Introduction

We will introduce a particular type of graph — a (free) tree — that will be used in definitions of graph problems, and graph algorithms, throughout the rest of this course. Additional important definitions and graph properties will also be introduced.

Paths and Cycles

Definition: A path in an undirected graph $G = (V, E)$ is a sequence of zero or more edges in G

$$(v_0, v_1), (v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v_k)$$

where the second vertex (shown) in each edge is the first vertex (shown) in the next edge.

The path shown above is a path from v_0 (the first vertex in the first edge) to v_k (the second vertex in the final edge). This is a simple path if v_0, v_1, \ldots, v_k are distinct.
Paths and Simple Paths

Definition: The length of a path is the length of the sequence of edges in it.

Thus the path shown in the previous slide has length k.

Definition: An undirected graph $G = (V, E)$ is a connected graph if there is a path from u to v, for every pair of vertices $u, v \in V$.

Cycles and Simple Cycles

Definition: A cycle (in an undirected graph $G = (V, E)$) is a path with length greater than zero from some vertex to itself:

A cycle $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-2}, v_{k-1}), (v_{k-1}, v_0)$ is a simple cycle if $v_0, v_1, \ldots, v_{k-1}$ are distinct.

A graph $G = (V, E)$ is acyclic if it does not have any cycles.

Trees

Definition: A free tree is a connected acyclic graph.

Frequently we just call a free tree a “tree.”

- If we identify one vertex as the “root,” then the result is the kind of “rooted tree” we have seen before.

Problem with Terminology

- Different references tend to use these terms differently!
- For example, in some textbooks, a simple cycle is considered to be a kind of simple path, and the definition of “cycle” given is the same as the definition of simple cycle given above.
- Other references only call something a “path” if it is a simple path, as defined above; they only call something a “cycle” if it is a simple cycle, and they use the term walk to refer to the more general kind of “path” that is defined in these notes.

Consequence: You should check the definitions of these terms in any other references that you use!
Properties 1

Consider graph $G = (V, E)$:

1. If G is connected then $|E| \geq |V| - 1$
2. If G is acyclic then $|E| \leq |V| - 1$
3. If G is connected and acyclic then $|E| = |V| - 1$

See the lecture supplement for proofs.

Properties 2

Consider graph $G = (V, E)$. We will use the following properties to characterize trees:

1. If G is a tree then it has $|V| - 1$ edges
2. An acyclic graph with $|V| - 1$ edges is a tree
3. A connected graph with $|V| - 1$ edges is a tree

See the lecture supplement for proofs.

Spanning Trees

If $G = (V, E)$ is a connected undirected graph, then a **spanning tree** of G is a subgraph $\hat{G} = (\hat{V}, \hat{E})$ of G such that

- $\hat{V} = V$ (so that \hat{G} includes all the vertices in G)
- $\hat{E} \subseteq E$
- \hat{G} is a tree.

Example

Suppose $G = (V, E)$ is as follows.

```
   a---d---g
  /     |    /
 b-----e   f
  \
   c
```

Example Tree 1

Is the following graph $G_1 = (V_1, E_1)$ a spanning tree of G? Yes!

Example Tree 2

Is the following graph $G_2 = (V_2, E_2)$ also a spanning tree of G? Yes!

Example Tree 3

Is the following graph $G_3 = (V_3, E_3)$ also a spanning tree of G? No! Doesn’t span G (vertex g missing)

Subgraphs and Induced Subgraphs

Suppose $G = (V, E)$ is a graph.

- $\tilde{G} = (\tilde{V}, \tilde{E})$ is a subgraph of G if \tilde{G} is a graph such that $\tilde{V} \subseteq V$ and $\tilde{E} \subseteq E$.
- $\tilde{G} = (\tilde{V}, \tilde{E})$ is an induced subgraph of G if
 - \tilde{G} is a subgraph of G and, furthermore
 - $\tilde{E} = \{ (u, v) \in E \mid u, v \in \tilde{V} \}$, that is, \tilde{G} includes all the edges from G that it possibly could.
Predecessor Subgraphs

Let $G = (V, E)$ and let $s \in V$. Construct a subset V_p of V, a subset E_p of E, and a function $\pi : V \to V \cup \{\text{NIL}\}$ as follows.

- Initially, $V_p = \{s\}$, $E_p = \emptyset$, and $\pi(v) = \text{NIL}$ for every vertex $v \in V$.
- The following step is performed, between 0 and $|V| - 1$ times:
 - Pick some vertex u from the set V_p.
 - Pick some vertex $v \in V$ such that $v \notin V_p$ and $(u, v) \in E$. (The process must end if this is not possible to do.)
 - Set $\pi(v)$ to be u, add the vertex v to the set V_p, and add the edge $(u, v) = (\pi(v), v)$ to E_p

Note that $V_p \subseteq V$, $E_p \subseteq E$, and each edge in E_p connects pairs of vertices that each belongs to V_p each time the above (interior) step is performed — so that $G_p = (V_p, E_p)$ is always a subgraph of G.

Predecessor Subgraph Property

The graph $G_p = (V_p, E_p)$ that has been constructed is called a predecessor subgraph.

Claim:

Let $G_p = (V_p, E_p)$ be a predecessor subgraph of an undirected graph G.

a) G_p is a subgraph of G and G_p is a tree.

b) If $V_p = V$ then G_p is a spanning tree of G.

Proof.

Part (a) is true because $|E_p| = |V_p| - 1$, by the construction of V_p and E_p, and G_p is always connected, so G_p is a tree, as well as a subgraph of G.

Part (b) now follows by the fact that E_p is a subset of E, so that G_p is a subgraph of G, and by the fact that $V_p = V$.

Example

G_2 is an induced subgraph of G_1. G_3 is a subgraph of G_1, but G_3 is not an induced subgraph of G_1.

π:

\[
\begin{array}{cccccccccc}
& a & b & c & d & e & f & g & h & i \\
& \text{NIL} & a & b & a & b & e & h & e & f
\end{array}
\]