
Algorithms for Large Integer Matrix Problems

Mark Giesbrecht1, Michael Jacobson, Jr.2, and Arne Storjohann1

1 Ontario Research Centre for Computer Algebra, University of Western Ontario,
London, ON, N6A 5B7, Canada

{mwg,storjoha}@scl.csd.uwo.ca
2 Dept. of Computer Science, University of Manitoba,

Winnipeg, MB, R3T 2N2, Canada
jacobs@cs.umanitoba.ca

Abstract. New algorithms are described and analysed for solving vari-
ous problems associated with a large integer matrix: computing the Her-
mite form, computing a kernel basis, and solving a system of linear dio-
phantine equations. The algorithms are space-efficient and for certain
types of input matrices — for example, those arising during the compu-
tation of class groups and regulators — are faster than previous methods.
Experiments with a prototype implementation support the running time
analyses.

1 Introduction

Let A ∈ Z
n×(n+k) with full row-rank be given. The lattice L(A) is the set of

all Z-linear combinations of columns of A. This paper describes new algorithms
for solving the following problems involving L(A): computing the Hermite basis,
computing a kernel basis, and given an integer vector b, computing a diophantine
solution x (if one exists) to the linear system Ax = b.

By Hermite basis of A we mean the unique lower-triangular matrixH ∈ Z
n×n

such that L(H) = L(A) and each off-diagonal entry is nonnegative and strictly
smaller than the positive diagonal entry in the same row. A kernel for A is anN ∈
Z
(n+k)×k such that L(N) = {v ∈ Z

n+k | Av = 0}. The problem of computing H
and N often occurs as a subproblem of a larger number-theoretic computation,
and the input matrices arising in these applications often have some special
properties. The algorithms we give here are designed to be especially efficient
for an input matrix A ∈ Z

n×(n+k) which satisfies the following properties:

– A is sparse. More precisely, let µ be the number of nonzero entries in A.
Then µ = O(n1+ε) for some 0 ≤ ε < 1.

– The dimension k of the kernel is small compared with n.
– Let l be the smallest index such that the principal (n− l)× (n− l) submatrix

of the Hermite basis H of L(A) is the identity. Then l is small compared
with n.

Sparse input-matrices which satisfy these conditions on k and l are typical
in computations for computing class groups and regulators of quadratic fields

S. Boztaş and I.E. Shparlinski (Eds.): AAECC-14, LNCS 2227, pp. 297–307, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

298 M. Giesbrecht, M. Jacobson, Jr., and A. Storjohann

using the algorithm described in [4,7]. The diagonal elements of the Smith form
of the matrix yield the elementary divisors of the class group (i.e., they give the
class group as a product of cyclic groups), and the kernel (in the case of real
quadratic fields) is used to compute the regulator. In practice, the number of
diagonal elements of the Hermite basis which are not one is rarely larger than
the rank of the class group. Since class groups are often cyclic or very close to
being cyclic (as predicted by the Cohen-Lenstra heuristics [1]), l is small as well.
Thus, the algorithms described in this paper are especially effective for these
types of input.

Many algorithms have been proposed for computing the Hermite basis; for a
survey we refer to [12]. The algorithm proposed in [12] — which is determinis-
tic and computes a unimodular transformation-matrix, but does not exploit the
sparsity of A or the fact that l may be small — requires about O(n4(log ||A||)2)
bit operations where ||A|| = maxij |Aij |. Moreover, that algorithm requires in-
termediate storage for about O(n3(log ||A||)) bits. The algorithm we propose
computes H in an expected number of about O(µn2(log ||A|)+n3(log ||A||)2(l2+
k log ||A||)) bit operations. When A is sparse and k and l are small compared to
n we essentially obtain an algorithm which requires about O(n3(log ||A||)2) bit
operations. Moreover, the algorithm requires intermediate space for only about
O(n2 log ||A||) bits, for both sparse and dense input matrices. However, in prac-
tice, when A is sparse the storage requirements are reduced by a factor of two.

Table 1. Running times: A constant size entries and k < n.

Section Word operations Type
§3 Permutation conditioning O(n3) LV
§4 Leading minor computation O(µn2(logn)) LV
§5 Lattice conditioning O(kn3(logn)3) DET
§6 Kernel basis computation O(k2n3(logn)2) DET
§7 Hermite basis computation O(kn3(logn)3 + l2n3(logn)2) DET
§8 System solving O(n3(logn)2) DET

For the analyses of our algorithms we assume we are working on a binary
computer which has words of length ω, and if we are working with an input
matrix A ∈ Z

n+(n+k), that ω satisfies

ω > max
(
6 + log log

(
(
√
n||A||)n

)
, 1 + log(2(n2 + n))

)
. (1)

Primes in the range 2ω−1 and 2ω are called wordsize primes. We assume that a
wordsize prime can be chosen uniformly and randomly at unit cost. Complexity
results will be given in terms of word operations. For a more thorough discussion
of this model see the text [13].

The computation is divided into a number of phases. The first three phases
(described in Sections 3, 4 and 5) can be viewed as precomputation. Once these
are complete, computing a kernel and Hermite basis, as well as solving diophan-

Algorithms for Large Integer Matrix Problems 299

tine systems involving A, can be accomplished deterministically in the running
times indicated in Table 1.

The first phase – permutation conditioning – is to find a wordsize prime p for
which A has full row-rank modulo p and permute the columns via a permutation
matrix P such that the principal n × n submatrix B1 has generic rank-profile:
B = AP =

[
B1 B2

]
. The inverse modulo p of B1 is also computed during this

phase.
The second phase – leading minor computation – is to compute the determi-

nant d of B1. This is the only phase where we exploit the possible sparseness of A
to get a better asymptotic running-time bound. In practice, we use Wiedemann’s
algorithm modulo a collection of distinct primes; this is easy to parallelize.

The third phase – lattice conditioning – is to compute a Q ∈ Z
k×n which

is used to compress the information from the columns of B2 with B1 to obtain
a single n × n matrix B1 + B2Q from which the Hermite basis of B can be
recovered.

2 Preliminaries

We recall the notion of a recursive and iterated inverse. Let R be a commutative
ring with identity.

Recursive Inverse

Suppose that A ∈ Rn×n enjoys the special property that each principal minor is
invertible over R. The recursive inverse is a data structure that requires space
for only n2 ring elements but gives us the inverse of all principal minors of A.
By “gives us” the inverse we mean that we can compute a given inverse×vector
or vector×inverse product in quadratic time — just as if we had the inverse
explicitly.

For i = 1, . . . , n let Ai denote the principal i × i submatrix of A. Let di be
the i-th diagonal entry of A. For i = 2, . . . , n let ui ∈ R1×(i−1) and vi ∈ R(i−1)×1

be the submatrices of A comprised of the first i− 1 entries in row i and column
i, respectively. In other words, for i > 1 we have

Ai =
[
Ai−1 vi
ui di

]
.

The recursive inverse of A is the expansion

A−1 = VnDnUn · · ·V2D2U2V1D1U0D0, (2)

where Vi, Di and Ui are n × n matrix defined as follows. For i = 1, 2, . . . , n let
Bi = diag(A−1

i , In−i) ∈ Rn×n. Then

B1 =

D0[
d−11
In−1

]
,

300 M. Giesbrecht, M. Jacobson, Jr., and A. Storjohann

and for i > 1 we have

Bi =

Vi
 Ii−1 −Bi−1vi

1
In−i




Di
 Ii−1 (di − viui)−1

In−i




Ui
 Ii−1−ui 1

In−r


 Bi−1.

The expression (2) for A−1 as the product of structured matrices has some prac-
tical advantages in addition to giving us the inverse of all principal submatrices.
Suppose that A is sparse, with O(n1+ε) entries for some 0 ≤ ε < 1. Then the Vi

will also be sparse and A−1v or vTA−1 for a given v ∈ Rn×1 can be computed
in n2/2 +O(n1+ε) ring operations.

Iterated Inverse

Now, let U ∈ Rn×k and V ∈ Rk×n be given in addition to A. Suppose the
perturbed matrix A+ UV is invertible. The iterated inverse is a data structure
that gives us (A+ UV)−1 but requires only O(n2k) ring operations to compute
if we already have the inverse of A.

For i = 0, 1, 2, . . . , k let Ui and Vi be the submatrices of U and V comprised of
the principal i columns and rows, respectively. Let ui and vi be the i-th column
and row of U and V , respectively. Note that uivi is an n×n matrix over R while
while viui is a 1 × 1 matrix over R. For i = 0, 1, . . . , n suppose that (A + UiVi)
is invertible, and let Bi = (A+ UiVi)−1. Then B0 = A−1 and for i > 0 we have

Bi = (I + ūvi)Bi−1 where ūi = −1/(1 + viBi−1ui)Bi−1ui ∈ Rn×1.

The vector ūi can be computed using Bi−1 in O(n2+ni) ring operations. Thus,
if we start with B0, we can compute the iterated inverse expansion

(A+ UV)−1 = (I + ūkvk) · · · (I + ū2v2)(I + ū1v1)A−1

in O(n2k + nk2) ring operations. Using the iterated inverse, we can compute
(A + UV)−1u or uT (A + UV)−1 for a given u ∈ Rn×1 using O(n2 + nk) ring
operations. Note that for our applications k is typically much smaller than n.

3 Permutation Conditioning

Let A ∈ Z
n×(n+k) be given. Choose random wordsize primes in succession until a

prime p is found for which A has full rank modulo p. The rank check is performed
using gaussian elimination. The lower bound (1) on ω (the word length on the
computer) ensures such a prime will be found in an expected constant number of
iterations. Once a good prime is found, we can also compute a (n+ k)× (n+ k)
permutation matrix P such that each principal submatrix of AP is nonsingular
modulo p. Let B = AP . Let C be the modulo p recursive inverse of the principal
n× n submatrix of B. We call the tuple (B,P,C, p) a permutation conditioning
of A. Producing a permutation conditioning requires an expected number of
O(n3 + n2(log ||A||)) word operations.

Algorithms for Large Integer Matrix Problems 301

4 Computation of Leading Minor

Let (B,P,C, p) be a permutation conditioning of A ∈ Z
n+(n+k). Let B1 be the

principal n×n submatrix ofB. Let µ be a bound on the number of nonzero entries
in B1 and let d = detB1. For a wordsize prime p, the image d mod p can be
computed in an expected number of O(µ(n+ (log ||A||))) word operations using
the method of Wiedemann [14]. Hadamard’s bound gives |d| ≤ (

√
n||A||)n, so if

we have images for at least �n(log2
√
n||A||)/(ω−1)�+1 = O(n(log n+log ||A||))

distinct primes we can compute d using Chinese remaindering. We obtain the
following.

Proposition 1. The principal n × n minor of B can be computed using an
expected number of O(µn2(log n+ log ||A||) + µn(log ||A||)2) word operations.

Now assume we have computed d = detB1. Let v ∈ Z
n×1 be the n-th column

of In. Then the last entry of B−1
1 dv will be the determinant of the principal

(n−1)×(n−1) submatrix of B1. The vector B−1
1 dv is computed in O(n3(log n+

log ||A||)2) word operations using p-adic lifting as described in [2]. Because we
have the recursive inverse of B1, we get the following:

Proposition 2. Let a permutation conditioning (B,P,C, p) together with the
principal t× t minor of B be given, t > 1. Then the determinant of the principal
(t − 1) × (t − 1) minor of B can be computed in O(n3(log n + log ||A||)2) word
operations.

5 Lattice Conditioning

Let a permutation conditioning (B,P,C, p) of A ∈ Z
n×(n+k) be given. Write

B =
[
B1 B2

]
where B1 is n × n. Assume d = detB1 is also given. Recall that

detL(B) is the product of diagonal entries in the Hermite basis of B.

Definition 1. A lattice conditioning of B is a tuple (Q,W, c) such that:

– Q ∈ Z
k×n,

– gcd(c, pd2) = detL(B) where c = det(B1 +B2Q),
– W is the modulo p iterated inverse of B1 +B2Q.

The purpose of a lattice conditioning is to compress the information from the
extra columns B2 into the principal n columns. Note that

[
B1 B2

] [
In
Q Ik

]
=

[
B1 +B2Q B2

]

where the transforming matrix is unimodular. The condition gcd(c, pd2) =
detL(B) on c means that we can neglect the columns B2 when computing
the Hermite basis of B. Note that the condition gcd(c, d2) = detL(B) would
also suffice, but using the modulus pd2 ensures that B1 + B2Q is nonsingular
modulo p.

We have the following result, which follows from the theory of modulo d
computation of the Hermite form described in [3], see also [12, Proposition 5.14].
Let (Q,W, c) be a lattice conditioning of B. Then

302 M. Giesbrecht, M. Jacobson, Jr., and A. Storjohann

Lemma 1. L ([
B1 +B2Q d2I

])
= L(B).

The algorithm to compute a lattice conditioning is easiest to describe recursively.
Let B̄ and B̄2 be the matrices B and B2, respectively, but with the last column
removed. Assume we have recursively computed a lattice conditioning (Q̄, W̄ , c̄)
for B̄. Let u be the last column of B. We need to compute a v ∈ Z

1×n such
that gcd(c, pd2) is minimized, where c = det(B1+ B̄2Q̄+uv). Using the iterated
inverse W̄ , compute ū = (B1 + B̄1Q̄)−1c̄u using linear p-adic lifting. This costs
O(n3(log n + log ||A||)2) word operations. It is easy to derive from elementary
linear algebra that c = c̄ + vū. We arrive at the problem of computing v such
that

gcd(c̄+ v1ū1 + v2ū2 + · · · vnūn, d
2) = gcd(c̄, ū1, ū2, . . . , ūn, d

2). (3)

This problem, the “modulo N extended gcd problem” with N = pd2, is studied
in [11]. From [6] we know that there exists a v with entries bounded in magnitude
by O((log d)2). We may assume (by induction) the same bound for entries in Q̄.
Then ||B1 + B̄2Q̄|| = O(n(log d)2(log ||A||)) and Hadamard’s bound gives that
max(d, c̄, ||ū||) = O(n(log n+ log ||A||)).
Lemma 2. A solution v ∈ Z

1×n to the modulo pd2 extended gcd problem (3)
which satisfies ||v|| = O((log d)2) can be computed in O(n2(log n + log ||A||)2 +
n3(log n+ log ||A||)3) word operations.

We obtain the following result.

Proposition 3. Let a permutation conditioning (B,P,C, p) for A ∈ Z
n+(n+k)

together with the principal n×n minor d of B be given. Suppose that k < n. Then
a lattice conditioning (Q,W, c) for (B,P,C, p) which satisfies ||Q|| = O((log d)2)
can be computed in O(kn3(log n+ log ||A||)3) word operations.

In practice, the code fragment below will compute a suitable v ∈ Z
n×1 and

c quickly. Correctness is easy to verify.

c← c̄; g ← gcd(c, pd2);
for i from 1 to n do

v[i]← 0; g ← gcd(g, ū[i]);
while gcd(c, pd2) �= g do c← c+ ū[i]; v[i]← v[i] + 1

6 Kernel Basis Computation

Let a permutation conditioning (B,P,C, p) of A ∈ Z
n+(n+k) be given. Write

B =
[
B1 B2

]
where B1 ∈ Z

n×n. Assume d = detB1 is also given. We want to
compute a basis of the kernel of A, i.e., an N ∈ Z

(n+k)×k such that L(N) =
{v ∈ Z

n+k | Bv = 0}. Noting that AN = 0 if and only if BP−1N = 0 shows it
will be sufficient to compute a kernel basis of B.

The construction given in the next fact is classical. The bound is also easy
to derive. See for example [12].

Algorithms for Large Integer Matrix Problems 303

Fact 1. Let X = Badj
1 B2 and let H be the trailing k×k submatrix of the Hermite

basis of
[
B1 B2
I

]
. Then a kernel basis for B is given by N =

[−XH(1/d)
H

]
.

Moreover, ||N || ≤ (
√
n||A||)n.

A happy feature of the basis given by Fact 1 is that it is canonical; it is the
only basis which has trailing k× k submatrix in Hermite form. Suppose we had
some other kernel basis N̄ for B. Then we could construct H by transforming
the trailing k×k block of N̄ to Hermite form. We will use this observation in our
construction of N . Recover X by solving the matrix system B1X = dB2 using

linear p-adic lifting. Let M =
[−X
dI

]
∈ Z

(n+k)×k. Then BM = 0. The following

observation is well known.

Fact 2. Let M ∈ Z
(n+k)×k have rank k and satisfy BM = 0. If G ∈ Z

k×k is
such that L(GT) = L(NT) then MG−1 is a basis for the kernel for B.

Compute the Hermite basis GT of MT . Then MG−1 is a basis for the kernel
of B. In particular dG−1 is integral and has each diagonal entry a divisor of d.
Recover H by computing the Hermite form of of dG−1. Recovering G and H is
accomplished using the modulo d algorithm as described in [3] or [5]. The cost
is O(nk2) operations with integers bounded in length by log |d| = O(n(log n +
log ||A||)) bits, or O(n3k2(log n+ log ||A||)2) word operations. This also bounds
the cost of constructing X and post-multiplying X by H(1/d).

Proposition 4. Let a permutation conditioning (B,P,C, p) for A ∈ Z
n+(n+k)

together with the principal n×n minor of B be given. Then a kernel basis for A
can be computed in O(k2n3(log n+ log ||A||)2) word operations.

7 Hermite Basis Computation

Recall that l is the minimal index such that the principal (n − l) × (n − l)
submatrix of the Hermite basis of A is the identity. Our result is:

Proposition 5. Let a permutation conditioning (B,P,C, p) for A ∈ Z
n+(n+k)

together with the principal n×n minor d of B be given. Suppose k < n. Then the
Hermite basis of A can be computed in in O(kn3(log n+log ||A||)3+ l2n3(log n+
log ||A||)2) word operations.

Proof. (Sketch) Let B̄ be the first l rows of B1 + QB2. Write B̄ as
[
B̄1 B̄2

]
where B̄1 is (n − l) × (n − l). Find d̄ = det B̄1 using l − 1 applications of
Proposition 2. Let C̄ be the recursive inverse of B̄1. (Note that we get C̄ for
free from C.) Compute a lattice conditioning (Q̄, W̄ , c̄) for (B̄, In+k, C̄, p). Then
gcd(c̄, pd̄2) = 1. Furthermore:

B[
B̄1 B̄2
∗ ∗

] [
In−l

Q̄ Ik+l

] [
(B̄1 + B̄2Q̄)−1c̄

Ik+l

]
=

[
c̄In−l B̄2
∗ ∗

]
.

304 M. Giesbrecht, M. Jacobson, Jr., and A. Storjohann

where the transformed matrix on the right can be computed in O(kn3(log n +
log ||A||)2) word operations using p-adic lifting. By an extension of Lemma 1,
the Hermite basis of this matrix augmented with d2I will be the Hermite basis
of B. The basis is computed using O(nl2) operations with integers bounded in
length by log |d| = O(n(log n+ log ||A||)) bits.

8 System Solving

Our result is:

Proposition 6. Let the following (associated to an A ∈ Z
n+(n+k)) be given:

– a permutation conditioning (B,P,C, p),
– the principal n× n minor d of B, and
– a lattice conditioning (Q,W, c) for (B,P,C, p)which satisfies ||Q||=O((log d)2).

Then given a column vector b ∈ Z
n+k, a minimal denominator solution to the

system Ax = b can be computed in O(n3(log n+ log ||A||)2) word operations.

Proof. The technique is essentially that used in [9]; we only give the construction
here. Write B as B =

[
B1 B2

]
where B1 is n × n. Compute v = B−1

1 db and
w = (B1 +B2Q)−1cb. Find s, t ∈ Z such that sd+ tc = gcd(d, c). Then

x = sP
[
In

]
v + tP

[
In
Q

]
w

is a solution to Ax = b with minimal denominator.

Note that there exists a diophantine solution to the system if and only if the
minimal denominator is one.

9 Massaging and Machine Word Lifting

The algorithms in previous sections make heavy use of p-adic lifting to solve
linear systems. For efficiency, we would like to always choose p to be a power of
two. That is, p = 2ω where ω is the length of a word on the particular architecture
we are using, for example ω = 32, 64, 128. Then the lion’s share of computation
will involve machine arithmetic.

Unfortunately, the input matrix A may not have full rank modulo two, caus-
ing the permutation conditioning described in Section 2 to fail. In this section
we show how to transform A to a “massaged” matrix B of the same dimension
as A but such that all leading minors of B are nonsingular modulo two. The
massaged B can then be used as input in lieu of A.

The construction described here is in the same spirit as the Smith form
algorithm for integer matrices proposed by [8] and analogous to the massaging
process used to solve a linear polynomial system described in [10].

Algorithms for Large Integer Matrix Problems 305

Definition 2. A massaging of A is tuple (B,P,G,C) such that:

– G ∈ Z
n×n is in Hermite form with each diagonal entry a power of two,

– G−1A is an integer matrix of full rank modulo two,
– (B,P,C, 2ω) is a permutation conditioning of A.

Now we describe an algorithm to compute a massaging. Let Ā be the submatrix of
A comprised of the first n−1 rows. Recursively compute a massaging (P̄ , Ḡ, B̄, C̄)
for Ā. Write B̄ =

[
B̄1 B̄2

]
where B̄1 has dimension (n − 1) × (n − 1). Let

b =
[
b1 b2

]
be the last row of A where b1 has dimension n − 1. Consider the

over-determined linear system x
[
B̄1 B̄2

]
=

[
b1 b2

]
. This system is necessarily

inconsistent since we assumed that A has full row rank. But for maximal t,
we want to compute an x ∈ {0, 1, . . . , 2t − 1}n−1 such that xB1 ≡ b1 mod 2t,
xB2 ≡ b2 mod 2t−1 and xB2 �≡ b2 mod 2t. At the same time find an elementary
permutation matrix E such that the first component of (b2 − xB2)E is not
divisible by 2t. The computation of x and E is accomplished using linear p-adic
lifting with p = 2ω; for a description of this see [2] or [9]. Set

G =
[
Ḡ
x 2t

]
, P = P̄

[
In−1

E

]
, B =

[
In−1

1/2t

] [
In−1
−x 1

] [
B
b

]
.

Update the recursive inverse to produce C as described in Section 2.
We now estimate the complexity of computing a massaging. By Hadamard’s

bound, log2 detG ≤ n(log2
√
n+ log2 ||A||) which gives the worst-case bound

�n+ n log2(
√
n||A||)/ω� = O(n(log n+ log ||A||))

on the number of lifting steps. This a worst-case factor of only O(log n+log ||A||)
more lifting steps than required to compute only a permutation conditioning.

The only quibble with massaging is that entries in B might be larger than
entries in A. Recall that the parameter l is used to denote the smallest index
such that the Hermite basis of A has principal (n − l) × (n − l) submatrix the
identity. Then entries in the first n − l rows of B are bounded by ||A||. The
bound

||G−1|| ≤ (l + 1)(l+1)/2 (4)

is easy to derive. It follows that ||G−1B|| ≤ n(l+ 1)(l+1)/2||A||. We remark that
the bound (4) is pessimistic but difficult to improve substantially in the worst
case. It is an unfortunate byproduct of the fact that the ring Z is archimedian.
In practice, ||G−1|| is much smaller.

10 Implementation and Execution

All the algorithms described in the previous sections have been implemented
in C using the GNU MP large integer package. While the implementation is
still experimental, preliminary results are very encouraging for computing the
determinant, kernel and Hermite form of matrices with the small k and l.

306 M. Giesbrecht, M. Jacobson, Jr., and A. Storjohann

We have employed this code on matrices generated during the computation
of class groups and regulators of quadratic fields using the algorithm described
in [7]. This algorithm uses the index-calculus approach and is based largely
on the self-initializing quadratic-sieve integer-factorization algorithm. As in the
factoring algorithm, the matrices generated are very sparse, with on the order
of only 0.5% of entries nonzero.

The kernel of the matrix is required to compute the regulator of a real
quadratic field. In practice, only a few vectors in the kernel are sufficient for
this purpose, so the dimension of the kernel is small. As noted earlier, the ex-
pected number of diagonal elements of the Hermite basis which are not 1 is also
small. The algorithms described in this paper are especially effective for this
type of input.

Timings

The following table summarizes some of the execution timings on input as de-
scribed above. Times are in hours and minutes.

Input Timings HH:MM
n n+ k l % µ Massaging Det Cond Kernel Hermite
6000 6178 1 .373 00:14 05:50 02:40 – 00:03
6000 6220 1 .460 00:17 06:33 03:10 – 00:03
5000 5183 0 .542 00:09 07:55 00:02 02:50 –
6000 6181 0 .473 00:15 27:15 00:04 05:07 –
8600 8908 0 .308 00:38 20:30 00:14 19:15 –
10500 10780 0 .208 01:09 68:06 00:15 36:40 –

All computations were performed on 866Mhz Pentium III processors with
256Mb of RAM. Machine word lifting was used. The times for the determinant
computation represent total work done; each determinant was computed in par-
allel on a cluster of ten such machines.

The first two rows in the table correspond to input matrices from the com-
putation of the class groups of two imaginary quadratic orders. In this case,
there is no regulator and hence the kernel does not have to be computed. The
remaining examples all arise from real quadratic fields. The Hermite basis was
trivial for all theses examples, a fact which was immediately detected once the
lattice determinant had been computed. The second example and the last exam-
ple correspond to quadratic orders with 90 and 101 decimal-digit discriminants,
respectively. These are the largest discriminants for which the class group and
regulator have been computed to date.

For comparison, previous methods described in [7], and run on a 550Mhz
Pentium, required 5.2 days to compute the determinant and Hermite form of the
6000 × 6220 matrix. The 6000 × 6181 matrix required 12.8 days of computing
time to find the determinant, Hermite form and kernel on the same machine.
Computation of the Hermite form of the 10500 × 10780 matrix required 12.1
days. In this latter case, the computation of the kernel was not possible without
the new methods described in this paper.

Algorithms for Large Integer Matrix Problems 307

References

1. H. Cohen and H. Lenstra, Jr. Heuristics on class groups of number fields. In Number
Theory, Lecture notes in Math., volume 1068, pages 33–62. Springer-Verlag, New
York, 1983.

2. J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer.
Math., 40:137–141, 1982.

3. P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form computa-
tion using modulo determinant arithmetic. Mathematics of Operations Research,
12(1):50–59, 1987.

4. J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for com-
putation of class groups. J. Amer. Math. Soc., 2:837–850, 1989.

5. C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the
canonical structure of finite abelian groups and the Hermite and Smith normal
forms of an integer matrix. SIAM Journal of Computing, 18(4):658–669, 1989.

6. H. Iwaniec. On the problem of Jacobsthal. Demonstratio Mathematica, 11(1):225—
231, 1978.

7. M. J. Jacobson, Jr. Subexponential Class Group Computation in Quadratic Orders.
PhD thesis, Technischen Universität Darmstadt, 1999.

8. F. Lübeck. On the computation of elementary divisors of integer matrices. Journal
of Symbolic Computation, 2001. To appear.

9. T. Mulders and A. Storjohann. Diophantine linear system solving. In S. Dooley,
editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’99,
pages 281–288. ACM Press, 1999.

10. T. Mulders and A. Storjohann. Rational solutions of singular linear systems. In
C. Traverso, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC ’00, pages 242–249. ACM Press, 2000.

11. A. Storjohann. A solution to the extended gcd problem with applications. In W. W.
Küchlin, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’97, pages 109–116. ACM Press, 1997.

12. A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH – Swiss
Federal Institute of Technology, 2000.

13. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 1999.

14. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theory, IT-32:54–62, 1986.

	1 Introduction
	2 Preliminaries
	3 Permutation Conditioning
	4 Computation of Leading Minor
	5 Lattice Conditioning
	6 Kernel Basis Computation
	7 Hermite Basis Computation
	8 System Solving
	9 Massaging and Machine Word Lifting
	10 Implementation and Execution
	References

