2/17/2010

Recommended Readings

e Chapter 3

. . » Chapter 6
Topic 6: Functions
What's a function?
How can we use functions to write
better software?
2
What is a Function? Motivation

* What is a function?
— A named set of statements
— Perform some task
* Functions:
— May take parameters
— May return values

« What functions have you already used?

« |deally, a function should
— perform a clearly defined specific purpose
— hide details from the caller
— be sufficiently small to be easily understood
— be well documented




2/17/2010

Defining a Function

* Creates a function for later use
— The function does not execute until it is called

— Function may be called many times (from
different places) after it has been defined

¢ General form:
—def functionName(parameters) :
statement(s)

Example

 Create a function that draws a music note
— Head will be a solid oval, 20 pixels wide and
10 pixels high
— Stem will be 50 pixels tall on the right side

Calling Our Function

« A function does not execute when it is
defined

— It must be called

< Execution for the entire program begins at
the first statement outside of a function

Example

» What's the problem with our function?

* How do we fix it?




2/17/2010

Parameters

« Allow us to provide data to a function

— Data is placed in brackets after the function
name when the function is called

— Parameter variables appear in brackets after
the function name in the function definition

— Values appear in parameter variables when
the function executes

— Parameters are positional

Terminology

e Actual Parameter

— The value placed in brackets after the function
name when the function is called

* Formal Parameter

— The name of the parameter variable in the
function that is called

10

Example
¢ Extend our note drawing function so that it

takes two parameters that control the
position of the note

11

Named Parameters

» Positional parameters assign values to
parameter variables in the order that they
occur

» Named parameters allow us to assign
values in any order

— Allow for optional parameters / default values
for some parameters

— May still be used in a positional manner

12




2/17/2010

Example

« Extend the note drawing function so that it
takes additional parameters that specify
the color of the note

13

Default Parameter Values

Python permits default values for
parameters

— If the function call does not supply a value
then the default is used

— If the call includes a value for that parameter
then the default value is overridden

14

Functions can Call Functions

¢ Create a second function for drawing a
note
— Head will be a solid oval, 20 pixels wide and
10 pixels high
— Stem will be 50 pixels tall on the left side
— Flag will be a cubic curve

15

Functions can Call Functions

16




2/17/2010

Variables & Functions

» Variables can be defined inside functions

— A variable defined inside of a function can
only be used inside that function

— Behaves just like the variables we have used
previously

17

Variables & Functions

» Variables can be defined outside of
functions
— Referred to as global variables

— Can be read anywhere in the program after it
is assigned a value

— All of the constants we have created are
global variables that we choose not to change

— Use of global variables (other than as
constants) is strongly discouraged

18

Variables & Functions

¢ Changing global variables
— By default, an assignment statement inside of
a function creates a new variable within that
function

¢ Even if a global variable with that name already
exists

— Want to change a global variable?

« Include a global statement at the beginning of the
function

19

Example

20




2/17/2010

Scope

» Scope determines the portion of a
program where a name can be used
— Impacts functions, variables, ...

* Functions

— Functions can't be called before they have
been defined

— Functions in other modules cannot be used
until after the import statement for that module

21

Scope

* Variables
— Cannot be read before they are given a value

— Can be used from the point where they are
first assigned a value until the end of the
function

— Variables created inside a function are
destroyed when the function exits

22

Parameter Variables

« Parameter variables hold values passed to
a function from the calling scope
— Parameter variables are normally read
—Itis also possible to store a new value into a
parameter variable (don't usually do this!)

« Value of the variable will change in the called
function

« For the types we have used so far, the value will
not change in the main program

23

Another Example

» Create a function called readinteger
- requires two parameters
¢ The lowest permitted value
* The highest permitted value
—returns one result

» The value entered by the user between lowest
(inclusive) and highest (inclusive)

— readInteger will ensure that the value returned
is within the specified range

— Use this function to improve the number game

24




2/17/2010

Another Example

25

Why Functions are Useful

* Facilitate Code Reuse

— Write once, use many times
* Reduce Complexity

— Low level details are hidden

— Programmer can concentrate on higher level
problems

e Ease Maintenance

— Bugs only need to be corrected once
— Functions can be tested separately

26

Comments

¢ Every function should begin with a
comment

— Describe the action taken by the function

— Describe the parameters that need to be
provided

— Describe the value returned by the function

27

Preconditions / Postconditions

» Function comments may also describe

— Preconditions:

¢ Conditions that must be true before the function
executes

« If any precondition is not met, the function may not
behave correctly

— Postconditions:

» Conditions that are guaranteed to be true after the
function executes

« If the function doesn’t make a post-condition true
then the function contains a bug that must be fixed

28




2/17/2010

Returning Multiple Values

+ What if we need to return more than one
value from a function?

— Comma separated list of values in return
statement

— Comma separated list of variables to the left
of the equals sign

29

Example
Flash card add and multiply practice:

» 10 random questions, add or multiply 2
integers between 1 and 10

30

Testing

¢ Test each function you write individually

— Errors are easier to find
« Generally only need to look inside the function
being tested
— Only use the function in the rest of your
program once you have tested it thoroughly

31

Design

» How do functions relate to top down
design?
— Use top down design to break the problem
into smaller pieces
— Each smaller piece is a good candidate for a
function
— Look at each function
* Is it too big?
¢ Does it contain repeated code?
* Should it call other functions?
32




2/17/2010

Wrapping Up Where Are We Going?
Functions » Now that we can write larger programs we
— A named group of statements that perform a want to be able to manage more data
task — How do we read and write values in files?
— Allow us to break our program into separate — How can we work with many values at the
units that each have a specific purpose same time in a reasonable way?
— Ease program creation and debugging

33

34




