

Recommended Readings

- Chapter 4

Review

- What kinds of statements have we seen so far?
- Assignment statements
- Input statements
- Output statements
- These are generally necessary, but not sufficient, to solve "interesting" problems

Example

- Determine the state of gold when it is at a given temperature
- Gold is solid when the temperature < 1064.43 degrees
- Gold is liquid when the temperature is between 1064.43 and 2807.00 degrees
- Otherwise gold is gaseous

If Statements

- If statements
- Permit or prevent another statement from executing
- Start with the word if
- Allow us to test anything that can be determined to be true or false
- General Form:
- if condition: body

Condition

- The condition portion of an if statement

Relational Operators

- Relational operators compare two values
- Result will be true or false
- Operators:
- True or False
- < less than
-> greater than
- <= less than or equal
- >= greater than or equal
- == equal
-!= not equal

Relational Operations

- Values tested can be
- Variables
- Literals
- Results from functions
-Expressions
- ...
- Types tested can be
- Integers, Floats, Booleans, Strings
- ...

Gold Example

Liquid Gold?

- How do we test whether the gold is liquid?
- temperature must be greater than 1064.43
- temperature must be less than 2807.00

Boolean Logic

- A system of logical values and operators
- Values
- True, False
- Operators
- And
- Or
- Not
- Xor
-...
- Used to form complex conditions

Boolean Logic

- Truth tables describe the behavior of logical operators

| Input(s) | Output | A | not A |
| :---: | :--- | :--- | :--- | :--- |
| Input | Output | 0 | |
| Values | Values | 1 | |

- The not operator flips the value of its input

Boolean Logic

- And Operator
- Takes two inputs
- Produces one output
- Output is True if and only if both inputs are true

Boolean Logic

- Or Operator
- Takes two inputs
- Produces one output
- Output is True if one input is true (or both inputs are true)

A	B	A or B
0	0	
0	1	
1	0	
1	1	

Boolean Logic

- Exclusive Or Operator
- Takes two inputs
- Produces one output
- Output is True if exactly one input is true

A	B	A xor B
0	0	
0	1	
1	0	
1	1	

Boolean Logic

- Python doesn't include an xor operator
- What logical expression can we use to achieve the same result?

Boolean Logic

- When is not(A and B) true?

- We call this operation NAND

Boolean Logic

- When is not(A or B$)$ true?

A	B	A or B	not (A or B)
0	0		
0	1		
1	0		
1	1		

- We call this operation NOR

Boolean Logic

- Example:
- Construct a truth table for A and (B or not C):

Boolean Logic

- Boolean logic is the basis for computation in modern computers
- Circuits can implement logical operations
- Arithmetic operations can be built up from logical operations
- Memory can be constructed by including feedback loops in the circuits

Gold Example

Precedence

- Relational and logical operators have lower precedence than mathematical operators
- Mathematical Operators
- Relational Operators
- not
- and
- or

Precedence

- Consider the following expressions:
$-w=3+4 * 5<3 * 4+5$ or $1 / 2!=0$
$-\mathrm{a}=\operatorname{bool}(. .$.
b $=\operatorname{bool}(. .$.
c = bool(...)
$x=\operatorname{int}(\ldots)$
if a or b and c or $1<x$ and $x<10$: print x

If Statement Conditions

- Don't make the condition unnecessarily complex
-if x : is equivalent to if $x==$ True:
-if not x : is equivalent to if $x==$ False:

Compound Statements

- The body of an if statement
- May contain one statement
- May contain many statements
- How do we know which statements are included in the body?
- Body is determined by indenting
- Body ends with the next line that is indented the same amount as the if

Compound Statements

```
x = input()
print "A"
if x < 0:
        print "B"
        print "C"
print "D"
print "E"
print "F"
```


If-Then-Else

- What if we have a condition
- want to do something when the condition is true
- want to do something else when the condition is false
if condition:
print "Doing something..."
if not condition:
print "Doing something else..."

Gold Example

Nested If Statements

- An if statement can reside in the body of another if statement
- How do we expand our program so that it handles all three states?
- Gold is solid when the temperature < 1064.43 degrees
- Gold is liquid when the temperature is between 1064.43 and 2807.00 degrees
- Otherwise gold is gaseous

\qquad

Tax Example

- What if we want to write a program that calculates federal income tax
- Tax payable is
- 15% of income up to $\$ 40,726$
- 22% of income from $\$ 40,726$ to $\$ 81,452$
- 26% of income from $\$ 81,452$ to $\$ 126,264$
- 29% of income above $\$ 126,264$

Tax Example

Testing

- The process of executing a program in an attempt to locate bugs
- How many times do we need to run the program?
- What can't testing do?

Testing

- Black-box testing
- Test the program without looking at the source code
- Test are generally functional / behavioural
- White-box testing
- Design test cases for the program by looking at its source code
- Tests are generally structural

Test Coverage

- How thoroughly do the cases test the code?
- Condition Coverage: Every decision point in the program is executed
- Statement Coverage: Every statement in the program is executed
- Path Coverage: Every possible path through the program is executed

Testing Example

The Dangers of Floating Point Numbers

- Floating point numbers approximate real numbers
- Can cause problems when testing for equality

Wrapping Up

- Three kinds of decision statements
- If statement
- If-Else statement
- If-Elif-...-Elif-Else statement
- Each makes it possible to change the flow of control through the program

Wrapping Up

- More complex control flow requires
- Additional design
- Additional testing
- Black box
- White box

Where Are We Going?

- What if we want to do something several times?
- A fixed number of times?
- A number of times entered by the user?
- Keep doing something until a specific value is reached?
- Next Up: Repetition

