Course Outline 4.2

Searching with Problem-specific Knowledge

Presented by:
Wing Hang Cheung
Paul Anh Tri Huynh
Mei-Ki Maggie Yang
Lu Ye

CPSC 533 January 25, 2000
Chapter 4 - Informed Search Methods

• 4.1 Best-First Search
• 4.2 Heuristic Functions
• 4.3 Memory Bounded Search
• 4.4 Iterative Improvement Algorithms
4.1 Best First Search

- Is just a General Search
- minimum-cost nodes are expanded first
- we basically choose the node that appears to be best according to the evaluation function

Two basic approaches:
- Expand the node closest to the goal
- Expand the node on the least-cost solution path
The Algorithm

Function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
Inputs: problem, a problem
Eval-Fn, an evaluation function
Queueing-Fn ← a function that orders nodes by EVAL-FN
Return GENERAL-SEARCH(problem, Queueing-Fn)
Greedy Search

- "... minimize estimated cost to reach a goal"

- a heuristic function calculates such cost estimates
 \[h(n) = \text{estimated cost of the cheapest path from the state at node } n \text{ to a goal state} \]
Function GREEDY-SEARCH(problem) return a solution or failure
return BEST-FIRST-SEARCH(problem, h)

Required that $h(n) = 0$ if $n = \text{goal}$
The straight-line distance heuristic function is a for finding route-finding problem

\[h_{SLD}(n) = \text{straight-line distance between } n \text{ and the goal location} \]
State	h(n)
A | 366
B | 374
C | 329
D | 244
E | 253
F | 178
G | 193
H | 98
I | 0

h=253 h=329 h=374
Total distance
= 253 + 178
= 431
Total distance
=253 + 178 + 0
=431
Optimality

A-E-F-I = 431
vs.
A-E-G-H-I = 418

<table>
<thead>
<tr>
<th>State</th>
<th>h(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>366</td>
</tr>
<tr>
<td>B</td>
<td>374</td>
</tr>
<tr>
<td>C</td>
<td>329</td>
</tr>
<tr>
<td>D</td>
<td>244</td>
</tr>
<tr>
<td>E</td>
<td>253</td>
</tr>
<tr>
<td>F</td>
<td>178</td>
</tr>
<tr>
<td>G</td>
<td>193</td>
</tr>
<tr>
<td>H</td>
<td>98</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
</tr>
</tbody>
</table>
Completeness

- Greedy Search is incomplete
- Worst-case time complexity $O(b^m)$

<table>
<thead>
<tr>
<th>Straight-line distance</th>
<th>$h(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

Starting node

Target node
A* search

\[f(n) = g(n) + h(n) \]

- \(h \) = heuristic function
- \(g \) = uniform-cost search
"Since \(g(n) \) gives the path from the start node to node \(n \), and \(h(n) \) is the estimated cost of the cheapest path from \(n \) to the goal, we have…"

\[
f(n) = \text{estimated cost of the cheapest solution through } n
\]
\[f(n) = g(n) + h(n) \]
\[f = 0 + 366 = 366 \]

\[f = 140 + 253 = 393 \]

\[f = 220 + 193 = 413 \]

\[f = 300 + 253 = 553 \]

\[f = 317 + 98 = 415 \]
\[f(n) = g(n) + h(n) \]

\[f = 0 + 366 = 366 \]
\[f = 140 + 253 = 393 \]
\[f = 220 + 193 = 413 \]
\[f = 300 + 253 = 553 \]
\[f = 317 + 98 = 415 \]
\[f = 418 + 0 = 418 \]

<table>
<thead>
<tr>
<th>State</th>
<th>h(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>366</td>
</tr>
<tr>
<td>B</td>
<td>374</td>
</tr>
<tr>
<td>C</td>
<td>329</td>
</tr>
<tr>
<td>D</td>
<td>244</td>
</tr>
<tr>
<td>E</td>
<td>253</td>
</tr>
<tr>
<td>F</td>
<td>178</td>
</tr>
<tr>
<td>G</td>
<td>193</td>
</tr>
<tr>
<td>H</td>
<td>98</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
</tr>
</tbody>
</table>
Remember earlier

A-E-G-H-I = 418

\[f = 418 + 0 \]
\[= 418 \]
function A*-SEARCH(problem) returns a solution or failure
return BEST-FIRST-SEARCH(problem, g+h)
Chapter 4 - Informed Search Methods

- 4.1 Best-First Search
- 4.2 Heuristic Functions
- 4.3 Memory Bounded Search
- 4.4 Iterative Improvement Algorithms
HEURISTIC FUNCTIONS
OBJECTIVE

➔ calculates the cost estimates of an algorithm
IMPLEMENTATION

- Greedy Search
- A* Search
- IDA*
EXAMPLES

- straight-line distance to B
- 8-puzzle
EFFECTS

- Quality of a given heuristic

 - Determined by the effective branching factor b^*
 - A b^* close to 1 is ideal
 - $N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$

 $N = \# \text{ nodes}$

 $d = \text{solution depth}$
EXAMPLE

- If A* finds a solution depth 5 using 52 nodes, then b* = 1.91

- Usual b* exhibited by a given heuristic is fairly constant over a large range of problem instances
A well-designed heuristic should have a b* close to 1.

... allowing fairly large problems to be solved
Fig. 4.8 Comparison of the search costs and effective branching factors for the IDA and A* algorithms with h1, h2. Data are averaged over 100 instances of the 8-puzzle, for various solution lengths.
INVENTING HEURISTIC FUNCTIONS

• How?

• Depends on the restrictions of a given problem

• A problem with lesser restrictions is known as a relaxed problem
Fig. 4.7 A typical instance of the 8-puzzle.
One problem
... one often fails to get one “clearly best” heuristic

Given \(h_1, h_2, h_3, \ldots, h_m \); none dominates any others.

Which one to choose?

\[
h(n) = \max(h_1(n), \ldots, h_m(n))
\]
INVENTING HEURISTIC FUNCTIONS

Another way:

- performing experiment randomly on a particular problem
- gather results
- decide base on the collected information
HEURISTICS FOR CONSTRAINT SATISFACTION PROBLEMS (CSPs)

- most-constrained-variable
- least-constraining-value
Fig 4.9 A map-coloring problem after the first two variables (A and B) have been selected.

Which country should we color next?
Chapter 4 - Informed Search Methods

- 4.1 Best-First Search
- 4.2 Heuristic Functions
- 4.3 Memory Bounded Search
- 4.4 Iterative Improvement Algorithms
4.3 MEMORY BOUNDED SEARCH

In this section, we investigate two algorithms that are designed to conserve memory.

![Table showing time and memory requirements for breadth-first search.](image)

Figure 3.12 Time and memory requirements for breadth-first search.
Memory Bounded Search

1. IDA* (Iterative Deepening A*) search
 - is a logical extension of ITERATIVE - DEEPENING SEARCH to use heuristic information

2. SMA* (Simplified Memory Bounded A*) search
Iterative Deepening search

- Iterative Deepening is a kind of uniformed search strategy
- combines the benefits of depth-first and breadth-first search
- advantage - it is optimal and complete like breadth first search
 - modest memory requirement like depth-first search
IDA* (Iterative Deepening A*)

- turning A* search → IDA* search
- each iteration is a depth first search
 ~ use an f-cost limit rather than a depth limit
- space requirement
 ~ worse case : $b \frac{f^*}{\delta}$
 b - branching factor
 f^* - optimal solution
 δ - smallest operator cost
 d - depth

~ most case : $b \, d$ is a good estimate of the storage requirement

- time complexity -- IDA* does not need to insert and delete nodes on a priority queue, its overhead per node can be much less than that of A*
IDA* search

- First, each iteration expands all nodes inside the contour for the current f-cost
- peeping over to find out the next contour lines
- once the search inside a given contour has been complete
- a new iteration is started using a new f-cost for the next contour
function IDA* (problem) returns a solution sequence
inputs: problem, a problem
local variables: f-limit, the current f-cost limit
root, a node
root <- MAKE-NODE(INITIAL-STATE[problem])
f-limit ← f-COST (root)
loop do
 solution,f-limit ← DFS-CONTOUR(root,f-limit)
 if solution is non-null then return solution
 if f-limit = 4 then return failure; end
end

function DFS-CONTOUR (node, f-limit) returns a solution sequence and a new f-COST limit
inputs: node, a node
f-limit, the current f-COST limit
local variables: next-f, the f-COST limit for the next contour, initially 4

if f-COST [node] > f-limit then return null, f-COST [node]
if GOAL-TEST [problem] (STATE[node]) then return node, f-limit
for each node s in SUCCESSOR (node) do
 solution, new-f ← DFS-CONTOUR (s, f-limit)
 if solution is non-null then return solution, f-limit
 next-f ← MIN (next-f,new-f); end
return null, next-f
1. IDA* (Iterative Deepening A*) search

2. SMA* (Simplified Memory Bounded A*) search
 - is similar to A*, but restricts the queue size to fit into the available memory
SMA* (Simplified Memory Bounded A*) Search

- advantage to use more memory -- improve search efficiency
- Can make use of all available memory to carry out the search
- remember a node rather than to regenerate it when needed
SMA* search (cont.)

SMA* has the following properties:

- SMA* will utilize whatever memory is made available to it.
- SMA* avoids repeated states as far as its memory allows.
- SMA* is complete if the available memory is sufficient to store the shallowest solution path.
SMA* search (cont.)

SMA* properties cont.

• SMA* is optimal if enough memory is available to store the shallowest optimal solution path

• when enough memory is available for the entire search tree, the search is optimally efficient
Progress of the SMA* search

Aim: find the lowest-cost goal node with enough memory

Max Nodes = 3
A - root node
D,F,I,J - goal node

Label: current f-cost

Diagram:

- Memory is full
- Update (A) f-cost for the min child
- Expand G, drop the higher f-cost leaf (B)
- Memorize B
- Memory is full
- H not a goal node, mark h to infinite
- Drop H and add I
- I is goal node, but may not be the best solution
- The path through G is not so great so B is generate for the second time
- Drop G and add C
- A memorize G
- C is non-goal node
- C mark to infinite
- How about J has a cost of 19 instead of 24???????
SMA* search (cont.)

Function SMA*(problem) returns a solution sequence
inputs: problem, a problem
local variables: Queue, a queue of nodes ordered by f-cost
Queue ← Make-Queue({MAKENODE(INITIALSTATE[problem])})
loop do
 if Queue is empty then return failure
 n ← deepest least-f-cost node in Queue
 if GOAL-TEST(n) then return success
 s ← NEXT-SUCCESSOR(n)
 if s is not a goal and is at maximum depth then
 f(s) ← ∞
 else
 f(s) ← MAX(f(n), g(s)+h(s))
 if all of n’s successors have been generated then
 update n’s f-cost and those of its ancestors if necessary
 if SUCCESSORS(n) all in memory then remove n from Queue
 if memory is full then
 delete shallowest, highest-f-cost node in Queue
 remove it from its parent’s successor list
 insert its parent on Queue if necessary
 insert s on Queue
end
Chapter 4 - Informed Search Methods

- 4.1 Best-First Search
- 4.2 Heuristic Functions
- 4.3 Memory Bounded Search
- 4.4 Iterative Improvement Algorithms
For the most practical approach in which

- All the information needed for a solution are contained in the state description itself
- The path of reaching a solution is not important

Advantage: memory save by keeping track of only the current state

Two major classes: Hill-climbing (gradient descent) Simulated annealing
Hill-Climbing Search

- Only record the state and its evaluation instead of maintaining a search tree

Function Hill-Climbing*(problem)* **returns** a solution state

inputs: problem, a problem

local variables: current, a node

next, a mode

```
current ← Make-Node(Initial-State[problem])
loop do
    next ← a highest-valued successor of current
    if Value[next] < Value[current] then return current
    current ← next
end
```
Hill-Climbing Search

- select at random when there is more than one best successor to choose from

Three well-known drawbacks:

- Local maxima
- Plateaux
- Ridges

When no progress can be made, start from a new point.
Local Maxima

- A peak lower than the highest peak in the state space
- The algorithm halts when a local maximum is reached
Plateaux

- Neighbors of the state are about the same height
- A random walk will be generated
Ridges

• No steep sloping sides between the top and peaks

• The search makes little progress unless the top is directly reached
Random-Restart Hill-Climbing

- Generates different starting points when no progress can be made from the previous point
- Saves the best result
- Can eventually find out the optimal solution if enough iterations are allowed
- The fewer local maxima, the quicker it finds a good solution
Simulated Annealing

- Picks random moves
- Keeps executing the move if the situation is actually improved; otherwise, makes the move of a probability less than 1
- Number of cycles in the search is determined according to probability
- The search behaves like hill-climbing when approaching the end
- Originally used for the process of cooling a liquid
Simulated-Annealing Function

Function Simulated-Annealing(*problem*, *schedule*) **returns** a solution state

inputs: *problem*, a problem
schedule, a mapping from time to “temperature”

local variables: *current*, a node
next, a node
T, a “temperature” controlling the probability of downward steps

\[
\text{current} \leftarrow \text{Make-Node}(ext{Initial-State}[\text{problem}])
\]

for \(t \leftarrow 1 \) to \(\infty \) do

\[
T \leftarrow \text{schedule}[t]
\]

if \(T=0 \) then return *current*

\[
\text{next} \leftarrow \text{a randomly selected successor of current}
\]

\[
\@E \leftarrow \text{Value}[\text{next}] - \text{Value}[\text{current}]
\]

if \(\@E \leftarrow 0 \) then

\[
\text{current} \leftarrow \text{next}
\]

else

\[
\text{current} \leftarrow \text{next only with probability } e^{\@E/T}
\]
Applications in Constraint Satisfaction Problems

General algorithms for Constraint Satisfaction Problems

- assigns values to all variables
- applies modifications to the current configuration by assigning different values to variables towards a solution

Example problem: an 8-queens problem

(Definition of an 8-queens problem is on Pg64, text)
Algorithm chosen: the min-conflicts heuristic repair method

Algorithm Characteristics:
• repairs inconsistencies in the current configuration
• selects a new value for a variable that results in the minimum number of conflicts with other variables
1. One by one, find out the number of conflicts between the inconsistent variable and other variables.
2. Choose the one with the smallest number of conflicts to make a move.
3. Repeat previous steps until all the inconsistent variables have been assigned with a proper value.