Name: \qquad
1: What is a function?

Consider the follow code segment:
a = input()
b = input()

```
if (a < b):
    for i in range(a,b):
        print i
elif (b < a):
    for i in range(b,a):
        print i * -1
else:
    print 0
```

2: What is the minimum number of test cases that are required in order to achieve statement level test coverage?

3: Define a set of test cases that will provide statement level test coverage. Clearly indicate what value is entered for a and what value is entered for b for each test case.

4: Which of the following statements is most correct?
A. A for loop is an example of a post-tested loop
B. A for loop always counts from one value to another, increasing by one each time
C. Two loops are said to be nested when one loop executes completely before the second loop executes for the first time
D. Every while loop can be rewritten as a for loop
E. None of the above answers are correct
\qquad

Consider the following code segment:

```
\(m=i n p u t()\)
n = input()
if (m < n):
    print "A"
    if \((m>0)\) and \((n>0)\) :
        print "B"
    elif ( \(\mathrm{n}<0\) ) :
        print "C"
    else:
        print "D"
else:
    print "E"
```

5: If the user enters the values 1 and 2 then the output will be the letter(s): \qquad

6: If the user enters the values 0 and 0 then the output will be the letter(s): \qquad

7: If the user enters the values -2 and -1 then the output will be the letter(s): \qquad

8: If the user enters the values 0 and 1 then the output will be the letter(s): \qquad

9: Rewrite the program shown below so that it uses a while instead of using a for loop.

```
a = input("Enter a: ")
b = input("Enter b: ")
total = 0
for i in range(a,b,3):
    if (i % 2) == 0:
            total = total + i
        else:
            total = total - i
print total
```

10: Which of the following logical expressions is equivalent to the truth table shown below?
a) (A and B) or (not A and B)
b) (A and not B) or (not A and not B)
c) $(\operatorname{not} A$ and $B)$ or $(A$ and not $B)$
d) $(\operatorname{not} A$ and $\operatorname{not} B)$ or (A and B)
e) None of the above answers are correct

Answer:

A	B	Output
0	0	0
0	1	1
1	0	0
1	1	1

