the kinds of correctness issues that arise in every area
of synchronization. These algorithms, simple as they are, display subtle
properties that should be understood before we are ready to approach the
design of truly practical techniques.

3.1 Time

Reasoning about concurrent computation is mostly reasoning about time.
Sometimes we want things to happen at the same time, and sometimes
we want them to happen at different times. We will need to reason about
complicated conditions involving how multiple time intervals can overlap, or,
sometimes, how they can’t. We need a simple but unambiguous language to
talk about events and durations in time. Everyday English is too ambiguous
and imprecise. Instead, we will introduce a simple vocabulary and notation
to describe how concurrent threads behave in time.

In 1689, Isaac Newton stated “absolute, true and mathematical time, of
itself and from its own nature, flows equably without relation to anything
external.” We endorse his notion of time, if not his prose style. Threads
share a common time (though not necessarily a common clock). A thread
is a state machine, and its state transitions are called events. Events are

0This chapter is part of the Manuscript Multiprocessor Synchronization and
Concurrent Data Structures by Maurice Herlihy and Nir Shavit copyright c© 2005,
all rights reserved.

33

34 CHAPTER 3. MUTUAL EXCLUSION

1 class Counter {
2 private int value;
3 public Counter(int c) { // constructor
4 value = c;
5 }
6 // increment and return prior value
7 public int getAndIncrement() {
8 int temp = value; // start of danger zone
9 value = temp + 1; // end of danger zone

10 return temp;
11 }
12 }

Figure 3.1: The Counter Class

instantaneous: they occur at a single instant of time. Events are never
simultaneous: distinct events occur at distinct times. A thread A may
produce a sequence of events a0, a1, . . . Threads typically contain loops, so
a single program statement can produce many events. We denote the j-th
occurrence of an event ai by aj

i . One event a precedes another event b,
written a → b, if a occurs at an earlier time. The precedence relation “→”
is a total order on events.

Let a0 and a1 be events such that a0 → a1. An interval (a0, a1) is the
duration between a0 and a1. Interval IA = (a0, a1) precedes IB = (b0, b1),
written IA → IB , if a1 → b0 (that is, if the final event of IA precedes the
starting event of IB). More succinctly, the → relation is a partial order on
intervals. Intervals that are unrelated by → are said to be concurrent. By
analogy with events, we denote the j-th execution of interval IA by Ij

A.

3.2 Critical Sections

In an earlier chapter, we discussed the Counter class implementation shown
in Figure 3.1. We observed that this implementation is correct in a single-
thread system, but misbehaves when used by two or more threads. The
problem occurs if two threads both read the value field at the line marked
“start of danger zone”, and then both update that field at the line marked
“end of danger zone”.

We can avoid this problem if we transform these two lines into a critical

3.2. CRITICAL SECTIONS 35

1 public interface Lock {
2 public void lock(); // before entering critical section
3 public void unlock(); // before leaving critical section
4 }

Figure 3.2: The Lock Interface

section: a block of code that can be executed by only one thread at a time.
We call this property mutual exclusion. The standard way to approach
mutual exclusion is through a Lock object satisfying the interface shown in
Figure 3.2.

We call such a mechanism a lock. For brevity, we say a thread acquires
a lock when it executes a lock() method call, and releases the lock when
it executes an unlock() method call. Figure 3.3 shows how to use a Lock
field to add mutual exclusion to a shared counter implementation. Threads
using the lock() and unlock() methods must follow a specific format. A
thread is well-formed if

1. each critical section is associated with a unique Lock object,

2. the thread calls that object’s lock() method when it is trying to enter
the critical section, and

3. the thread calls the unlock() method when it leaves the critical sec-
tion.

In Java, these methods should be used in the following structured way.

1 l . lock ();
2 try {
3 ... // body
4 } finally {
5 l .unlock();
6 }

This idiom ensures that (1) the lock has been acquired before entering the
try block, and (2) the lock will be released no matter what exception is
thrown by any statement in the body.

We now formalize the properties a good Lock algorithm should satisfy.
Let CSj

A be the interval during which A executes the critical section for the
j-th time. Assume, for simplicity, that each thread acquires and releases the
lock infinitely often, with other work taking place in the meantime.

36 CHAPTER 3. MUTUAL EXCLUSION

1 public class SafeCounter {
2 private long value;
3 private Lock lock; // to protect critical section
4

5 public long getAndIncrement() {
6 lock . lock (); // enter critical section
7 long temp = value; // in critical section
8 value = temp + 1; // in critical section
9 lock .unlock(); // leave critical section

10 return temp;
11 }
12 }

Figure 3.3: Using a Lock Object

Mutual Exclusion Critical sections of different threads do not overlap.
For threads A and B, and integers j and k, either CS k

A → CS j
B or

CS j
B → CSk

A.

No Deadlock If some thread attempts to acquire the lock, then some
thread will acquire the lock. If thread A calls lock() but never ac-
quires the lock, then other threads be completing an infinite number
of critical sections.

No Lockout Every thread that attempts to acquire the lock eventually
succeeds. Every call to lock() eventually returns. This property is
sometimes called no starvation.

Note that the no-lockout property implies the no-deadlock property.
The mutual exclusion property is clearly essential. Without this prop-

erty, we cannot guarantee that a computation’s results are correct. In the
terminology of Chapter 1, mutual exclusion is a safety property. The no-
deadlock property is important. It implies that the system never “freezes.”
Individual threads may be stuck forever (called starvation), but some thread
makes progress. In the terminology of Chapter 1, no-deadlock is a liveness
property. Note that a program can still deadlock even if each of the locks it
uses satisfies the no-deadlock property. For example, consider threads A and
B that share locks �0 and �1. First, A acquires �0 and B acquires �1. Next,
A tries to acquire �1 and B tries to acquire �0. The threads will deadlock
because each one waits for the other to release its lock.

3.3. TWO-THREAD SOLUTIONS 37

The lockout-free property, while clearly desirable, is the least compelling
of the three. Later on, we will see “practical” mutual exclusion algorithms
that fail to be lockout-free. These algorithms are typically deployed in cir-
cumstances where starvation is a theoretical possibility, but is unlikely to
occur in practice. Nevertheless, the ability to reason about starvation is
essential for understanding whether it is a realistic threat.

The lockout-free property is also weak in the sense that makes no guar-
antees of how long a thread will wait before it enters the critical section.
Later on, we will look at algorithms that place bounds on how long a thread
can wait.

3.3 Two-Thread Solutions

We begin with two inadequate but interesting Lock algorithms.

3.3.1 The LockOne Class

Figure 3.4 shows the LockOne algorithm. Our two-thread lock algorithms
follow the following conventions: the threads have indexes 0 and 1, the
calling thread has index i, and the other j = 1 − i. Each thread has a
thread-local variable, called myIndex, that returns its index using a get()
method.

We use writeA(x = v) to denote the event in which A assigns value v
to field x, and readA(v == x) to denote the event in which A reads v from
field x. Sometimes we omit v when the value is unimportant. For example,
in Figure 3.4 the event writeA(flag[i] = true) is caused by the third line of
the lock() method.

Lemma 3.3.1 The LockOne algorithm satisfies mutual exclusion.

Proof: Suppose not. Then there exist integers j and k such that CSj
A �→

CSk
B and CSk

B �→ CSj
A. Consider each thread’s last execution of the lock()

method before entering its k-th (j-th) critical section.
Inspecting the code, we see that

writeA(flag[A] = true) → readA(flag[B] == false) → CSA (3.1)
writeB(flag[B] = true) → readB(flag[A] == false) → CSB (3.2)

readA(flag[B] == false) → writeB(flag[B] = true) (3.3)

Note that once flag[B] is set to true it remains true. It follows that
Equation 3.3 holds, since otherwise thread A could not have read flag[B]

38 CHAPTER 3. MUTUAL EXCLUSION

1 class LockOne implements Lock {
2 private boolean[] flag = new boolean[2];
3 // thread−local index, 0 or 1
4 private static ThreadLocal<Integer> myIndex;
5 public void lock() {
6 int i = myIndex.get();
7 int j = i−1;
8 flag [i] = true;
9 while (flag[j]) {} // wait

10 }
11 public void unlock() {
12 int i = myIndex.get();
13 flag [i] = false;
14 }
15 }

Figure 3.4: The LockOne Algorithm

as false. Equation 3.4 follows from Equations 3.1, 3.2, and 3.3, and because
of the transitivity of the precedence order.

writeA(flag[A] = true) → readA(flag[B] == false) → (3.4)
writeB(flag[B] = true) → readB(flag[A] == false)

It follows that writeA(flag[A] = true) → readB(flag[A] == false)
without an intervening write to the flag array, a contradiction.

The LockOne algorithm is inadequate because it deadlocks if thread ex-
ecutions are interleaved. If writeA(flag[A] = true) and writeB(flag[B] =
true) events occur before readA(flag[B]) and readB(flag[A]) events, then
both threads wait forever. Nevertheless, the LockOne class has an interest-
ing property: if one thread runs before the other, no deadlock occurs, and
all is well.

3.3.2 The LockTwo Class

Figure 3.5 shows an alternative lock algorithm, the LockTwo class.

Lemma 3.3.2 The LockTwo algorithm satisfies mutual exclusion.

3.3. TWO-THREAD SOLUTIONS 39

1 class LockTwo
2 implements Lock {
3 private int victim;
4 // thread−local index, 0 or 1
5 private static ThreadLocal<Integer> myIndex;
6 public void lock() {
7 int i = myIndex.get();
8 victim = i; // let the other go first
9 while (victim == i) {} // wait

10 }
11 public void unlock() {}
12 }

Figure 3.5: The LockTwo Algorithm

Proof: Suppose not. Then there exist integers j and k such that CSj
A �→

CSk
B and CSk

B �→ CSj
A. Consider as before each thread’s last execution of

the lock() method before entering its k-th (j-th) critical section.
Inspecting the code, we see that

writeA(victim = A) → readA(victim == B) → CSA (3.5)
writeB(victim = B) → readB(victim == A) → CSB (3.6)

Thread B must assign B to the victim field between events writeA(victim =
A) and readA(victim = B) (see Equation 3.5). Since this assignment is the
last, we have

writeA(victim = A) → writeB(victim = B) → readA(victim == B) (3.7)

Once the victim field is set to B, it does not change, so any subsequent
read will return B, contradicting Equation 3.6.

The LockTwo class is inadequate because it deadlocks if one thread runs
completely before the other. Nevertheless, the LockTwo class satisfies an
interesting property: if the threads run concurrently, the lock() method
succeeds. The LockOne and LockTwo classes complement one another: each
succeeds under conditions that cause the other to deadlock.

3.3.3 The Peterson Lock

We now combine the LockOne and LockTwo algorithms to construct a lockout-
free Lock algorithm, shown in Figure 3.6. This algorithm is arguably the

40 CHAPTER 3. MUTUAL EXCLUSION

1 class Peterson implements Lock {
2 // thread−local index, 0 or 1
3 private static ThreadLocal<Integer> myIndex;
4 private boolean[] flag = new boolean[2];
5 private int victim;
6 public void lock() {
7 int i = myIndex.get();
8 int j = 1−i;
9 flag [i] = true; // I’m interested

10 victim = i; // you go first
11 while (flag[j] && victim == i) {}; // wait
12 }
13 public void unlock() {
14 int i = myIndex.get();
15 flag [i] = false; // I’m not interested
16 }
17 }

Figure 3.6: The Peterson Lock Algorithm.

most succinct and elegant two-thread mutual exclusion algorithm. It is
known as “Peterson’s Algorithm”, after its inventor.

We now sketch a correctness proof.

Lemma 3.3.3 The Peterson lock algorithm satisfies mutual exclusion.

Proof: Suppose not. As before, consider the last executions of the lock()
method by threads A and B. Inspecting the code, we see that

writeA(flag[A] = true) → (3.8)
writeA(victim = A) → readA(flag[B]) → readA(victim) → CSA

writeB(flag[B] = true) → (3.9)
writeB(victim = B) → readB(flag[A]) → readB(victim) → CSB

Assume, without loss of generality, that A was the last thread to write
to the victim field.

writeB(victim = B) → writeA(victim = A) (3.10)

3.4. THE FILTER LOCK 41

Equation 3.10 implies that A read victim to be A in Equation 3.8. Since
A nevertheless entered its critical section, it must have read flag[B] to be
false, so we have:

writeA(victim = A) → readA(flag[B] == false) (3.11)

Equations 3.9, 3.10, and 3.11, and transitivity of → imply Equation 3.12.

writeB(flag[B] = true) → writeB(victim = B) →
writeA(victim = A) → readA(flag[B] == false) (3.12)

It follows that writeB(flag[B] = true) → readA(flag[B] == false). This
observation yields a contradiction because no other write to flag[B] was
performed before the critical section executions.

Lemma 3.3.4 The Peterson lock algorithm is lockout-free.

Proof: Suppose not. Suppose (without loss of generality) that A runs
forever in the lock() method. It must be executing the while statement,
waiting until either flag[B] becomes false or victim is set to B.

What is B doing while A fails to make progress? Perhaps B is repeatedly
entering and leaving its critical section. If so, however, then B will set
victim to B as soon as it reenters the critical section. Once victim is set
to B, it will not change, and A must eventually return from the lock()
method, a contradiction.

So it must be that B is also stuck in its call to the lock() method,
waiting until either flag[A] becomes false or victim is set to A. But victim
cannot be both A and B, a contradiction.

Corollary 3.3.5 The Peterson lock algorithm is deadlock-free.

3.4 The Filter Lock

We now consider two mutual exclusion protocols that work for N threads,
where N is greater than 2. The first solution, the Filter lock, is a direct
generalization of the Peterson lock to multiple threads. The second solu-
tion, the Bakery lock, is perhaps the simplest and best known N -thread
solution.

The Filter lock, shown in Figure 3.7, creates N − 1 “waiting rooms”,
called levels, that a thread must traverse before acquiring the lock. Levels
satisfy two important properties:

42 CHAPTER 3. MUTUAL EXCLUSION

• At least one thread trying to enter level � succeeds.

• If more than one thread is trying to enter level �, then at least one is
blocked.

The Peterson lock used a two-element boolean flag array to indicate
whether a thread is trying to enter the critical section. The Filter lock
generalizes this notion with an N -element integer level array, where the
value of level[i] indicates the highest level that thread i is interested in
entering. Each thread must pass through N − 1 levels of “exclusion” to
enter its critical section. Each level L has a distinct victim[L] field used to
“filter out” one thread, excluding it from the next level. This array is the
natural generalization of the victim field in the two-thread algorithm.

We say that a thread A is at level 0 if level[A] = 0. A is at at level j
for j > 0, if A last completed the waiting loop with level[A] ≥ j. (So some
thread at level j is also at level j − 1, and so on.)

Lemma 3.4.1 For j between 0 and n − 1, there are at most n − j threads
at level j.

Proof: By induction on j. The base case, where j = 0, is trivial.
For the induction step, the induction hypothesis implies that there are at

most n−j+1 threads at level j−1. To show that at least one thread cannot
progress to level j, we argue by contradiction: assume there are n − j + 1
threads at level j.

Let A be the last thread at level j to write to victim[j]. Because A is
last, for any other B at level j:

writeB(victim[j]) → writeA(victim[j]).

Inspecting the code, we see that B writes level[B] before it writes to
victim[j]:

writeB(level[B] = j) → writeB(victim[j]) → writeA(victim[j]).

Inspecting the code, we see that A reads level[B] after it writes to victim[j].

writeB(level[B] = j) → writeB(victim[j]) → writeA(victim[j]) → readA(level[B]).

Because B is at level j, every time A reads level[B], it observes a value
greater than or equal to j, implying that A could not have completed its
busy-waiting loop, a contradiction.

Entering the critical section is equivalent to entering level n − 1.

3.4. THE FILTER LOCK 43

1 class Filter implements Lock {
2 public static int N; // total number of threads
3 private static ThreadLocal<Integer> myIndex;
4 private int[] level = new int[N];
5 private int[] victim = new int[N−1];
6 public void lock() {
7 int i = myIndex.get();
8 for (int j = 1; j < N; j++) {
9 level [i] = j;

10 victim[j] = i;
11 // wait while conflicts exist
12 while (sameOrHigher(i,j) && victim[j] == i) {};
13 }
14 }
15 // Is there another thread at the same or higher level?
16 private boolean sameOrHigher(int i, int j) {
17 for (int k = 0; i < N; k++)
18 if (k != i && level[k] >= j)
19 return true;
20 return false;
21 }
22 public void unlock() {
23 int i = myIndex.get();
24 level [i] = 0;
25 }
26 }

Figure 3.7: Filter Lock Algorithm

Corollary 3.4.2 The Filter lock algorithm satisfies mutual exclusion.

Theorem 3.4.3 The Filter lock algorithm is lockout-free.

Proof: We argue by reverse induction on the levels. The base case, level
n − 1, is trivial, because it contains at most one thread. For the induction
hypothesis, assume that every thread that reaches level j + 1 or higher
eventually enters (and leaves) its critical section.

Suppose A is stuck at level j. Eventually, by the induction hypothesis,
there will be no threads at higher levels. Once A sets level[A] to j, then

44 CHAPTER 3. MUTUAL EXCLUSION

any thread at level j−1 that subsequently reads level[A] is prevented from
entering level j. Eventually, no more threads enter level j from lower levels.
All threads stuck at level j are in the busy-waiting loop, and the values of
the victim and level fields no longer change.

We now argue by induction on the number of threads stuck at level j.
For the base case, if A is the only thread at level j or higher, then clearly it
will enter level j + 1. For the induction hypothesis, assume that fewer than
k threads cannot be stuck at level j. Suppose threads A and B are stuck at
level j. A is stuck as long as it reads victim[j] = A, and B is stuck as long
as it reads victim[j] = B. The victim field is unchanging, and it cannot
be equal to both A and B, so one of the two threads will enter level j + 1,
reducing the number of stuck threads to k − 1, contradicting the induction
hypothesis.

Corollary 3.4.4 The Filter lock algorithm is deadlock-free.

3.5 Fairness

The lockout-free property guarantees that every thread that calls lock()will
eventually enter the critical section, but it makes no guarantees about how
long it will take. Ideally (and very informally) if A calls lock() before B,
then A should enter the critical section before B. Unfortunately, we cannot
determine which thread called lock() first using the tools at hand. Instead,
we split the lock() method into two sections of code (with corresponding
execution intervals):

1. A doorway section, which is wait-free, that is, its execution interval
DA consists of a bounded number of steps, and

2. a waiting section, whose execution interval WA may take an unbounded
number of steps.

As usual, we use superscripts to indicate repetition.
Here is how we define fairness.

Definition 3.5.1 A lock satisfies the r-bounded waiting property if, when-
ever, thread A finishes its doorway before thread B starts its doorway, then
A can be “overtaken” at most r times by B:

If Dj
A → Dk

B , then CSj
A → CSk+r

B .

for threads A and B and integers j and k.

The strong form of fairness known as first-come-first-served is equivalent to
0-bounded waiting.

3.6. LAMPORT’S BAKERY ALGORITHM 45

3.6 Lamport’s Bakery Algorithm

The Bakery lock algorithm appears in Figure 3.8. It maintains the first-
come-first-served property by using a distributed version of the “turn-o-
matic” machines in often found in bakeries: each thread takes a “number”
in the doorway, and then waits until no thread with an earlier number is
trying to enter the critical section.

In the Bakery lock, flag[A] is a Boolean indicating whether A wants
to enter the critical section. The label[A] field is a label, an integer that
indicates the thread’s relative order when entering the bakery.

Each time a thread acquires a lock, it generates a new label in two
steps. First, it reads all the other threads’ labels, in some arbitrary order.
Second, it generates a label greater by one than the maximal label it read.
We call the code from the raising of the flag to the writing of the new label
the doorway. It establishes that thread’s order with respect to the other
threads trying to acquire the lock. If two threads execute their doorways
concurrently, they may read the same maximal label and pick the same new
label. To break this symmetry, the algorithm uses a lexicographical ordering
<< on pairs of label and thread index: (label[i],i) << (label[j],j))
if and only if label[i] < label[j] or label[i] == label[j] and i < j.

In the waiting part of the bakery algorithm, a thread repeatedly rereads
the labels until it determines that no thread with a raised flag has a lexico-
graphically smaller label/index pair.

Since releasing a thread does not reset the label, it is easy to see that
each thread’s labels are strictly increasing. Interestingly, in both the door-
way and waiting sections, threads read the labels asynchronously and in an
arbitrary order, so that the set of labels seen prior to picking a new one may
have never existed in memory at the same time. Nevertheless, as we will
now prove, the algorithm works.

Lemma 3.6.1 The Bakery lock algorithm is deadlock-free.

Proof: Some waiting thread A has the unique least (label[A], A) pair,
and that thread will never wait for another thread.

Lemma 3.6.2 The Bakery lock algorithm is first-come-first-served.

Proof: If A’s doorway precedes B’s:

DA → DB

46 CHAPTER 3. MUTUAL EXCLUSION

1 class Bakery implements Lock {
2 boolean[] flag = new boolean[N];
3 Label[] label = new Label[N];
4 static ThreadLocal<Integer> myIndex;
5 public void lock() {
6 int i = myIndex.get();
7 flag [i] = true;
8 label[i] = max(label[0], ..., label[N−1]) + 1;
9 while (exists k != i such that

10 flag [k] && (label[k],k) << (label[i],i));
11 }
12 public void unlock() {
13 flag [myIndex.get()] = false;
14 }
15 }

Figure 3.8: The Bakery Lock

then A’s label is smaller since

writeA(label[A]) → readB(label[A]) → writeB(label[B]) → readB(flag[A]),

so B is locked out while flag[A] is true.
Note that deadlock freedom and first-come-first-served implies lockout

freedom.

Lemma 3.6.3 The Bakery lock algorithm satisfies mutual exclusion.

Proof: Suppose not. Let A and B be two threads concurrently in the
critical section. Let labelingA and labelingB be the last respective sequences
of acquiring new labels prior to entering the critical section. Suppose that
(label[A], A) << (label[B], B). When B successfully completed the test
in its waiting section, it must have read that flag[A] was false or that
(label[B], B) << (label[A], A). However, for a given thread, its index is
fixed and its label values are strictly increasing, so B must have seen that
flag[A] was false. It follows that

labelingB → readB(flag[A]) → writeA(flag[A]) → labelingA

which contradicts the assumption that (label[A], A) << (label[B], B).

3.7. BOUNDED TIMESTAMPS 47

1 public interface Timestamp {
2 boolean compare(Timestamp);
3 }
4 public class TimestampSystem {
5 public Timestamp[] scan();
6 public void label(Timestamp timestamp, int i);
7 }

Figure 3.9: A Timestamping System Interface.

3.7 Bounded Timestamps

Notice that the labels of the Bakery lock grow without bound, so in a long-
lived system we may have to worry about overflow. If a thread’s label field
silently rolls over from a large number to zero, then the first-come-first-
served property no longer holds.

Later on, we will see constructions where counters are used to order
threads, or even to produce unique identifiers. How important is the overflow
problem in the real world? It is difficult to generalize. Sometimes it matters
a great deal. The celebrated “Y2K” bug that captivated the media in the last
years of the twentieth century is an example of a genuine overflow problem,
even if the consequences were not as dire as predicted. On 18 January 2038,
the Unix time t data structure will overflow when the number of seconds
since 1 January 1970 exceeds 216. No one knows whether it will matter.
Sometimes, of course, counter overflow is a non-issue. Most applications
that use, say, a 64-bit counter are unlikely to last long enough for rollover
to occur. (Let the grandchildren worry!)

In the Bakery lock, labels act as timestamps: they establish an order
among the contending threads. Informally, we need to ensure that if one
thread takes a label after another, then the latter has the larger label. In-
specting the code for the Bakery lock, we see that a thread needs two abil-
ities:

• to read the other threads’ timestamps (scan), and

• to assign itself a later timestamp (label).

A Java interface to such a timestamping system appears in Figure 3.9.
Since our principal application for a bounded timestamping system is to

implement the doorway section of the Lock class, the timestamping system

48 CHAPTER 3. MUTUAL EXCLUSION

…
0 1 2 3

Figure 3.10: The precedence graph for an unbounded timestamping system.
The nodes represent the set of all natural numbers and the edges represent
the total order among them.

must be wait-free. It is possible to construct such a wait-free concurrent
timestamping system (see the chapter notes), but the construction is long
and rather technical. Instead, we focus on a simpler problem, interesting
in its own right: constructing a sequential timestamping system, in which
threads perform scan and label operations one completely after the other,
that is, as if each were performed using mutual exclusion. In other words,
consider only executions in which a thread can perform a scan of the other
threads’ labels, or a scan and then a write of a new label, where each such
sequence is a single atomic step. The principles underlying concurrent and
sequential timestamping system are essentially the same, but differ substan-
tially in detail.

Think of the range of possible timestamps as nodes of a directed graph
(called a precedence graph). An edge from node a to node b means that a
is a later timestamp than b. The timestamp order is irreflexive: there is no
edge from any node a to itself. The order is also antisymmetric: if there is
an edge from a to b, then there is no edge from b to a. Notice that we do
not require that the order be transitive: there can be an edge from a to b
and from b to c, without necessarily implying there is an edge from a to c.

Think of assigning a timestamp to a thread as placing that thread’s token
on that timestamp’s node. A thread performs a scan by locating the other
threads’ tokens, and it assigns itself a new timestamp by moving its own
token to a node a such that there is an edge from a to every other thread’s
node.

Pragmatically, we can implement such a system as an array of single-
writer multi-reader fields, where array element A represents the graph node
where thread A’s most recently placed its token. The scan() method takes
a “snapshot” of the array, and the label() method for thread i updates the
i-th array element.

3.7. BOUNDED TIMESTAMPS 49

T1 =

T2 =

0

12

Tk = T2 * Tk-1

T3=

12

0

12

0

1
2

0

0

2 1

Figure 3.11: The precedence graph for a bounded timestamping system.
Consider an initial acyclic situation in which there is a token A on node 12
(node 2 in subgraph 1) and tokens B and C respectively on nodes 21 and
22 (nodes 1 and 2 in subgraph 2). Token B will move to 20 to dominate all
others. Token C will then move to 21 to dominate all others, and B and
C can continue to cycle in the T 2 subgraph 2 forever. If A is to move to
dominate B and C, it cannot pick a node in subgraph 2 since it is full (any
T k subgraph can accommodate at most k tokens). Token A thus moves to
node 00. If B now moves, it will choose node 01, C will choose 10 and so
on.

Figure 3.10 illustrates the precedence graph for the unbounded timestamp
system used in the Bakery lock. Not surprisingly, the graph is infinite: there
is one node for each natural number, with a directed edge from node a to
node b whenever a > b.

Consider the precedence graph T 2 shown in Figure 3.11. This graph has
three nodes, labeled 0, 1, and 2, and its edges define an ordering relation on
the nodes in which 0 is less than 1, 1 is less than 2, and 2 is less than 0. If
there are only two threads, then we can use this graph to define a bounded
(sequential) timestamping system. The system satisfies the following invari-
ant: the two threads always have tokens located on adjacent nodes, with
the direction of the edge indicating their relative order. Suppose A’s token
is on node 0, and B’s token on node 1 (so A has the later timestamp). For
A, the label() method is trivial: it already has the latest timestamp, so it
does nothing. For B, the label() method “leapfrogs” A’s node by jumping

50 CHAPTER 3. MUTUAL EXCLUSION

from 0 to 2.
Recall that a cycle1 in a directed graph is a set of nodes n0, n1, . . . , nk

such that there is an edge from n0 to n1, from n1 to n2, and eventually from
nk−1 to nk, and back from nk to n0.

The only cycle in the graph T 2 has length three, and there are only two
threads, so the order among the threads is never ambiguous. To go beyond
two threads, we need additional conceptual tools. Let G be a precedence
graph, and A and B subgraphs of G (possibly single nodes). We say that A
dominates B in G if every node of A has edges directed to every node of B.
Let graph multiplication be the following composition operator for graphs:
G ◦ H, for graphs G and H, is the following non-commutative operation:

Replace every node v of G by a copy of H (denoted Hv), and let
Hv dominate Hu in G ◦ H if v dominates u in G.

Define the graph T k inductively to be:

1. T 1 is a single node.

2. T 2 is the three-node graph defined above.

3. For k > 2, T k = T 2 ◦ T k−1.

For example, the graph T 3 is illustrated in Figure 3.11.
The precedence graph T n is the basis for an N -thread bounded sequential

timestamping system. We can “address” any node in the Tn graph with n−1
digits, using ternary notation. For example, the nodes in graph T 2 are ad-
dressed by 0, 1, and 2. The nodes in graph T 3 are denoted by 00, 01, . . . , 22,
where the high-order digit indicates one of the three subgraphs, and the
low-order digit indicates one node within that subgraph.

The key to understanding the N -thread labeling algorithm is that the
nodes covered by tokens can never form a cycle. As mentioned, two threads
can never form a cycle on T 2, because the shortest cycle in T 2 requires three
nodes.

How does the label method work for three threads? When A calls the
label method, if both of the other threads have tokens on the same T 2

subgraph, then move to a node on the next highest T 2 subgraph, the one
whose nodes dominate that T 2 subgraph. For example, consider the graph
T 3 as illustrated in Figure 3.11. Assume an initial acyclic situation for in
which there is a token A on node 12 (node 2 in subgraph 1) and tokens

1The word “cycle” comes from the same Greek root as “circle”.

3.8. LOWER BOUNDS ON NUMBER OF LOCATIONS 51

B and C respectively on nodes 21 and 22 (nodes 1 and 2 in subgraph 2).
Token B will move to 20 to dominate all others. Token C will then move
to 21 to dominate all others, and B and C can continue to cycle in the T 2

subgraph 2 forever. If A is to move to dominate B and C, it cannot pick a
node in subgraph 2 since it is full (any T k subgraph can accommodate at
most k tokens). Token A thus moves to node 00. If B now moves, it will
choose node 01, C will choose 10 and so on.

3.8 Lower Bounds on Number of Locations

The Bakery lock is succinct, elegant, and fair. So why is it not considered
practical? The principal drawback is the need to read N distinct locations,
where N is the maximum number of concurrent threads. The number N may
be very large, fluctuating, or even unknown. Even worse, threads must be
assigned unique indexes between 0 and n− 1, which is awkward in practice,
because threads are often created and destroyed dynamically.

Is there an even cleverer Lock algorithm that avoids these problems?
There do exist “fast-path” Lock algorithms where the number of locations
read or written is proportional to the number of threads simultaneously
trying to acquire the locks. Nevertheless, we now show that any deadlock-
free Lock algorithm requires reading or writing at least N distinct locations
in the worst case.

Recall that an object’s state is just the state of its locations. A global
state is the state of all objects, plus the states of the threads (program
counters and local variables).

Definition 3.8.1 A Lock object state s is inconsistent in any global state
where some thread is in the critical section, but the lock state is compatible
with a global state in which no thread is in the critical section or is trying
to enter.

Lemma 3.8.1 No deadlock-free Lock algorithm can enter an inconsistent
state.

Proof: Suppose the Lock object is in an inconsistent state s, where no
thread is in the critical section or trying to enter. If thread B tries to enter
the critical section, it must eventually succeed, because the algorithm is
deadlock-free.

Suppose the Lock object is in an inconsistent state s, where A is in the
critical section. If thread B tries to enter the critical section, it must block
until A leaves.

52 CHAPTER 3. MUTUAL EXCLUSION

We have a contradiction, because B cannot determine whether A is in
the critical section.

Any Lock algorithm that solves deadlock-free mutual exclusion must
have N distinct locations. Here, we consider only the three-thread case,
showing that a no-deadlock Lock algorithm accessed by three threads must
have three distinct locations.

Definition 3.8.2 A covering state for a Lock object is one in which there
is at least one thread about to write to each shared location, but the Lock
object’s locations “look” like the critical section is empty (that is, the loca-
tions’ states appear as if no thread is either in the critical or trying to enter
the critical section).

In a covering state, we say that each thread covers the location it is about
to write.

Theorem 3.8.2 Any Lock algorithm that solves deadlock-free mutual ex-
clusion for three threads must use at least three distinct memory locations.

Proof: Assume by way of contradiction that we have a no-deadlock Lock
algorithm for three threads with only two locations. Initially, in state s, no
thread is in the critical section or trying to enter. If we run any thread by
itself, then it must write to at least one location before entering the critical
section, because otherwise s an inconsistent state.

It follows that every thread must write at least one location before en-
tering. If the shared locations are single-writer locations as in the Bakery
lock, then it is immediate that three distinct locations are needed.

Now consider multi-writer locations such as the victim location in Pe-
terson’s algorithm (Figure 3.6). Let s be a covering Lock state where A and
B respectively cover distinct locations. Consider this possible execution
starting from state s:

Let C run alone. Because the Lock algorithm satisfies the no-
deadlock property, C will enter the critical section eventually.
Then let A and B respectively update their covered locations,
leaving the Lock object in state s′.

The state s′ is inconsistent because no thread can tell whether C is in the
critical section, so a lock with two locations is impossible.

It remains to be shown how to maneuver threads A and B into a covering
state. Consider an execution in which B runs through the critical section

3.8. LOWER BOUNDS ON NUMBER OF LOCATIONS 53

A B…

1. The system is
in a covering
state.

wBwA

Assume only 2 locations.

C

cs

2. C runs. It
possibly writes
all locations
and enters
the CS.

cs

3. Run the other threads
A and B. They overwrite
what C wrote and one of
them must enter the CS –
a contradiction!

Figure 3.12: Contradiction using a covering state for two locations. Initially
both locations have the empty value ⊥.

three times. Each time around, it must write some location, so consider the
first location it writes when trying to enter the critical section. Since there
are only two locations, B must write one location twice. Call that location
LB.

Let B run until it is poised to write location LB for the first time. If
A runs now, it would enter the critical section, since B has not written
anything. A must write LA before entering the critical section. Otherwise,
if A writes only LB , then let A enter the critical section, let B write to LB

(obliterating A’s last write). The result is an inconsistent state: B cannot
tell whether A is in the critical section.

Let A run until it is poised to write LA. This state is not a covering
state, because A could have written something to LB indicating that it is
trying to enter the critical section. Let B run, obliterating any value A
might have written to LB, entering and leaving the critical section at most

54 CHAPTER 3. MUTUAL EXCLUSION

B

1. Start in a covering
state for LB.wB

LBLA

wA

2. Run system until A is
about to write LA. There
must be such a case
otherwise let A enter the
CS and then B can overwrite
its value. But there could be
traces left by A in LB…

3. Run B again. It
erases traces in LB.
Then let it enter the
CS and return again.
If one repeats this
pattern twice more,
B must return to a
covering state for
the exact same location
(in the figure it is LB).

cscs

A

Figure 3.13: Reaching a covering state. In the initial covering state for LB

both locations have the empty value ⊥.

three times, and halting just before its second write to LB .

In this state, A is about to write LA, and B about to write LB, and the
locations are consistent with no thread trying or in the critical section, as
required in a covering state. Figure 3.13 illustrates this scenario.

In later chapters, we will see that modern machine architectures provide
specialized instructions for mutual exclusion that allow an N -thread solution
using only a constant number of registers. We will also see that making
effective use of these instructions is far from trivial.

3.9. GRANULARITY OF MUTUAL EXCLUSION 55

1 class Queue {
2 int head; // next item to dequeue
3 int tail ; // next empty slot
4 Object[] items = new Object[QSIZE];
5 public Queue() {
6 head = 0; tail = 0;
7 }
8 public synchronized void enq(Object x) {
9 while (tail − head == QSIZE) {

10 try {
11 this.wait (); // wait until not full
12 } catch (InterruptedException e) {};
13 }
14 items[tail ++ % QSIZE] = x;
15 this. notify ();
16 }
17 public Object deq() {
18 while (tail − head == QSIZE) {
19 try {
20 this.wait (); // wait until non−empty
21 } catch (InterruptedException e) {};
22 }
23 Object x = items[head++];
24 this. notify ();
25 return x;
26 }
27 }

Figure 3.14: A Lock-based FIFO queue. In Java each object has an implicit
lock. A synchronized method acquires the lock when called and releases
the lock when it returns. The wait method temporarily releases the lock and
reacquires it at some later time. The notify method advises waiting threads
to reacquire the lock.

3.9 Granularity of Mutual Exclusion

We end this chapter with a discussion of how mutual exclusion can be used
in practice. Figure 4.3.1 shows a standard Java implementation of a shared
FIFO queue. To understand this code, you must be aware of how Java

56 CHAPTER 3. MUTUAL EXCLUSION

1 class LockFreeQueue {
2 int head = 0; // next item to dequeue
3 int tail = 0; // next empty slot
4 Object[] items = new Object[QSIZE];
5 public void enq(Object x) {
6 // spin while full
7 while (this. tail − this.head == QSIZE) {};
8 this.items[this. tail % QSIZE] = x;
9 this. tail ++;

10 }
11 public Object deq() {
12 // spin while empty
13 while (this. tail == this.head) {}; // busy−wait
14 Object x = this.items[this.head % QSIZE];
15 this.head++;
16 return x;
17 }
18 }

Figure 3.15: A Lock-free FIFO queue. Initially the head and tail are equal
and the queue is empty. If the head and tail differ by QSIZE, then the
queue is full. The enq() method reads the head field, and if the queue is
full, it repeatedly checks the head until the queue is no longer full. It then
stores the object in the array, and increments the tail field. The deq()
method works in a symmetric way.

handles synchronization. Each Java object has an implicit lock field and an
implicit condition field. Any method declared to be synchronized auto-
matically acquires the lock when the method is called, and releases it when
the method returns. If a dequeuing thread discovers the queue is empty,
then that thread can wait until something appears in the queue. By calling
this.wait(), the would-be dequeuer releases the lock and suspends itself.
When another thread enqueues an item, it calls this.notifyAll() to wake
up all suspended threads. These threads compete for the lock, one of them
succeeds, and the others go back to waiting.

A key observation about this queue implementation is that every method
call locks the entire queue, and so concurrent method calls cannot proceed
concurrently. Can we do better? Imagine, for the sake of simplicity, that
two threads A and B share a queue, where A always enqueues and B always

3.9. GRANULARITY OF MUTUAL EXCLUSION 57

dequeues. Figure 4.9 shows an implementation of this two-threaded FIFO
queue that does not use any locks.

Like its locking-based counterpart, the lock-free queue has three fields:

• items is an array of QSIZE objects,

• tail is the index in the items array at which the next enqueued object
will be stored; head is the index in the items array from which the
next dequeued object will be removed

If head and tail differ by QSIZE, then the queue is full, and if they are
equal, then the queue is empty. The enq() method reads the head field into
a local variable, If the queue is full, the thread spins: it repeatedly tests the
tail field until it observes there is room in the items array. It then stores
the object in the array, and increments the tail field. The enqueue actually
“takes effect” when the tail field is incremented. The deq() method works
in a symmetric way.

Note that this implementation does not work if the queue is shared by
more than two threads, or if the threads change roles. Later on, we will
examine ways in which this example can (and cannot) be generalized.

We contrast these two implementations to emphasize the notion of gran-
ularity of synchronization. The lock-based queue is an example of coarse-
grained synchronization: no matter how much support for concurrency the
hardware provides, only one thread at a time can execute a method call.
The lock-free queue is an example of fine-grained synchronization: threads
synchronize at the level of individual machine instructions.

Why is this distinction important? There are two reasons. The first
is fault-tolerance. Recall that modern architectures are asynchronous: a
thread can be interrupted at any time for an arbitrary duration (because of
cache misses, page faults, descheduling, and so on). If a thread is interrupted
while it holds a lock, then all other threads that call that object’s methods
will also be blocked. The greater the hardware support for concurrency, the
greater the wasted resources: the unexpected delay of a single thread can
potentially bring a massively parallel computation to a halt.

By contrast, the lock-free queue does not present the same hazards.
Threads synchronize at the level of basic machine instructions (reading and
updating object fields). The hardware and operating system typically ensure
that reading or writing an object field is atomic: a thread interrupted while
reading or writing a field cannot block other threads attempting to read or
write the same field.

58 CHAPTER 3. MUTUAL EXCLUSION

The second reason concerns speedup. When we reason about the correct-
ness of a multi-threaded program, we do not need to consider the number of
physical processors supported by the underlying machine. A single-processor
machine can run a multithreaded program as well as a multiprocessor.

Except for performance. Ideally, if we double the number of physical
processors, we would like the running time of our programs to be cut in
half. This never happens. Realistically, most people who work in this area
would be surprised and delighted if, beyond a certain point, doubling the
number of processors provided any significant speedup.

To understand why such speedups are difficult, we turn our attention to
Amdahl’s Law. The key idea is that the extent to which we can speed up a
program is limited by how much of the program is inherently sequential. The
degree to which a program is inherently sequential depends on its granularity
of synchronization.

Define the speedup S of a program to be the ratio between its run-
ning time (measured by a wall clock) on a single-processor machine, and its
running time on an N -processor multiprocessor. Let c be the fraction of
the program that can be executed concurrently, without synchronization or
waiting. If we assume that the sequential program takes time 1, then the
sequential part of the program will take time 1− c, and the concurrent part
will take time c/n. Here is the speedup S for an N -processor multiprocessor:

S =
1

1 − c + c
n

For example, if a program spends 20% if its time in critical sections, and is
deployed on a 10-processor machine, then Amdahl’s Law implies a maximum
speedup of

3.58 =
1

1 − 0.8 + 0.8
10.0

If we cut the synchronization granularity to 10%, then we have a speedup
of

5.26 =
1

1 − 0.9 + 0.9
10.0

Even small reductions in granularity produce relatively large increases in
speedup.

3.10 Exercises

Exercise 3.10.1 Programmers at the Flaky Computer Corporation de-
signed the protocol shown in Figure 3.16 to achieve N -thread mutual exclu-

3.10. EXERCISES 59

1 class Flaky implements Lock {
2 private int turn;
3 private boolean busy = false; // initially false
4 // thread−local index, 0 or 1
5 private static ThreadLocal<Integer> myIndex;
6 public void lock() {
7 int i = myIndex.get();
8 do {
9 do { // loop until not busy

10 this.turn = i;
11 } while (this.busy);
12 this.busy = true;
13 } while (this.turn != i);
14 }
15 public void unlock() {
16 this.busy = false;
17 }
18 }

Figure 3.16: The Flaky Lock used in Exercise 3.10.1.

sion. For each question, either sketch a proof, or display an execution where
it fails.

• Does this protocol satisfy mutual exclusion?

• Does this protocol satisfy no-lockout?

• Does this protocol satisfy no-deadlock?

Exercise 3.10.2 Show that the Filter class does not provide r-bounded
waiting for any finite r.

Exercise 3.10.3 One way to generalize the two-thread Peterson lock is to
arrange a number of two-thread Peterson locks in a binary tree. Suppose N
is a power of two. Each thread is assigned a leaf lock which it shares with
one other thread.

In the tree-lock’s lock() method, the thread acquires every two-thread
Peterson lock from that thread’s leaf to the root.

60 CHAPTER 3. MUTUAL EXCLUSION

The tree-lock’s unlock() method for the tree-lock unlocks each of the
two-thread Peterson locks that thread has acquired, from the root back to
its leaf.

Either sketch a proof that this tree-lock satisfies mutual exclusion, or
give an execution where it does not.

Either sketch a proof that this tree-lock satisfies no-lockout, or give an
execution where it does not.

Is there an upper bound on the number of times the tree-lock can be
acquired and released while a particular thread is trying to acquire the tree-
lock?

Exercise 3.10.4 The �-exclusion problem is a variant of the lockout-free
mutual exclusion problem. We make two changes: as many as � threads
may be in the critical section at the same time, and fewer than � threads
might fail (by halting) in the critical section.

Your implementation must satisfy the following conditions:

�-Exclusion: At any time, at most � threads are in the critical section.

�-Lockout-Freedom: As long as fewer than � threads are in the critical
section, then some thread that wants to enter the critical section will
eventually succeed (even if some threads in the critical section have
halted).

Modify Peterson’s n-process mutual exclusion algorithm to turn it into
an �-exclusion algorithm.

Exercise 3.10.5 In practice, almost all lock acquisitions are uncontended,
so the most practical measure of a lock’s performance is the number of steps
needed for a thread to acquire a lock when no other thread is concurrently
trying to acquire the lock.

Scientists at Cantaloupe-Melon University have devised the following
“wrapper” for an arbitrary lock, shown in Figure 3.17. They claim that if
the base Lock class provides mutual exclusion and is livelock-free, so does
the FastPath lock, but it can be acquired in a constant number of steps in
the absence of contention. Sketch an argument why they are right, or give
a counterexample.

Exercise 3.10.6 Suppose N threads call the visit method of the Bouncer
class shown in Figure 3.18. Prove that

3.10. EXERCISES 61

1 class FastPath implements Lock {
2 private static ThreadLocal<Integer> myIndex;
3 private Lock lock;
4 private int x, y = −1;
5 public void lock() {
6 int i = myIndex.get();
7 int x = i; // I’m here
8 while (y != −1) {} // is the lock free?
9 y = i; // me again?

10 if (x != i) // Am I still here?
11 lock . lock (); // slow path
12 }
13 public void unlock() {
14 y = −1;
15 }
16 }

Figure 3.17: Fast path mutual exclusion algorithm used in Exercise 3.10.5.

• At most one thread gets the value STOP.

• At most N − 1 threads get the value DOWN.

• At most N − 1 threads get the value RIGHT.

Note that the last two proofs are not symmetric.

Exercise 3.10.7 So far, we have assumed that all N threads have unique,
small indexes. Here is one way to assign unique small indexes to threads.
Arrange Bouncer objects in a triangular matrix, where each Bouncer is given
an id as shown in Figure 3.19. Each thread starts by visiting Bouncer zero.
If it gets STOP, it stops. If it gets RIGHT, it visits 1, and if it gets DOWN, it
visits 2. In general, if a thread gets STOP, it stops. If it gets RIGHT, it visits
the next Bouncer on that row, and if it gets DOWN, it visits the next Bouncer
in that column. Each thread takes the id of the Bouncer object where it
stops.

• Prove that each thread eventually stops at some Bouncer object.

• How many Bouncer objects will you need in the array if you know in
advance the total number n of threads?

62 CHAPTER 3. MUTUAL EXCLUSION

1 class Bouncer {
2 public static final int DOWN = 0;
3 public static final int RIGHT = 1;
4 public static final int STOP = 2;
5 private boolean goRight = false;
6 private ThreadLocal<Integer> myIndex;
7 private int last = −1;
8 int visit () {
9 int i = myIndex.get();

10 this. last = i;
11 if (this.goRight)
12 return RIGHT;
13 this.goRight = true;
14 if (this. last == i)
15 return STOP;
16 else
17 return DOWN;
18 }
19 }

Figure 3.18: The Bouncer class implementation
0 1 3 6

2 4 7

5 8

9

Figure 3.19: Array layout for Bouncer objects.

Exercise 3.10.8 Prove, by way of a counterexample, that the sequential
time-stamp system T 3, started in a valid state (with no cycles among the
labels), will not work for three threads in the concurrent case. Note that
it is not a problem to have two identical labels since one can break such

3.11. CHAPTER NOTES 63

ties using thread IDs. The counterexample should display a state of the
execution where three labels are not totally ordered.

Exercise 3.10.9 The sequential time-stamp system T 3 had a range of 3n

different possible label values. Design a sequential time-stamp system that
requires only n2n labels. Note that in a time-stamp system, one may look
at all the labels in order to choose a new label, yet once a label is chosen,
it should be comparable to any other label without knowing what the other
labels in the system are. Hint: think of the labels in terms of their bit
representation.

Exercise 3.10.10 Give Java code to implement the Timestamp interface
of Figure 3.9 using unbounded labels. Then, show how to replace the
pseudocode of the Bakery lock of Figure 3.8 using your Timestamp Java
code.

Exercise 3.10.11 Running your application on two processors yields a
speedup of S2. Give a formula for Sn, the speedup on n processors, in
terms of n and S2.

Exercise 3.10.12 You have a choice between buying one uniprocessor that
executes five zillion instructions per second, or a ten-processor multiproces-
sor where each processor executes one zillion instructions per second. How
would you decide which to buy for a particular application?

3.11 Chapter Notes

Isaac Newton’s ideas about the flow of time appear in his famous Principia
[?]. The “→” formalism is due to Leslie Lamport [?]. The first three al-
gorithms in this chapter are due to Gary Peterson, who published them in
a two-page paper in 1981 [?]. The Bakery lock presented here is a simpli-
fication of the original Bakery Algorithm due to Leslie Lamport [?]. The
sequential timestamp algorithm is due to Amos Israeli and Ming Li [?], who
invented the notion of a bounded timestamping system. Danny Dolev and
Nir Shavit [?] defined and invented the first bounded concurrent timestamp-
ing system. Other bounded timestamping schemes include Sibsankar Hal-
dar and Paul Vitanyi [?], and Cynthia Dwork and Orli Waarts [?]. Our
array-based lock-free FIFO queue for a single enqueuer thread and a single
dequeuer thread is adapted from Leslie Lamport [?]. The lower bound on
the number of lock fields is due to Jim Burns and Nancy Lynch [?]. Their

64 CHAPTER 3. MUTUAL EXCLUSION

proof technique, called a covering argument, has since been widely used to
prove lower bounds in distributed computing.

