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In an effort to expand the body of numerical data for real quadratic fields,
we have computed the class groups and regulators of all real quadratic fields
with discriminant ∆ < 109. We implemented a variation of the group structure
algorithm for general finite Abelian groups described in [2] in the C++ program-
ming language using built-in types together with a few routines from the LiDIA
system [12]. This algorithm will be described in more detail in a forth-coming
paper. The class groups and regulators of all 303963581 real quadratic fields
were computed on 20 workstations (SPARC-classics, SPARC-4’s, and SPARC-
ultra’s) by executing the computation for discriminants in intervals of length
105 on single machines and distributing the overall computation using PVM [8].
The entire computation took just under 246 days of CPU time (approximately
3 months real time), an average of 0.07 seconds per field.

In this contribution, we present the results of this experiment, including data
supporting the truth of Littlewood’s bounds on the function L (1, χ∆) [13] and
Bach’s bound on the maximum norm of the prime ideals required to generate
the class group [1]. Data supporting several of the Cohen-Lenstra heuristics [6,7]
is presented, including results on the percentage of non-cyclic odd parts of class
groups, percentages of odd parts of class numbers equal to small odd integers,
and percentages of class numbers divisible by small primes p. We also give new
examples of irregular class groups, including examples for primes p ≤ 23 and one
example of a rank 3 5-Sylow subgroup (3 non-cyclic factors), the first example
of a real quadratic class group which has a p-Sylow subgroup with rank greater
than 2 and p > 3.

1 The L (1, χ�) Function

Much interest has been shown in extreme values of the L (1, χ∆) function
[3,14,10,4]. A result of Littlewood [13] and Shanks [14] shows that under the
Extended Riemann Hyptothesis (ERH)

{1 + o(1)} (c1 log log∆)−1
< L (1, χ∆) < {1 + o(1)} c2 log log∆, (1)
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where the values of the constants c1 and c2 depend upon the parity of ∆:

c1 = 12eγ/π2 and c2 = 2eγ when 2 6 |∆
c1 = 8eγ/π2 and c2 = eγ when 2 |∆ .

For a fixed ∆, Shanks [14] defines the upper and lower Littlewood indices as

ULI = L (1, χ∆) / (c2 log log∆) (2)
LLI = L (1, χ∆) c1 log log ∆ . (3)

If (1) is true, then as ∆ increases, we would expect that extreme values of the
ULI and LLI would tend to approach 1. A ULI value greater than 1 or LLI
value less than 1 would probably indicate a violation of the ERH [14].

Following [11] and [14], we define the function

L∆(1) =
∏

p prime


 p

p −
(

4∆
p

)

 . (4)

Note that this function is essentially L (1, χ∆) with the 2-factor divided out, i.e.,

L∆(1) =




L (1, χ∆) if ∆ ≡ 0 (mod 4)
(1/2)L (1, χ∆) if ∆ ≡ 1 (mod 8)
(3/2)L (1, χ∆) if ∆ ≡ 5 (mod 8) .

Since the 2-factor is determined by the congruence class of ∆ modulo 8, dividing
it out allows us to compare the quadratic residuosity of all discriminants re-
gardless of their congruence modulo 8. In [14], Shanks derives bounds for L∆(1)
analogous to (1) (also under ERH)

{1 + o(1)}
(

8
π2

log log 4∆

)−1

< L∆(1) < {1 + o(1)} eγ log log 4∆, (5)

and the corresponding indices

ULI∆ = L∆(1)/ (eγ log log 4∆) (6)
LLI∆ = L∆(1) 8

π2 log log 4∆ . (7)

If (5) is true, then as ∆ increases, we would also expect the extreme values of
the ULI∆ and LLI∆ to approach 1.

We have recorded the successive L (1, χ∆) maxima and minima for even ∆,
∆ ≡ 1 (mod 8), and ∆ ≡ 5 (mod 8) where ∆ < 109, together with ULI val-
ues and L∆(1) and ULI∆ values where appropriate. The maximum L (1, χ∆)
value found was 7.07046680 . . . (ULI = 0.65623747 . . .) for ∆ = 872479969
and the maximum L∆(1) value was 3.74995980 . . . (ULI∆ = 0.68501570 . . .)
for ∆ = 612380869. The minimum L (1, χ∆) value found was 0.18948336 . . .
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(LLI = 1.12478715 . . .) for ∆ = 5417453 and the minimum L∆(1) value was
0.27822361 . . . (LLI∆ = 1.20515814) for ∆ = 133171673. We found no surprises
here — the L (1, χ∆) , ULI, and LLI values seem to behave similarly to those of
imaginary quadratic fields [3] and correspond to previous observations [10]. At
first glance, it may appear that the LLI value for ∆ = 1592 indicates a violation
of the ERH. However, as discussed by Shanks in [14], the apparent violation can
almost certainly be accounted for by the o(1) term in (1), since this discriminant
is so small.

In [4], Buell also looked at the mean values of L (1, χ∆) for imaginary quadra-
tic fields of both even and odd discriminant. His computations suggest that the
mean value of L (1, χ∆) is approximately 1.186390 for even discriminants and
1.581853 for odd discriminants. Our computations show that the same mean
values probably hold for real quadratic fields. We have computed a mean value
of 1.18639 for the even discriminants less than 109, and our computed value of
1.58154 for odd discriminants less than 109 is close to Buell’s value. We suppose
that the difference can be accounted for by the fact that Buell has considered
over twice as many fields as we have (|∆| < 2.2× 109). Indeed, it seems that at
∆ ≈ 109 the mean value of L (1, χ∆) is still slowly approaching Buell’s value in
our case.

2 Odd Parts of Class Numbers

Let Cl∗∆ be the odd part of the class group of Q(
√

∆). Cohen and Lenstra [6,7]
provide some heuristics on the distribution of various Cl∗∆. For example, if we
define

w(n) =
∏

pα ‖n

1
pα(1 − p−1)(1 − p−2) . . . (1 − p−α)

, (8)

η∞(p) =
∞∏

i=1

(1 − p−i) (η∞(2) = 0.288788095 . . .), (9)

C∞ =
∞∏

j=1

ζ(j + 1) = 2.294856589 . . . , (10)

C =
1

2η∞(2)C∞
= 0.754458173 . . . , (11)

the probability that h∗
∆ = |Cl∗∆| is equal to k is

Prob(h∗
∆ = k) =

Cw(k)
k

. (12)

This gives us Prob(h∗
∆ = 1) = 0.754458173 . . . , Prob(h∗

∆ = 3) = 0.125743028 . . . ,
and Prob(h∗

∆ = 5) = 0.037722908 . . . for the first few small values of k. Using
this heuristic assumption, Lukes, Williams, and the author were also able to
derive [10]

Prob(h∗
∆ > x) =

1
2x

+ O

(
log x

x2

)
, (13)
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a generalization of a conjecture of Hooley for prime discriminants [9] and

k + 1 =
1
2

(
1

1 − Prob(h∗
∆ ≤ k)

)
+ O

(
logk

k2

)
, (14)

which can be used to test the validity of (13).
We have used our computation of all class groups of fields Q(

√
∆) where

∆ < 109 to extend the numerical evidence supporting (12) and (13) presented
in [10]. Define qi(x) to be the observed ratio of odd discriminants less than x
with h∗

∆ = i divided by the conjectured asymptotic probability given by (12).
Similarly, we define si(x) to be the observed ratio of odd discriminants less than
x with h∗

∆ ≤ i and

ti(x) =
1
2

(
1

1 − si(x)

)
.

Tables 1 and 2 contain values of qi(x) and ti(x) for various i and x for ∆ ≡ 1
(mod 4), ∆ < 109. If (12) is correct, we would expect the values in Tab. 1 (qi(x)
values) to approach 1 for each value of i as x increases. Similarly, if (13) is
correct, by (14) we would expect the values in Tab. 2 (ti(x) values) to approach
i + 1 for each value of i as x increases. As observed in [10], this does appear to
happen in both cases. Our extended computation also supports this, although the
convergence is still rather slow. The corresponding tables for even discriminants
are so similar that in the interest of brevity we do not include them here.

3 Divisibility of h� by Odd Primes

Another heuristic presented in [6,7] is the probability that h∆ is divisible by an
odd prime p is given by

Prob(p | h∆) = 1 − η∞(p)
1 − p−1

, (15)

where η∞(p) is defined in (9). For example, Prob(3 |h∆) = 0.159810883 . . . ,
Prob(5 |h∆) = 0.049584005 . . . , and Prob(7 |h∆) = 0.023738691 . . . for the first
few small odd primes.

Define pp(x) to be the observed ratio of odd discriminants less than x with
p |h∆ divided by the conjectured asymptotic probability given by (15). As x
increases, we expect pp(x) to approach 1 for a specific odd prime p. In Tab. 3
we provide values of pp(x) for various p and x for ∆ ≡ 1 (mod 4), ∆ < 109.
Unlike the case in imaginary fields [4], the values of pp(x) seem to approach 1
fairly smoothly from below. The corresponding table for ∆ ≡ 0 (mod 4) is very
similar and hence not included here.
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4 Non-cyclic p-Sylow Subgroups

As above, let Cl∗∆ be the odd part of Cl∆. Then, under the heuristic assumptions
in [6,7] one can easily derive the probability that Cl∗∆ is cyclic, namely

Prob(Cl∗∆ cyclic) = C
∏

p odd prime

p3 − p2 + 1
(p − 1)(p2 − 1)

= 0.997630528 . . . (16)

where C is given by (11). Define c(x) to be the observed ratio of odd (or even)
discriminants less than x with Cl∗∆ cyclic divided by the conjectured asymptotic
probability given by (16). This function should approach 1 as x increases if (16)
is true.

Table 4 provides values of c(x) for various values of x and both even and odd
∆. The total number of fields with discriminant less than x and the number of
non-cyclic Cl∗∆ are also listed for even and odd ∆. As expected, the values of
c(x) appear to approach 1 in both cases.

For an odd prime p, define the p-rank of Cl∆ to be the number of non-cyclic
factors of the p-Sylow subgroup of Cl∆. Yet another heuristic of Cohen and
Lenstra [6,7] states that the probability that the p-rank of Cl∆ is equal to r is
given by

Prob(p-rank of Cl∆ = r) =
η∞(p)

pr(r+1)(1 − p−(r+1))
∏

1≤k≤r(1 − p−k)2
. (17)

For example, Prob(3-rank of Cl∆ = 2) = 0.002272146 . . . , Prob(3-rank of Cl∆ =
3) = 0.000003277 . . . , and Prob(5-rank of Cl∆ = 2) = 0.000083166 . . . . Define
prp,r(x) to be the observed ratio of odd discriminants less than x with p-rank = r
divided by the conjectured asymptotic probability given by (17). As x increases,
we expect prp,r(x) to approach 1 for a specific odd prime p and p-rank r if (17)
is true.

In Tab. 5 we provide values of prp,r(x) for various values of p, r, and x for
∆ ≡ 1 (mod 4), ∆ < 109. These values do seem to approach 1, but due to the
scarcity of examples the convergence is extremely slow, especially for pr3,3(x).
The corresponding table for ∆ ≡ 0 (mod 4) is very similar and hence not
included here.

5 First Occurrences of Non-cyclic p-Sylow Subgroups

FollowingBuell [4], we list the total number and first occurrences of discriminants
for which the p-Sylow subgroup is non-cyclic for various primes p. For the prime
2, we consider only the principal genus (the subgroup of squares) instead of the
whole class group, since much of the information on the 2-Sylow subgroup of
Cl∆ is easily obtainable from the factorization of ∆.

In Tab. 6 and 7 we present those discriminants for which the p-Sylow sub-
group has rank 2, and in particular has the structure C(pe1) × C(pe2). Table 6
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contains the data corresponding to the principal genus, and Tab. 7 contains data
for odd primes p. In both tables, we list the smallest discriminant and the to-
tal number of discriminants ∆ < 109 whose class groups contain the specified
p-Sylow subgroup, odd and even discriminants being tabulated separately. We
have found class groups with non-cyclic p-Sylow subgroups for primes p ≤ 23.
There are obviously not as many examples as in the case of imaginary fields [4],
as one would expect from the heuristic p-rank probabilities derived by Cohen
and Lenstra [6,7].

In Tab. 8 and 9 we present the corresponding data for class groups with p-
Sylow subgroups of rank 3, i.e., having structure C(pe1)×C(pe2 )×C(pe3 ). Once
again, we consider the 2-Sylow subgroup of the principal genus, not Cl∆. Again,
we have significantly fewer examples as in the case of imaginary fields [4], and
no examples with rank greater than 3. However, the discriminant 999790597 has
class group isomorphic to C(5) × C(5) × C(40) and is believed to be the only
discriminant known with p-rank greater than 2 for an odd prime p > 3.

The smallest discriminants and total number of discriminants ∆ < 109 whose
class groups contain 2 non-cyclic p-Sylow subgroups are presented in Tab. 10.
When one examines the probability that the p-Sylow subgroup is non-cyclic
presented in the last section, it is easy to see why so few examples of fields with
doubly non-cyclic class groups were found.

6 The Number of Generators Required

In [1], Bach gives a theorem which states that under the ERH, the prime ide-
als of norm 6 log2 ∆ are sufficient to generate the class group. In practice, it
has been observed that this bound does not seem to be tight, i.e., fewer gen-
erators are sufficient [5]. During the course of our computation, we have kept
track of the maximum norm of the prime ideals required to generate the class
group of each discriminant ∆ < 109. Of all 303963581 fields considered, the field
Q(

√
519895977) required the prime ideal with largest norm to construct a full

generating system, namely 197.

For a specific ∆, define maxp(∆) to be the largest norm of the prime ideals
required to generate the class group of Q(

√
∆). If Bach’s theorem is true, we

would expect that maxp(∆)/ log2 ∆ should always be less than 6. For ∆ < 109,
this is in fact the case, and indeed if we exclude the very smallest discriminants
(like ∆ = 5), the maximum value obtained for this ratio is 0.55885 . . . for ∆ =
519895977. As one would expect due to the high probability of cyclic odd parts
of class groups, the average value of this ratio is significantly less than 6 — for
∆ < 109 we have obtained a value of 0.01984 . . . .

It has been conjectured [5] that a tighter bound of the form c log1+ε ∆ for
any ε > 0 may hold in this case. Hence, in order to get an idea of the order
of magnitude of the constant c, we also considered the ratio maxp(∆)/ log∆.
For ∆ < 109, the largest value we obtained was 9.81607 . . . for the discriminant
519895977 and the average value was 0.38982 . . . .
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A Appendix

Table 1. Values of qi(x) for ∆ ≡ 1 (mod 4).

x q1(x) q3(x) q5(x) q7(x) q9(x) q11(x) q27(x)

1000000 1.06119 0.85263 0.95644 0.94918 0.70424 0.90228 0.47347
10000000 1.03676 0.89604 0.99125 0.99564 0.83023 0.97519 0.69086
20000000 1.03178 0.90683 0.99465 1.00142 0.84625 0.98812 0.74718
30000000 1.02923 0.91246 0.99592 1.00250 0.85705 0.99247 0.76587
40000000 1.02752 0.91613 0.99663 1.00194 0.86264 0.99791 0.78753
50000000 1.02634 0.91893 0.99664 1.00315 0.86638 0.99846 0.79660
60000000 1.02541 0.92078 0.99588 1.00446 0.87092 0.99982 0.80705
70000000 1.02461 0.92235 0.99632 1.00504 0.87567 1.00148 0.81494
80000000 1.02389 0.92374 0.99637 1.00623 0.87874 1.00372 0.82014
90000000 1.02333 0.92480 0.99702 1.00608 0.88182 1.00418 0.82863

100000000 1.02284 0.92605 0.99695 1.00581 0.88409 1.00528 0.83205
200000000 1.01994 0.93304 0.99698 1.00554 0.89658 1.00676 0.86198
300000000 1.01839 0.93699 0.99776 1.00567 0.90286 1.00637 0.87221
400000000 1.01739 0.93972 0.99796 1.00537 0.90680 1.00635 0.87994
500000000 1.01662 0.94173 0.99830 1.00476 0.91021 1.00679 0.88370
600000000 1.01604 0.94313 0.99839 1.00498 0.91269 1.00725 0.88921
700000000 1.01558 0.94444 0.99867 1.00457 0.91438 1.00665 0.89328
800000000 1.01515 0.94556 0.99887 1.00473 0.91642 1.00663 0.89664
900000000 1.01480 0.94654 0.99903 1.00491 0.91783 1.00686 0.89807

1000000000 1.01449 0.94739 0.99925 1.00484 0.91907 1.00690 0.90041
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Table 2. Values of ti(x) for ∆ ≡ 1 (mod 4).

x t1(x) t3(x) t5(x) t7(x) t9(x) t11(x) t27(x)

1000000 2.50786 5.42530 8.91565 12.81041 17.88166 22.96408 109.65097
10000000 2.29561 4.75574 7.38079 10.02841 13.58368 16.60010 55.01249
20000000 2.25667 4.64952 7.14116 9.61024 12.91103 15.64977 48.43620
30000000 2.23723 4.59746 7.02378 9.40226 12.59204 15.19731 45.43814
40000000 2.22443 4.56286 6.94593 9.26159 12.36781 14.88841 43.53718
50000000 2.21560 4.54032 6.89384 9.17287 12.22767 14.68742 42.23651
60000000 2.20874 4.52115 6.84708 9.09414 12.10904 14.52054 41.36938
70000000 2.20287 4.50462 6.81076 9.03188 12.02043 14.39801 40.61104
80000000 2.19765 4.48987 6.77728 8.97656 11.93639 14.28389 39.94645
90000000 2.19354 4.47810 6.75275 8.93314 11.87337 14.19501 39.48465

100000000 2.18998 4.46955 6.73308 8.89798 11.82131 14.12367 39.02412
200000000 2.16921 4.41793 6.61671 8.69513 11.51779 13.69636 36.62777
300000000 2.15828 4.39186 6.56095 8.59942 11.37594 13.49526 35.52398
400000000 2.15123 4.37589 6.52601 8.53874 11.28573 13.36847 34.83250
500000000 2.14593 4.36363 6.49985 8.49242 11.21844 13.27520 34.32766
600000000 2.14189 4.35361 6.47794 8.45561 11.16400 13.20015 33.93718
700000000 2.13868 4.34659 6.46330 8.42964 11.12534 13.14471 33.63894
800000000 2.13575 4.33986 6.44904 8.40581 11.09178 13.09783 33.39694
900000000 2.13331 4.33435 6.43741 8.38650 11.06361 13.05911 33.19010

1000000000 2.13123 4.32982 6.42809 8.37053 11.04056 13.02709 33.01701

Table 3. Values of pp(x) for ∆ ≡ 1 (mod 4).

x p3(x) p5(x) p7(x) p11(x) p13(x) p17(x) p19(x)

1000000 0.79263 0.85146 0.81554 0.75676 0.78022 0.64981 0.64482
10000000 0.86203 0.92211 0.90990 0.87157 0.88008 0.83734 0.82371
20000000 0.87781 0.93583 0.92884 0.89645 0.90250 0.86862 0.85824
30000000 0.88602 0.94186 0.93593 0.90931 0.91832 0.88125 0.87796
40000000 0.89166 0.94644 0.93995 0.91964 0.92549 0.89038 0.88702
50000000 0.89565 0.94941 0.94450 0.92469 0.92899 0.89572 0.89286
60000000 0.89875 0.95110 0.94890 0.92865 0.93287 0.90293 0.90142
70000000 0.90138 0.95319 0.95187 0.93207 0.93397 0.90733 0.90522
80000000 0.90359 0.95474 0.95493 0.93650 0.93619 0.91241 0.91046
90000000 0.90548 0.95692 0.95641 0.93841 0.93792 0.91248 0.91254

100000000 0.90723 0.95769 0.95775 0.94103 0.93852 0.91572 0.91663
200000000 0.91756 0.96437 0.96503 0.95327 0.95101 0.93335 0.93290
300000000 0.92311 0.96849 0.96937 0.95884 0.95706 0.94071 0.94133
400000000 0.92681 0.97071 0.97204 0.96205 0.95890 0.94696 0.94566
500000000 0.92958 0.97254 0.97360 0.96488 0.96211 0.95253 0.94938
600000000 0.93165 0.97381 0.97533 0.96747 0.96460 0.95654 0.95244
700000000 0.93340 0.97503 0.97625 0.96881 0.96618 0.95852 0.95441
800000000 0.93494 0.97597 0.97733 0.97022 0.96828 0.96099 0.95553
900000000 0.93627 0.97676 0.97837 0.97156 0.96979 0.96284 0.95672

1000000000 0.93736 0.97748 0.97896 0.97250 0.97123 0.96415 0.95859
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Table 4. Number of non-cyclic odd parts of class groups.

∆ ≡ 0 (mod 4) ∆ ≡ 1 (mod 4)
x total non-cyclic c(x) total non-cyclic c(x)

1000000 101322 50 1.00188 202635 114 1.00181
10000000 1013213 919 1.00147 2026440 2088 1.00134
20000000 2026421 2129 1.00132 4052851 4627 1.00123
30000000 3039631 3385 1.00126 6079260 7365 1.00116
40000000 4052850 4733 1.00120 8105666 10137 1.00112
50000000 5066064 6108 1.00117 10132117 13008 1.00109
60000000 6079270 7595 1.00112 12158544 15999 1.00106
70000000 7092461 9048 1.00110 14184949 19007 1.00103
80000000 8105723 10519 1.00107 16211387 22000 1.00101
90000000 9118933 12028 1.00105 18237802 25091 1.00100

100000000 10132112 13508 1.00104 20264212 28150 1.00098
200000000 20264226 28941 1.00094 40528477 60347 1.00088
300000000 30396405 44996 1.00089 60792687 93517 1.00083
400000000 40528481 61286 1.00086 81056963 127467 1.00080
500000000 50660585 78144 1.00083 101321188 161867 1.00077
600000000 60792730 94989 1.00081 121585380 197074 1.00075
700000000 70924833 112001 1.00079 141849691 232554 1.00073
800000000 81056948 129369 1.00078 162113906 267801 1.00072
900000000 91189082 146508 1.00076 182378148 303469 1.00071

1000000000 101321191 164246 1.00075 202642390 339554 1.00070

Table 5. Values of prp,r(x) for ∆ ≡ 1 (mod 4).

x pr3,2(x) pr3,3(x) pr5,2(x) pr7,2(x) pr11,2(x) pr13,2(x)

1000000 0.24109 0.00000 0.17802 0.00000 0.00000 0.00000
10000000 0.43263 0.00000 0.49842 0.58526 0.00000 0.00000
20000000 0.47803 0.00000 0.61116 0.60965 0.00000 0.00000
30000000 0.50844 0.00000 0.62303 0.61778 0.26275 0.00000
40000000 0.52500 0.03765 0.64825 0.59745 0.59119 0.54645
50000000 0.53875 0.06023 0.67525 0.55600 0.63060 0.43716
60000000 0.55223 0.05019 0.69423 0.53649 0.52550 0.36430
70000000 0.56236 0.06454 0.70186 0.58526 0.45043 0.31225
80000000 0.56963 0.05647 0.70610 0.61574 0.49265 0.54645
90000000 0.57777 0.08366 0.70742 0.64487 0.43791 0.48573

100000000 0.58360 0.09035 0.71026 0.63891 0.55177 0.65574
200000000 0.62506 0.13552 0.78116 0.70231 0.63060 0.54645
300000000 0.64581 0.15058 0.80539 0.75434 0.68315 0.58288
400000000 0.66070 0.14682 0.81291 0.76815 0.68971 0.54645
500000000 0.67127 0.18973 0.82311 0.79498 0.69366 0.56830
600000000 0.68148 0.19325 0.83002 0.78604 0.70942 0.51002
700000000 0.68942 0.21082 0.83817 0.79985 0.74320 0.43716
800000000 0.69479 0.20893 0.84376 0.80290 0.73898 0.40983
900000000 0.70012 0.20747 0.84409 0.81069 0.73570 0.46144

1000000000 0.70513 0.20780 0.84898 0.81936 0.74883 0.56830
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Table 6. Non-cyclic rank 2 2-Sylow subgroups.

e1 e2 first odd ∆ # odd ∆ first even ∆ # even ∆

1 1 26245 625278 12104 437912
2 1 134249 233132 69064 164617
2 2 1717505 8914 1781004 6132
3 1 563545 57267 796552 39791
3 2 2044369 3267 5324556 2138
3 3 22325605 111 34560024 82
4 1 1397321 13789 1542748 9535
4 2 8443681 742 19369756 496
4 3 48365305 34 103252696 18
4 4 * * 683376268 1
5 1 7182401 3053 10562504 2091
5 2 82670065 138 107723544 83
5 3 327805705 3 522315292 2
6 1 18727689 603 31610632 353
6 2 256055305 13 592435596 9
6 3 938900353 1 887803144 1
7 1 64209289 73 187432072 35
7 2 351270505 4 * *
8 1 216442945 6 325080904 2
9 1 438986305 1 * *

Table 7. Non-cyclic rank 2 p-Sylow subgroups.

p e1 e2 first odd ∆ # odd ∆ first even ∆ # even ∆

3 1 1 32009 279754 94636 135945
3 2 1 255973 39982 626264 19100
3 2 2 8739521 313 25725176 147
3 3 1 2178049 4184 1559644 1771
3 3 2 49831633 33 82435336 15
3 3 3 395659153 1 * *
3 4 1 4822921 381 51236956 115
3 4 2 * * 793667548 1
3 5 1 125609177 13 412252408 2
3 6 1 604420177 2 * *
5 1 1 244641 13691 1277996 6929
5 2 1 3874801 605 52929592 220
5 3 1 225225057 12 569204156 2
7 1 1 1633285 1652 3626536 799
7 2 1 30883361 28 96847468 8

11 1 1 26967253 95 81903208 54
13 1 1 39186673 25 41912572 14
13 2 1 900384041 1 * *
17 1 1 810413473 1 361880744 3
19 1 1 65028097 4 * *
23 1 1 763945277 1 * *
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Table 8. Non-cyclic rank 3 2-Sylow subgroups.

e1 e2 e3 first odd ∆ # odd ∆ first even ∆ # even ∆

1 1 1 5764805 1409 12490568 879
2 1 1 17737705 620 38922248 396
2 2 1 110255245 32 270453068 22
3 1 1 100282145 133 87572168 80
3 2 1 230818741 8 155979976 7
4 1 1 154877545 27 37970248 12
4 2 1 689289745 1 387642264 2
5 1 1 499871221 7 216461884 4
6 1 1 * * 708776776 1

Table 9. Non-cyclic rank 3 p-Sylow subgroups.

p e1 e2 e3 first odd ∆ # odd ∆ first even ∆ # even ∆

3 1 1 1 39345017 122 66567068 44
3 2 1 1 88215377 15 157753592 10
3 3 1 1 545184113 1 * *
5 1 1 1 999790597 1 * *

Table 10. Doubly non-cyclic p-Sylow subgroups.

p1 p1 first odd ∆ # odd ∆ first even ∆ # even ∆

2 3 10876805 1299 9622408 908
2 5 66376409 43 200600008 20
2 7 230181505 3 630353080 1
3 5 57586597 15 492371864 4
3 7 204242449 3 * *
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