
3/11/2010

1

Topic 9: RecursionTopic 9: Recursion

To Understand Recursion You Must First To Understand Recursion You Must First
Understand RecursionUnderstand Recursion

1

3/11/2010

2

Recommended ReadingsRecommended Readings

•• Chapter 11Chapter 11

2

3/11/2010

3

RecursionRecursion

•• Definition:Definition:
–– See RecursionSee Recursion

Defining something in terms of itselfDefining something in terms of itself–– Defining something in terms of itselfDefining something in terms of itself
•• Generally using a smaller or simpler versionGenerally using a smaller or simpler version

•• Recursive FunctionRecursive Function

3

–– A function that calls itselfA function that calls itself

3/11/2010

4

A Simple ExampleA Simple Example

•• Compute n factorial:Compute n factorial:
–– Using a loopUsing a loop

•• Initialize result to 1Initialize result to 1

•• forfor ii ranging from 1 to n (inclusive)ranging from 1 to n (inclusive)for for ii ranging from 1 to n (inclusive)ranging from 1 to n (inclusive)
–– Multiply result by Multiply result by ii

–– Another solutionAnother solution
•• By definition, 0! is 1By definition, 0! is 1

4

y ,y ,

•• View n! as n * (nView n! as n * (n--1)!1)!

3/11/2010

5

A Simple ExampleA Simple Example

5

3/11/2010

6

RecursionRecursion

•• A well formed recursive function normally A well formed recursive function normally
has two caseshas two cases
–– Base Case:Base Case:

•• Does not make a recursive callDoes not make a recursive call•• Does not make a recursive callDoes not make a recursive call

•• Permits function to terminatePermits function to terminate

–– Recursive Case:Recursive Case:
•• Function calls itselfFunction calls itself

G ll t b ll t ll i lG ll t b ll t ll i l

6

•• Generally must be a call to a smaller or simpler Generally must be a call to a smaller or simpler
version of the problemversion of the problem

3/11/2010

7

Useful Examples of RecursionUseful Examples of Recursion

•• Drawing fractalsDrawing fractals

•• Finding a path through a mazeFinding a path through a maze

•• Flood fill / “paint bucket” toolFlood fill / “paint bucket” tool

•• Merge sort, quick sort, binary searchMerge sort, quick sort, binary search

•• Finding the total size of all of the files in a Finding the total size of all of the files in a
directory and its subdirectoriesdirectory and its subdirectories

7

•• Parsing / evaluating expressionsParsing / evaluating expressions

•• ……

3/11/2010

8

Greatest Common DivisorGreatest Common Divisor

•• Finding the greatest common divisorFinding the greatest common divisor of of
two positive integers, x and y:two positive integers, x and y:
–– If x can be evenly divided by y, then If x can be evenly divided by y, then gcdgcd((x,yx,y) is y) is y

–– OtherwiseOtherwise gcdgcd((x yx y) is) is gcdgcd(y remainder of x/y)(y remainder of x/y)Otherwise, Otherwise, gcdgcd((x,yx,y) is) is gcdgcd(y, remainder of x/y)(y, remainder of x/y)

8

3/11/2010

9

Fibonacci NumbersFibonacci Numbers

•• A sequence of values:A sequence of values:
–– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

•• Defined recursively:Defined recursively:
B d fi itiB d fi iti–– By definition:By definition:

•• fib(0) is 0fib(0) is 0

•• fib(1) is 1fib(1) is 1

–– Remaining values:Remaining values:

9

•• Formed by computing the sum of the previous two Formed by computing the sum of the previous two
values in the sequencevalues in the sequence

3/11/2010

10

Fibonacci NumbersFibonacci Numbers

10

3/11/2010

11

Advantages of RecursionAdvantages of Recursion

•• Well suited to some problemsWell suited to some problems
–– Tree traversalsTree traversals

–– Flood fillFlood fill

Fractal imagesFractal images–– Fractal imagesFractal images

–– Quick sort / merge sortQuick sort / merge sort

•• Often easier to implement sometimesOften easier to implement sometimes

11

Often easier to implement, sometimes Often easier to implement, sometimes
faster, than iterativefaster, than iterative

3/11/2010

12

Advantages of IterationAdvantages of Iteration

•• TypicallyTypically
–– Faster (but not always!)Faster (but not always!)

–– Requires less memory (most of the time!)Requires less memory (most of the time!)

•• But some problems are messy to express But some problems are messy to express
iterativelyiteratively

12

3/11/2010

13

FractalsFractals

•• Self similar imagesSelf similar images

•• Often have reasonably simple recursive Often have reasonably simple recursive
definitionsdefinitions

11 44–– 11 44

–– 22

13

–– 33

3/11/2010

14

Koch SnowflakeKoch Snowflake

14

3/11/2010

15

SierpinskiSierpinski TriangleTriangle

15

3/11/2010

16

Fractal FernFractal Fern

16

3/11/2010

17

Fractal ArtFractal Art

17

Spiral Fantasy by Alfred LaingSpiral Fantasy by Alfred Laing

3/11/2010

18

Fractal ArtFractal Art

18

Simple Thing by Philip TaylorSimple Thing by Philip Taylor

3/11/2010

19

Fractal ArtFractal Art

19

EdenesqueEdenesque by Helen by Helen GraingeGrainge (top)(top)

Rose by Keith Mackay (right)Rose by Keith Mackay (right)

3/11/2010

20

Fractal TFractal T--SquareSquare

20

3/11/2010

21

Fractal TFractal T--SquareSquare

21

3/11/2010

22

Maze Path FindingMaze Path Finding

•• Consider a two dimensional list containing Consider a two dimensional list containing
4 different values4 different values
–– Entrance for the mazeEntrance for the maze

Exit for the mazeExit for the maze–– Exit for the mazeExit for the maze

–– Open spacesOpen spaces

–– WallsWalls

•• Assume that the maze is fully enclosedAssume that the maze is fully enclosed

22

Assume that the maze is fully enclosedAssume that the maze is fully enclosed

3/11/2010

23

Maze Path FindingMaze Path Finding

•• Algorithm solve(map, x, y)Algorithm solve(map, x, y)
–– If the current square is a wall or a space we have already visited, If the current square is a wall or a space we have already visited,

return failurereturn failure

–– If the current square is the exit point, mark it as part of the If the current square is the exit point, mark it as part of the
solution and return successsolution and return success

–– Mark the current square as part of the solution Mark the current square as part of the solution

–– If solve(map, x, y+1) is successful, return successIf solve(map, x, y+1) is successful, return success

–– If solve(map, x, yIf solve(map, x, y--1) is successful, return success1) is successful, return success

–– If solve(map, x+1, y) is successful, return successIf solve(map, x+1, y) is successful, return success

If l (If l (1) i f l t1) i f l t

23

–– If solve(map, xIf solve(map, x--1, y) is successful, return success1, y) is successful, return success

–– Mark the current square as visited but not part of the solutionMark the current square as visited but not part of the solution

–– Return failureReturn failure

3/11/2010

24

Maze Path FindingMaze Path Finding

24

3/11/2010

25

RecursionRecursion

•• Recursion: See RecursionRecursion: See Recursion
–– Very useful for some problemsVery useful for some problems

–– Caution:Caution:
•• Can be inefficientCan be inefficient•• Can be inefficientCan be inefficient

•• Not a good solution for all problems Not a good solution for all problems –– Use it when Use it when
appropriate, don’t abuse itappropriate, don’t abuse it

25

