

What is Information?

What is Information?

- Etymology: Latin, "to give form to" or "to form an idea of"
- The state of being of an object or system of interest

Storing Data

- All data in a computer is either a 0 or 1
- Called a bit
-Electrically, this is a switch that is either open or closed
- Encoding schemes translate integers, real numbers, letters, pictures, ... into bits

Information Processing

- A change of information in any manner detectable by an observer
- Using a computer?
- Encode information into data
- Process the data
- Translate data back into information

Integer Data

- How do we represent the numbers 5, 42, or 367 using only ones and zeros?

Number Systems

- Decimal (Base 10)
- 10 distinct symbols
- Each digit is a factor of 10 larger than the digit to its left

Number Systems

- Binary (Base 2)
- 2 distinct symbols
- Each digit is a factor of 2 larger than the digit to its left

Counting in Binary

Binary Numbers

- Consider the base 2 number 1001101_{2} - What base 10 number does it represent?

Binary to Decimal

- Convert 1111_{2} to base 10 :
- Convert 100010_{2} to base 10 :
- Convert O_{2} to base 10 :

Decimal to Binary

- What sequence of bits represents the

The Division Algorithm

- Allows us to convert from Decimal to Binary
- Let Q represent the number to convert
- Repeat
- Divide Q by 2, recording the Quotient, Q , and the remainder, R
- Until Q is 0
- Read the remainders from bottom to top

Decimal to Binary

- What sequence of bits represents the decimal number 12 ?

Decimal to Binary

- Convert 191_{10} to Binary:

Decimal to Binary

- Convert 222 Base 10 to Base 2:

Integer Data

- Base 10 integers can be represented using sequences of bits
- Common sizes:
- 8 bits (referred to as a byte)
- 32 bits (referred to as a word)
- 64 bits (referred to as a double word / long)
- 16 bits (referred to as a half word / short)

Negative Numbers

- How can we represent negative numbers?
- Choose an encoding where we choose that some bit patterns represent positive numbers and others represent negative numbers
- Simple Idea:
- Left most bit is the sign - 0 : positive, 1 : negative
- Rest of the bits represent the number
- Other ideas:
- One's Complement, Two's Complement, Base -2, Excess N,

Other Bases

- A number system can have any base
- Decimal: Base 10
- Binary: Base 2
- Octal: Base 8
- Hexadecimal: Base 16
- Vigesimal: Base 20
- Base 6
- Any other number we choose...

Hexadecimal

- Convert 0xA1 to decimal:
- Convert 44 base 16 to decimal:
- Convert CAFE $_{16}$ to base 10 :

Utility of Hexadecimal

- Common to have groups of 32 bits
- 32 bits is cumbersome to write
- easy to make mistakes
- Use hexadecimal as a shorthand
-8 hex digits instead of 32 bits
- Group bits from the right
- Memorize mapping from binary to hex for values between 0 and F

Utility of Hexadecimal

- Convert 0xF51A to binary
- Convert 1001001010101011010100 from binary to hex

Representing Characters

- What characters do we need to be able to represent?

Representing Characters

- Standard encoding scheme called ASCII
- American Standard Code for Information Interchange
- 7 bits per character
- Includes printable characters
- Includes "control characters" that impact formatting (tab, newline), data transmission (mostly obsolete)
- Layout seems arbitrary, but actually contains some interesting patterns

Representing Characters

Representing More Characters

- Limitation of ASCII?
- Only supports Latin character set
- No support for accents, additional character sets
- Solutions?

Representing More Characters

- UTF-8
- Another encoding scheme for characters
- Variable length - 1, 2, 3 or 4 bytes per character
- Compatible with ASCII
- Consider each byte
- Left most bit is 0 ? Usual ASCII Character
- Left most bits are $110 ? 2$ byte character
- Left most bits are $1110 ? 3$ byte character
- Left most bits are 11110 ? 4 byte character

Representing Real Numbers

- Standard Representation: IEEE 754 Floating Point
- Express the number in scientific notation
--0.0002589 becomes $-2.589 * 10^{-4}$
- Encode three pieces of information

Problems with Real Numbers

- How many real numbers are there?
- How many real numbers are there between 0 and 1?
- How many values can be represented by 32 or 64 bits?
- What's the problem?

Encoding Images

- Common Techniques
- Vector Images
- Raster Images

Representing Colors

- How do we represent a color as a sequence of bits?

Recall

- Inside a computer:
- Integers are represented by bits
- Characters are represented by bits
- Real numbers are approximated by bits
- ...
- Without context, the bits are just data
- Adding context transforms the data into information

Where Are We Going?

- We know:
- Information can be encoded as data
- Computers manipulate data
- Data can be put into context to make it information
- Next up:
- More ways of controlling the computer so that it will manipulate data the way we want it to

