Topic 3: Information and Data

What is Information?
What is Data?
How do Computers Represent Information?

Recommended Readings • Chapter 1 Tony Gaddis

What is Information?

What is Information?

- Etymology: Latin, "to give form to" or "to form an idea of"
- The state of being of an object or system of interest

What is Data?

Information Processing

- A change of information in any manner detectable by an observer
- Using a computer?
 - Encode information into data
 - Process the data
 - Translate data back into information

6

Storing Data

- All data in a computer is either a 0 or 1
 - Called a bit
 - Electrically, this is a switch that is either open or closed
- Encoding schemes translate integers, real numbers, letters, pictures, ... into bits

Boolean Data

- Has two possible values
 - True
 - False
- Easily encoded using a single bit
 - -0: False (or "no" or "off")
 - 1: True (or "yes" or "on")

Integer Data

• How do we represent the numbers 5, 42, or 367 using only ones and zeros?

Number Systems

- Decimal (Base 10)
 - 10 distinct symbols
 - Each digit is a factor of 10 larger than the digit to its left

10

Number Systems

- Binary (Base 2)
 - 2 distinct symbols
 - Each digit is a factor of 2 larger than the digit to its left

Counting in Binary

Binary Numbers

Consider the base 2 number 1001101₂
 What base 10 number does it represent?

Binary to Decimal

- Convert 1111₂ to base 10:
- Convert 100010₂ to base 10:
- Convert 0₂ to base 10:

13

Decimal to Binary

 What sequence of bits represents the decimal number 12?

The Division Algorithm

- Allows us to convert from Decimal to Binary
 - Let Q represent the number to convert
 - Repeat
 - Divide Q by 2, recording the Quotient, Q, and the remainder, R
 - Until Q is 0
 - Read the remainders from bottom to top

16

Decimal to Binary

• What sequence of bits represents the decimal number 12?

Decimal to Binary

• Convert 191₁₀ to Binary:

18

Decimal to Binary

• Convert 222 Base 10 to Base 2:

40

Integer Data

- Base 10 integers can be represented using sequences of bits
 - Common sizes:
 - 8 bits (referred to as a byte)
 - 32 bits (referred to as a word)
 - 64 bits (referred to as a double word / long)
 - 16 bits (referred to as a half word / short)

Negative Numbers

- How can we represent negative numbers?
 - Choose an encoding where we choose that some bit patterns represent positive numbers and others represent negative numbers
 - Simple Idea:
 - Left most bit is the sign 0: positive, 1: negative
 - Rest of the bits represent the number
 - Other ideas:
 - One's Complement, Two's Complement, Base -2, Excess N, ...

Other Bases

- A number system can have any base
 - Decimal: Base 10Binary: Base 2
 - Octal: Base 8
 - Hexadecimal: Base 16Vigesimal: Base 20
 - Base 6
 - Any other number we choose...

22

Why do Computer Scientists Always Confuse Halloween and Christmas?

Hexadecimal

- Convert 0xA1 to decimal:
- Convert 44 base 16 to decimal:
- Convert CAFE₁₆ to base 10:

Hexadecimal

• Convert 507₁₀ to base 16:

Hexadecimal

• Convert 180₁₀ to base 16:

26

Utility of Hexadecimal

- Common to have groups of 32 bits
 - 32 bits is cumbersome to write
 - easy to make mistakes
- Use hexadecimal as a shorthand
 - -8 hex digits instead of 32 bits
 - Group bits from the right
 - Memorize mapping from binary to hex for values between 0 and F

Utility of Hexadecimal

- Convert 0xF51A to binary
- Convert 1001001010101011010100 from binary to hex

Representing Characters

What characters do we need to be able to represent?

__ |

Representing Characters

- Standard encoding scheme called ASCII
 - American Standard Code for Information Interchange
 - 7 bits per character
 - Includes printable characters
 - Includes "control characters" that impact formatting (tab, newline), data transmission (mostly obsolete)
 - Layout seems arbitrary, but actually contains some interesting patterns

Representing Characters

31

Representing More Characters

- Limitation of ASCII?
 - Only supports Latin character set
 - No support for accents, additional character sets
 - Solutions?

Representing More Characters

- UTF-8
 - Another encoding scheme for characters
 - Variable length 1, 2, 3 or 4 bytes per character
 - Compatible with ASCII
 - Consider each byte
 - Left most bit is 0? Usual ASCII Character
 - Left most bits are 110? 2 byte character
 - Left most bits are 1110? 3 byte character
 - Left most bits are 11110? 4 byte character

33

Representing Real Numbers

- Standard Representation: IEEE 754
 Floating Point
 - Express the number in scientific notation
 - -- 0.0002589 becomes -2.589 * 10-4
 - Encode three pieces of information

34

Problems with Real Numbers

- How many real numbers are there?
- How many real numbers are there between 0 and 1?
- How many values can be represented by 32 or 64 bits?
- What's the problem?

35

Encoding Images

- Common Techniques
 - Vector Images
 - Raster Images

Representing Colors

 How do we represent a color as a sequence of bits?

Recall

- Inside a computer:
 - Integers are represented by bits
 - Characters are represented by bits
 - Real numbers are approximated by bits
 - _
 - Without context, the bits are just data
- Adding context transforms the data into information

38

Where Are We Going?

- We know:
 - Information can be encoded as data
 - Computers manipulate data
 - Data can be put into context to make it information
- Next up:
 - More ways of controlling the computer so that it will manipulate data the way we want it to