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Abstract. We present efficient algorithms for computing discrete logarithms in the
class group of aquadratic order and for principality testing in areal quadratic order, based
on the work of Dillmann and Abel. We show how the idea of generating relations with
sieving can be applied to improve the performance of these algorithms. Computational
results are presented which demonstrate that our new techniques yield a significant
increase in the sizes of discriminants for which these discrete logarithm problems can
be solved.
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1. Introduction

It is well known that finite Abelian groups offer an excellent setting for cryptographic
protocols [15], in particular, groups in which thediscrete logarithm problentDLP)

is intractable. That is, giveg, a € G, it should be beyond the reach of an adversary to
recover an integex such thag* = a, or determine that no suohexists. Several types

of finite Abelian groups have been proposed for this purpose, including the original idea
of the multiplicative group of a finite field modulo a prime [15], the group of points on
an elliptic curve over a finite field [20], [27], the group of points on a hyperelliptic curve
[21] over a finite field, and others.

The ideal class group of an imaginary quadratic order has received attention in the
context of key exchange protocols [9], [25], cryptosystems [18], and even an iden-
tification scheme [26]. Although not yet practical, such systems have the advantage
that breaking them appears to be at least as difficult as factoring, and quite possi-
bly harder. Real quadratic orders have also been proposed for use in these contexts
[29], [2]. Breaking theses systems also appears to be at least as difficult as factoring,
and they have the distinction of being the first discrete logarithm-based systems to
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make use of a structure whichngt a group, namely the infrastructure of the principal
class.
In quadratic orders, the general discrete logarithm problem is the following:

Problem 1.1. Given idealss, b of O, computex € Q(+/A) andx € Z-g such that
a=ab®,
or determine that no suchanda exist.

Most cryptosystems based on quadratic orders rely on the difficulty of this problem,
or some special case of it [9], [29]. In imaginary quadratic orders, the most difficult
part of solving Problem 1.1 is computing the exponenSince every ideal class has

a single unique reduced representative, the problem can be reduced to computing the
discrete logarithm of two ideal classesGh, . The class group is a finite Abelian group,

so generic methods such as those in [6] can be directly applied. If degiresh be

found by computing the quadratic numhesuch tha(1/a)b*a~! is reduced. However,

the size of the class group is approximatelyA], so for large discriminants generic
algorithms are too slow.

In real quadratic orders, the situation is reversed. In general, computingpe most
difficult part of solving Problem 1.1, since most real quadratic orders have small class
numbers. If we are given the exponentthenc is the generator of the principal ideal
b~*a. Thus, one needs to be able to do principal ideal testing in order to solve Problem 1.1
in real quadratic orders. Baby-step giant-step methods are applicable here, but since the
regulator is roughly as large a8A when the class number is small, they quickly become
impractical for large discriminants.

Subexponential algorithms have been proposed for computing discrete logarithms in
the class group [4] and for principality testing [1], [12]. Both algorithms require that
the class group and regulator be computed, together with data accumulated during the
course of the computation, after which any instance of the discrete logarithm problem
can be solved relatively quickly. Assuming the Extended Riemann Hypothesis, it has
been shown [4], [1] that these algorithms will compute discrete logarithms in expected
time

B+o(1)
L[B] = (exp,/logA log IogA) ,

where = v2 ~ 1.41 whenA < 0 andg = 5/3/6 ~ 1.44 whenA > 0. The
overwhelming majority of time spent in these algorithms is in the computation of the
class group and regulator, after which each individual discrete logarithm problem can
be solved in expected time][3].

Buchmann and Dilmann have implemented their algorithm [4], and they were able
to solve instances of the discrete logarithm problem for imaginary quadratic orders with
discriminants of as many as 40 decimal digits. For real quadratic orders, class groups and
regulators have been computed for orders with discriminants of as many as 41 decimal
digits using an implementation of the algorithm described in [12], so principality testing
is certainly possible for these orders as well.
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The improved algorithm for computing class groups and regulators from [19] can be
applied almost directly to these existing algorithms in order to speed up the precompu-
tation step of computing the class group and regulator. The major development in this
algorithm is the application of sieving to the process of generating random relations. An
important component of both the discrete logarithm algorithm in the class group and
the principality testing algorithm is computing a representation of a given ideal over the
factor base, and the idea of relation generation with sieving can also be applied to speed
up this step. Further improvements can be obtained in the linear algebra necessary to
compute discrete logarithms in the class group and in computing an approximation of
3(a) for principality testing.

Unfortunately, these algorithms, although significantly more efficientin practice, make
use of a number of heuristic ideas, and as such are difficult to analyze without relying
on additional unproved hypotheses. Thus, in this paper we focus on the practical perfor-
mance of our algorithms. We review the algorithms of [4], [1], and [12], and describe
our improved versions of both, together with computational results demonstrating their
efficiency.

2. Quadratic Orders

We give here a brief review of the concepts related to quadratic orders which we will
need in this exposition. For further details and proofs, the interested reader is invited to
refer to any standard text on the subject, for example [17], [10].

Given a non-square integey = 0, 1(mod 4, the quadratic orderof discriminantA
is defined as th&-module

A A
iz

Or=7Z+ >

O, is a Dedekind domain, and its field of quotients is the quadratic figkfA). The
units inO, can be completely characterized as follows\ Ik 0, there are finitely many
units given by

+1 if A< —4,

+1, +i if A=—4,
o 1+-3 !

+1, +i, — if A=-3

If A > 0, the unit group is given by
O) = (ea) x (=1).

In other words, the unit group of a real quadratic order is the direct product of the infinite
cyclic subgroup generated ly > 1, the fundamental unit, and the torsion subgroup
(—1) or order 2. We define theegulatorasR, = loge,.

A fractional ideal of©, can be represented by tAemodule

b+2«/ZZ}

a=q[aZ+
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wherea, b € Z, b> — A = 0(mod 4a), andq € Q [22], [8]. In this representatiora
andg are unique, and is unique modulo & Thenormof a is given byA (a) = g?a.
The product of two ideals is defined @s = {}_, ., @b U C a x b finite}. For any
ideala represented as above, if we have @cd, (b? — A)/4a) = 1, thena is invertible
under this operation, and its inverse is given by

1 — A
ol %va].
q 2a

O, is a unit under ideal multiplication, and it is easy to see fhatthe set of invert-
ible ideals of O, forms a group under this operation. Efficient algorithms for ideal
multiplication can be found in [5] and [19].

It can be shown that every ideal &%, is generated by at most two element<df,
i.e., we can write the ideal as a0 -moduleaO, + BO4 for somea, B € On. If
a = aQ,, itis called aprincipal ideal. The set of invertible, principal idea8, , forms
a subgroup of , under ideal multiplication. Thelass groupof O,, denoted byCl,,
is defined as the factor grodp /PA. The class group is a finite Abelian group, and we
define theclass number R as its order. Elements @fl o will be denoted by{]. Clearly,
if a, b € [a], thena = Bb for someB € Q(+/A). In this case we say thatandb are
equivalentwrittena ~ b.

We call the ideak reducedif

2

—-b<a<b, b>0 when a= if A<DO,
VA —2a<b<JA+2a if A>0.

Any given ideal can be reduced quickly [10], and we define the operation in the class
group as ideal multiplication followed by reduction, i.e., all arithmetic will be performed
with reduced ideals. This has the advantage that the operands used are bouydad by
[10]. For A < O, there is exactly one reduced ideal per equivalence clags.3 0O,
this is unfortunately not the case, but there are finitely many reduced representatives. If
(x)Oa = a, we calle thegeneratorof the principal ideah, and we define thdistanceas
§(a) =68(a) = % log|a/o (a)|(modR,). For two reduced principal ideadsandb, it can
be shown thas(ab) ~ §(a) + §(b). Using this construction, Shanks showed that some
structure can be imposed among the reduced principal ideals, calledrdsdructure
[31], [22], [19]. The infrastructure exhibits group-like properties, in fact, the only group
axiom which fails is associativity.

The prime ideals oD, can be characterized as follows(l / p) # —1 andb, is the
uniquely determined square root&f{mod 4p) with 0 < b, < p, then

by + VA
p(p>=pZ+pTZ

are the prime ideals of normp. Given any invertible integral ideal, we can represent it
as a unique power-product of prime ideals.
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Theorem 2.1. If for some invertible ideah = aZ + ((b + v/A)/2)Z we have
N@= [] o',

p prime

thena is equal to

l_[ p(p)e(p)up),

p prime

where €p) € {—1, 1} such that b= e(p)bp(mod 2p).

Thus, in order to factor an invertible integral ideal, one simply factors its norm (an
integer) and applies Theorem 2.1.

Leta = aZ + ((b + +/A)/2)Z be an integral ideal of,. The norm formof a is
the binary quadratic fornf = aX? 4+ bXY + cY?, wherec = (b?> — A)/(4a). Every
elementr = ax+ ((b+ +/A)/2)y € afor fixedx, y € Z has normue (o) = af(x, y),
whereo (@) = ax + (b — v/A)/2)y.

Proposition 2.2. If f is the norm form ofi € O, and f(x, y) = n for some xy € Z,
then there exists an ideal= nZ + (b’ + v/A)/2)Z such thata ~ b.

Proof. Construct a forng by solving the linear Diophantine equation
ux+vy=1

for u andv and then applying the transformation matrix

[X _”] € GL2, Z)
y u
to f, yielding the formg = f (x, y) X2+ (2(asu+ctv) +b(sv +tu)) XY+ f (u, v)Y? =
nX? 4+ b'XY + ¢'Y2. Sinceg is obtained fromf via a unimodular transformation of
variables, we havé ~ g. Furthermoreg is the norm form of an ideal

b+ VA
b=nz+ V27
2
and it can be shown thét ~ g impliesa ~ b [10]. |

3. Discrete Logarithms inCl

Let O, be any quadratic order. In this section we restrict our attention to solving the
following problem:

Problem 3.1. Given reduced ideals, b € Cl,, computex € Z( such that

[a] = [b]*,

or determine that no suchexists.
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In order to solve the more general Problem 1.1, it is first necessary to compyte
solving Problem 3.1. For cryptographic purposes, the intractability of this problem is
especially important in the context of protocols based on imaginary quadratic orders
[9], [25], [18], [26]. These protocols are usually not directly adapted to real quadratic
orders since the class number is almost always small [13]. However, since instances of
real quadratic orders with large class groups and small regulators can be constructed
easily, for examplex = 10 + 1 with x even, we will not omit this case in the following
discussion.

Our algorithm stems from earlier work by Buchmann andl@ann [4]. The main
idea behind their algorithm is as follows. First, compute the structu€ ofas a direct
product of cyclic subgroups,

|
Cla = @) Cmy),
i=1

together with generatong of each cyclic subgroup (order @f in Cl, is mj). Then
compute the representations

and

|
b~]]a?
i=1

of a andb over the generators. If Problem 3.1 is solvable, then there exist&. o such
that

| |
[Te* ~T ]
i=1 i=1
andx can be found by solving the system of simultaneous congruences
g =xb (modm), 1<i<l, 3.1

using the generalized Chinese remainder theorem. If (3.1) cannot be solved, then there
is no solution to Problem 1.1.

3.1. Computing the Class Group

The first problem which must be solved in order to implement this method is to compute
the structure o€l,. We used the method described in [19] (Algorithm 4.3). The under-
lying strategy of this algorithm is the same as that of Hafner and McCurley [16] and its
variants [14], [3], [1], [11]. Suppose we have computed a factor B&se {p1, ..., bk}
consisting of invertible prime ideals such that the equivalence classes of some subset of
FB generate€|,. Forv e ZX we define

k
FBa = 1_[ plvl s
i=1
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wherep; € FB. We call ¥ arelation if FB” ~ O,, i.e., the ideal given bfB" is
principal. A generating systein = {1, ..., vn} of therelation lattice

A= {0 eZ FB' ~ Oy} (3.2)
is then produced, which is the kernel of the homomorphism
ZK — Cla, i — FB. (3.3)

Since the equivalence classes of the idealsB§jenerate the class group, it follows that
the homomorphism 3.3 is surjective, and we have

Cla = ZX/A.

This implies thatA is ak-dimensional lattice and its determinant is equathfo Also,
therelation matrix A= (3], ..., 9), the matrix formed by taking the relations as
columns, has rank. The diagonal elements which are greater than $,ithe Smith
normal form of A, are precisely the elementary divisorsQify .

This strategy can be easily extended to compute class groups and regulators of real
quadratic orders [3], [1]. In this case, we compute relations of the orhog|y |) where
FB’ = (y), i.e.,y generates the principal ide@B’ . We produce a generating system

L" = {(¥1, logly1]), (¥2, loglyzl), . .., (Ui, login )}

of the extended relation lattice
A ={(@,logly]) € Z* x R | FB” = (y)}. (3.49)

Then, if A is the part ofA’ in ZX, as before we hav€l, = Z¥/A. Furthermore, it can
be shown [3] that déi’) = h, Ra, SO by computing this determinant and the structure
of Cl, we also get the regulator.

The major difference between our approach and that of [16], [14], etc., is in the way the
generating system of the relation lattice is produced. The solution employed by earlier
algorithms is to attempt to factor randomly produced ideals over the factor base. We
replace this step by a sieve-based strategy similar to that used in the MPQS factoring
algorithm [32]. The idea of employing sieving to compute relations in similar contexts
was first suggested by Seysen [30], and later by Paulus [28].

In the MPQS, one sieves over quadratic polynomialX) = aX?+ 2b X+ cin order
to find values ofk for which F(x) completely factors over a finite factor base of prime
integers. By sieving a polynomi& (X) over an interval, we mean testing each value of
X in a given interval as to whether all the prime factord=@gk) are contained in a finite,
given set. The observation thetx) = F(x + ip)(modp) fori € Z, p prime, allows
one to use a sieve to perform this test rather than evaluating every vakiexptind
attempting to factor it.

In our case, we first compute an ideahs a power-product of the prime ideals in
our factor basé B, i.e.,a = FB® for someé e ZK. Then we search for integers
andy such thatf (X, Y) = aX? + bXY + cY?, the norm form ofa, factors over the
norms of the ideals iffrB. For each such paiix, y), there exists a quadratic number
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such thaia/(y) = b~ splits over the factor base. We can explicitly computand its
decomposition oveFB using Proposition 2.2. Sinaesplits overFB by construction,
we have thatib = (y) yields a relation.

The main work in generating relations with the strategy outlined above is finding
smooth values of the quadratic polynomig{X, Y). It is certainly possible to sieve
f (X, Y) in two dimensions. However, most sieve-based factoring algorithms, including
the MPQS, work exclusively with univariate quadratic polynomials. Hence, in order to
parallel these factoring methods as closely as possible, we also work with the univariate
polynomialsF (X) = f(X,1) =aX?+bX +c.

We have thus reduced the problem of finding relations for class group computation to
the same problem for finding relations in the MPQS factoring algorithm. A large amount
of effort has been invested in making the MPQS and its variants as efficient as possible,
and we attempt to make use of as many of these techniques as possible. most notable
self-initialization. See [19] for more details and computational results.

3.2. Computing a System of Generators

Once the class group has been computed, the next step is to compute a system of gen-
erators ofCl,. More generally, we need to be able to convert from representations of
ideals as power-products of factor base elements,

a~ FBY,

to and from power-products of the generators,

Suppose we are given a Hermite normal form basis= (h; j)kxk Of the relation
lattice A (3.2). The diagonal entries & the Smith normal form oH, which are greater
than 1 correspond to the elementary divisor<Cof. During the course of the Smith
normal form computation we also compldeV € GL(k, Z) (recallk is the size of the
factor basd-B) such that

S=UHV.

fu-1= (ui/]‘)kxka then

k /
a~[]p" 1<i=<k
j=1

form a system of generators©f,, if we ignore thosg; ~ O,,i.e.,m; = 1. Conversely,
if U = (Ujj )kxk, then for each factor base elemgntve have

Kk

Uij

pj ~ Hgi g
i=1
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Thus, ifa ~ FB, it can be represented over the system of generators by

k k
ol y
a~[Ta """ 35
i=1

For the purpose of computing discrete logarithms, all we need is the rakttix-we
never need to compute a system of generators explicitly. However, a partial verification
of the class group is to check whether the orders of a system of generators are actually
the elementary divisors. If the dimensions ldfare large, then it is very difficult to
compute a system of generators, since it involves inverting a matrix of roughly the same
dimension.

Algorithm 4.3 from [19] can be easily extended to compute a system of generators
and all the information required to execute the transformations necessary for computing
discrete logarithms, while avoiding the problem of computing the large transformation
matrix U. Instead of computing the Smith normal form (SNF) of the entire matjx
we use only its essential part, i.e., the matrix formed by the rows and columids of
corresponding to diagonal entries greater thahet H’ denote the essential part of
H. Clearly, the diagonal entries greater than 1 in S(IHF) are the same as those of
SNF(H), so we get the same elementary divisorsGdf. However, in practice the
dimensions oH’ are much smaller than those df and hence the Smith normal form
transformation matrices will also be much smaller. Cohen and Lenstra [13] give heuristics
which indicate that the class group is almost always cyclic or close to it, so we expect that
the total number of elementary divisors will be small. The number of rows and columns
in the essential part dfl is equal to or greater than the rank@f,. In practice, if they
differ at all it is only a very slight difference (see for example p. 145 of [14]).

3.3. Computing the Discrete Logarithm

Once the structure €1, is computed, we have to compute representationsarfd b
over a system of generators®f, . If we know representations afandb over the factor
baseFB used to comput€l,, then we can use (3.5). In practice, we will require that
representations efandb be computed over the prime idealsk corresponding to the
essential part of the Hermite normal form relation matrix. However, in order to compute
these representations, it is still necessary first to compute representations over the entire
factor base.

Fortunately, computing these representations is no harder than finding a single relation
corresponding to each aefandb. As shown in [10], if we can find an idealequivalent
to a FBY which factors oveiFB asc = FBE, thena FB’ ~ FB® and it follows that
a ~ FB® 7 In practice, we first compute

5 b A
dV=aFB*=aZ+ +2fZ
for some randonmd € {—1, 0, 1}* such that
VIAl/2

N@®) ~

— (3.6)
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where M is the sieve radius (all polynomials sieved oveM < x < M). If f =
aX? 4+ bXY + cY? is the norm form of and we find some& e [—M, M] such that
f (x, 1) factors over the norms of the prime ideald9B, then we can compute andw
such thab/(y) = FB* using Proposition 2.2. Thus, singe= a FB® we can write

a=(y)FB"* .

The reason we select the exponent vectoirs {—1, 0, 1} satisfying (3.6) is so that
our sieve polynomiald (x, 1) resemble those used in the MPQS factoring algorithm as
closely as possible. In [32] Silverman shows that gatisfies (3.6) for a given sieve
radiusM, then the values of (x, 1) for x € [-M, M] will be minimal compared with
other quadratic polynomials of the same discriminant. Thus, we are more likely to find
smooth values of (x, 1) in this case.

We present this method in the following algorithm.

Algorithm 3.1 (REPRESENT_OVER_FB).
Computes a representationmbdver the factor base.
Input a, factor basd-B = {py, ..., px}

Output ¥ € ZX andy € O, such thain = (y) FBY

1. Select the sieve radild.

2. Randomly seled@ € {—1, 0, 1} and compute such thad = a FB® = aZ + ((b+
VA)/2)Z and

N@) ~ = |A|/2.
M

3. Setf = aX?+ bXY + cY? to be the norm form 0d. SetF(X) = f(X, 1) and
sieveF (X) over the interval—M, M).

4. If we find nox € (—M, M) such thatF (x) completely factors over the norms of
the prime ideals ifFB, go to Step 2.

5. For the smallest € (—M, M) such thatF (x) completely factors over the norms
of the prime ideals irFB:
(@) Compute the exponenig such that

[
Foo =TVe)™.
i=1

(b) Computeg = nX2+b' XY +c'Y2andc = nZ + (b’ + ~/A)/2)Z ~ d using
Proposition 2.2 is the norm form ot).

(c) Compute such thatw; = +w; andec = FB” using Theorem 2.1.

(d) Setv = w — &.

(e) y =ax+ (b +VA)/2.

Given a representation afover the factor baseB, a ~ FB', it is a simple matter to
compute a representation @bver a system of generators using (3.5). However, rather
than computing SNFH) , we want to compute SN(:H’) and the corresponding left
transformation matrixXJ = (ujj)i«k, SO we can also explicitly compute a system of
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generators. Hence, we need a method to compute a representatiovefQ, where
Q contains the prime ideals FFB corresponding to the rows ¢f taken in the essential
part of H. If a = Q¥ for w e Z¥, then a similar relation to (3.5) holds, namely

| W
(B, wj u;j ) (modm;)
a~[Ta™ :
i=1

The following observation allows us to compute The columns oH, the Hermite
normal form of the relation matrix produced during the computation of the class group,
form a basis of the relation lattick. Furthermore, columin of H is a relation which
involves only prime idealg; for j <i, i.e.,

i—1

) hi;

OA Npihu l_[pll ,
j=1

sinceh;; =0 for j > i. Thus, ifh; = 1, we can represer; in terms ofp; for j <i:
i—1 —h
o~ o™ 37
j=1

Assume we have computéde ZX such thata ~ FB’. Leti be the largest index
such thatHii = 1. If we substitute the representation}gf(3.7) into the representation
a ~ FBY we obtain

K i1 K . R

Y —ViNji vj —vi Nji v’

o~ [Tof [To™" ~ T, ~ FB".
j=1 j=1 j=1

i# i#

Note that we now have = FB” with v/ = 0, a representation af over FB which does

not involvep;. Also, the substitution of; does not affect the entries ihwith index
greater tham, since (3.7) is a representationgfconsisting only of thosg; with j < i.
Hence, if we start with = k and repeat the substitution with successively decreasing
indicesi, we will eventually obtain avectar’ € ZK such that = FB”' andwjf = Ofor

everyj such thatH;; = 1. Takingw to be those entries b’ whose indices correspond
to the diagonal entries dfl greater than 1 (all other entries are zero), we have that
a = Q”, as required.

The overall procedure for computing a representation of an ideal over a system of
generators o€l is summarized in the following algorithm.

Algorithm 3.2 (REPRESENT_OVER_GENS).

Computes a representationmbver a system of generators©f, .

Input a, factor basd-B, Hermite normal form basis of relation latti¢¢, left transfor-
mation matrixJ for computing Smith normal form of essential partdf elementary
divisors ofClpo m;, 1 <i </

Output & € Z' such that ~ []}_, ¢®

1. Computel = REPRESENT_OVER_FB(a, FB) (Algorithm 3.1).
2.i =k=|FB]|.
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3. If Hij =1, sety; = v; —vih;i for1 < j <k, j #i. Sety; = 0. Decrement and
repeat whileé > 1.

i=1j=1

. If Hii # 1, setw; = v andj = j 4+ 1. Incremeni and repeat whilé < k.

. Set

oA

|
a ZZ(U)J' uj) (modm), 1<i<lI.
i-1

Finally, we present our complete algorithm for computinign Problem 3.1.

Algorithm 3.3 (DISCRETE_LOG).

Solves the discrete logarithm problem in the class grou@ of
Input A, a, b

Output X € Zxo such thaw ~ 6%, or —1 if no suchx exists

1. Compute then; such thaCl, = C(my) x ... x C(m) using Algorithm 4.3 from
[19, p. 57]. Keep the factor bagd and the Hermite normal form (HNF) basis of
the relation latticeH.

2. k=|FB|, H = H.Foreach € {1, ..., k} such thatd; = 1, remove rowi and
columni from H'.

3. ComputeSandU such thatS= UH'V.

4. Compute

a = REPRESENT_OVER_GENS(a, FB, H, U, {m;})
and

b= REPRESENT_OVER_GENS(b, FB, H, U, {m;})

using Algorithm 3.2.
5. Computex € Z-o such that

g =xbb (modm), 1<ic<l.

If no suchx exists, sek = —1.

4. Principality Testing

The second task necessary to solve Problem 1.1 once the expdmenbeen computed
is to determine the quadratic numlbesuch thatt = «b*. Computinge can be reduced
to determining the generator of the principal idéala, since we havéa) = b *a.
Thus, we now focus our attention on the principal ideal problem.

Problem 4.1. Given a reduced ideal, determine whethea is principal and if so,
computes(a).
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Recall thats (a) = %logla/o(aﬂ(mod RA), where(a) = a. Given this distance, it is
not difficult to computer explicitly if desired, or some quadratic numbers whose product
is equal tox [8].

Cryptographic protocols based on real quadratic orders derive their security on the
supposed intractability of Problem 4.1 [29], [2]. For these protocols, it is important that
there be many reduced principal ideals, otherwise simple methods like exhaustive search
or baby-step giant-step suffice to solve Problem 4.1. Hence, real quadratic orders with
small regulators and imaginary quadratic orders are not suitable for these protocols.

Subexponential algorithms for principality testing have been proposed by Abel [1]
and Cohen et al. [12]. As in the algorithm for computing discrete logarithms in the class
group, both algorithms require that the class group and regulator first be computed using
an index calculus-type algorithm, after which any instance of Problem 4.1 in the same
quadratic order is relatively easy.

The algorithm we describe here follows that of [1]. The overall strategy is the same,
but we introduce a number of practical improvements, primarily centered around using
sieving methods. Given a reduced ideand a quadratic orde&?,, we first compute
the class group and regulator ©fy using Algorithm 4.3 from [19, p. 57]. In addition
to the usual output of the algorithm, we keep the factor bdse- {p4, ..., px}, matrix
H e Z¥ such that HNRA) = [0 | H] where A e Z<" is the relation matrix (all
relations produced appear as columngpfthe unimodular transformation matric&s
1<i <ssuchthatAT;--- Ts = HNF(A), and the vectog = {y4, ..., yn} containing
the generators corresponding to the relationdini.e., if g is columni of A, then
FB* = ().

Notice thatthe columns ¢ form a basis of the relation lattice. Thus, every principal
ideal of O, can be represented by a vecioe ZX wherev is a linear combination of
the columns oH. In order to determine whether an ideais principal, we comput@
such thatt = (y) FBY and test whether there exists a solutioa Z¥ of HX = . If not,
thena is not principal. Otherwise, I€E; be the matrix formed by the laktcolumns of
Ts. Then we haveAT; - - - Ts_1 T = H. Furthermore, we have that the elements in

F=1Ty - Toq T,

wherel; = % loglyi /o (1) |(modR,), are approximately the distances of the principal
ideals corresponding to the columnstdf In other words, if column of H is h; and

hi = FB" = (a;), thenr; ~ %Iog|ai /o (ai)|(modR,). It follows that the generatgs

of FBY satisfies

p

Fﬂ) (ModRy) &~ TX (modRy),

%Iog'

since

k
[ o ~FB".
i=1

Finally, sincea = (y) FB” we have that

4 o
ry)’ + §Z||| (ModR,),

N
Il
e

d= %Iog < TEX, 4.1
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is an approximation of (a). We take as$(a) the value ofd + jR4 for j € Z such that
O<d+ J Ra < Ra.

There are two main computational tasks required in this method, assuming that the
class group and regulator have already been computed. The first is to compute a rep-
resentation ot over the factor base, which can be done using Algorithm 3.1. Recall
that this algorithm makes use of our method for finding relations based on sieving tech-
nigues, and is hence more efficient in practice than the corresponding methods in [1]
and [12] which do not use sieving. The linear algebra required, solving a linear system
of equations over, is very easy in our case, since the matrxs in upper-triangular
form (Hermite normal form). However, computingcan be very difficult, because the
precision required in order to ensure an accurate approximation is very high. We used the
tools of Maurer [24] to compute this approximation. Using the fact that(«) where

n
a=y[]r*
1=l

andzZ is given in (4.1), we use Maurer's methods to determine the precision required
to guarantee that the floating point approximatiodi(@j we compute is sufficiently accu-
rate. The floating point approximations are computed using routines frothitifloat
class in LiDIA [23]. This class contains routines designed to compute with rational ap-
proximations of real numbers while keeping track of the errors incurred, and is described
in [7].

Our method for principality testing is given by the following algorithm.

Algorithm 4.1 (PRINCIPAL).

Determines whethar is principal, and if so computes its distance.
Input A, areduced

Output —1 if a is not principal, otherwisé(a)

1. ComputeR, withthe algorithm from [19]. Keep the factor basB = {p4, ..., pk},
Hermite normal form basis of the relation latti¢¢, transformation matrices
Ti,..., Ts and vectory = {y1, ..., yn} containing the generators of each rela-
tion generated.

2. Computg(v, y) = REPRESENT_OVER_FB(a, FB) (Algorithm 3.1).

3. Computex € ZX such thatHX = v. If no suchx exists, exit and retura-1.

4. Computez = T;---T/X, whereT/ is the matrix formed by taking the lakt
columns ofTs. Evaluate the product from right to left, using only matrix-vector
multiplication.

5. Computdqsuch that

Vi

i =2lo —' modR,).
i 2 g O—(Vi) ( A)
6. Compute
k
d~ Llog|—L—|+3 zl.
2109| oy| T 27

Takes (a) to be the smallest value df+ jRa suchthat € ZandO< d+ jRa <
Ra.
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5. Computational Results

5.1. Discrete Logarithms in G

We present some computational results of applying our implementation of Algorithm 3.3
in the LiDIA computer algebra system [23]. We have computed discrete logarithms for
four test classes of discriminants, namaly= —4(10* + 1) andA = —(10* + 3) for
imaginary quadratic orders amsl = 4(10* + 3) andA = 10 + 1 for real quadratic
orders. In all cases we have computed the average time for solving each of six random
instances of Problem 3.1 for each different value\ofThese run-times, given in CPU
seconds (s), minutes (m), hours (h), or days (d) on a 296 MHz UltraSPARC-II processor,
are presented in Tables 5.1-5.3. The average time for solving each of the six instances
of Problem 3.1 is given bty , and the time required to compute the structure of the class
group is given bytc).

Notice that in all cases, the time required to solve Problem 3.1 is very small once the
class group has been computed. For the largest examgple,(10°°+ 1), each instance
requires about.% hours, compared with almostSdays for computing the class group.

The times for the real quadratic orders are somewhat smaller than those for the imaginary
guadratic orders, since the bulk of the time is spent computing representations of the
idealsa andb over a system of generators. The main part of this procedure is computing
representations over the factor base (i.e., relation generation), and as observed in [19],
relation generation is in general faster for real quadratic orders.

For the sake of comparison, we note that the largest imaginary quadratic order for
which Problem 3.1 had been solved previously ®agg,, whereF; is the seventh Fermat
number andA = —4F; has 40 decimal digits [4]. It took Buchmann andilDiann
about 6 days to compute the class group and about 114 seconds on a SPARCStation 1 to
evaluate any individual discrete logarithm. We were able to compute the class group for

Table 5.1. Average discrete logarithm run-times far< 0.

A =—410°+1) A =—(10+23)
X tcl tal tcl tal
10 0.51s 0.02s 0.37s 0.02s
15 0.51s 0.03s 0.45s 0.03s
20 1.05s 0.07s 0.85s 0.07s
25 1.60s 0.16s 1.66s 0.15s
30 3.14s 0.25s 2.93s 0.25s
35 5.79s 0.48s 10.93 s 0.53s
40 22.00s 0.96 s 36.63s 1.68s
45 1.32m 9.57s 2.22m 12.24 s
50 4.03m 6.57 s 6.47 m 18.06 s
55 26.70 m 1.34m 19.22 m 35.44 s
60 1.15h 1.11m 2.37h 1.86m
65 4.85h 473 m 5.20h 1.63m
70 13.01h 12.71m 1.28d 19.19m
75 1.86d 47.73 m 1.88d 55.78 m

80 5.37d 4.35h 10.00d 4.79h
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Table 5.2. Average discrete logarithm run-times far= 4(10% + 3).

X tci tal X re] tal

10 2.04s 0.00s 40 53.04 s 0.72s
15 2.08s 0.01s 45 2.59m 0.42s
16 1.79s 0.00s 46 455m 0.01s
19 3.18s 0.09s 49 8.87m 50.41s
20 4.69s 0.10s 50 9.91m 2.83s
25 5.68 s 0.22s 55 55.57m 0.01s
26 7.69s 0.09s 56 1.18 h 0.00s
29 9.96s 0.06s 59 3.35h 17.59s
30 11.66s 0.08s 60 2.95h 14.24 s
35 21.21s 0.51s 65 23.73h 9.47s
36 25.86 s 0.71s 66 22.99h 32.41s
39 46.01s 0.00s

this discriminant in only 15 seconds, and each discrete logarithm problem instance took
less than 1 second. Using the rough figure that an UltraSPARC-II is 24 times faster than
a SPARCStation1, we estimate that our algorithm using sieving computes each instance
of the discrete logarithm problem about four times faster than without.

Tables 5.2 and 5.3 appearto contain the first examples of computing discrete logarithms
in the class group of real quadratic orders. The most interesting examples are the case
A = 10 + 1, x even, since the quadratic orders of these discriminants have very small
regulators, and hence by the analytic class number formula the class number is large. The
run-times in this case are actually somewhat faster than those for the imaginary quadratic
orders. This is to be expected, since the Hermite normal form computation is the same
as that for imaginary quadratic orders (the transformation matrix is not needed) and as

Table 5.3. Average discrete logarithm run-times far= 10* + 1.

x odd X even

X tc tal X re] tal

— — — 10 0.37s 0.01s
11 2.39s 0.00s 12 0.42s 0.02s
15 1.72s 0.04 s 16 0.60s 0.05s
19 3.09s 0.04s 20 0.85s 0.09s
25 6.33 s 0.04 s 26 2.00s 0.20s
29 9.93s 0.06s 30 3.39s 0.41s
35 19.52s 0.23s 36 11.93s 1.07s
39 47.56 s 352s 40 22.28s 1.90s
45 2.20m 0.59s 46 1.57m 8.08 s
49 6.18 m 0.31s 50 3.08 m 36.48 s
55 39.41m 1.63s 56 20.90 m 3.00m
59 2.34h 14.32s 60 1.32h 46.48 s
65 21.42h 27.85s 66 477 h 2.24m
69 — — 70 12.03 h 6.46 m
75 — — 76 1.78d 38.77m

79 — — 80 5.24d 23.70m
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observed in Chapter 5 of [19], relation generation is in general faster for real quadratic
orders.

5.2. Principality Testing

We present some computational results of applying our implementation of Algorithm 4.1
in the LiDIA computer algebra system [23]. Since principality testing is trivial in imag-
inary quadratic orders, we have only considered the two test classes of positive discrim-
inants,A = 4(10¢ 4+ 3) and A = 10* + 1. Also, since principality testing is easy for
A = 10°+1, x even, we only consider oddfor this type of discriminant. In all cases, we
have computed the average time for solving each of six random instances of Problem 4.1
for each different value oA . These run-times, given in CPU seconds (s), minutes (m),
hours (h), or days (d) on a 296 MHz UltraSPARC-II processor, are presented in Tables 5.4
and 5.5. The average time for solving the each of the six instances of Problem 4.1 is
given bytyin, and the time required to compute the structure of the class group is given
by tc;. We also give the average time required to compute the representation of each
ideal over the factor base and the correspondi(teps 1-4 of Algorithm 4.1) bitep,
and the average time required to compute an approximatiéudby tapp.

In most cases, the time required to compute a representatioovel the factor base
and to evaluat@& was very small compared with that required to compute the class group
and regulator. The main work in this part of the algorithm is computing one relation (for
representing: over the factor base), solving an upper-triangular linear systemzver

Table 5.4. Average principality test run-times fax = 4(10* + 3).

X 7e] trep tapp tprin

10 2.04s 0.07s 141s 1.50s
15 2.08s 0.03s 1.25s 1.31s
16 1.79s 0.03s 1.01s 1.10s
19 3.18s 0.08s 3.36s 3.48s
20 4.69s 0.09s 3.19s 3.32s
25 5.68s 0.17s 21.23s 21.48s
26 7.69s 0.17s 27.70s 27.95s
29 9.96s 0.31s 5451s 54,90 s
30 11.66 s 0.20s 37.23s 37.54s
35 21.21s 0.69s 1.83m 1.84m
36 25.86s 0.89s 1.17m 1.19m
39 46.01 s 1.58s 3.05m 3.09m
40 53.04 s 0.86s 54.76 s 55.82s
45 2.59m 3.82s 2.64m 2.70m
46 455m 3.86s 3.16m 3.23m
49 8.87m 1.06 m 3.16 m 4.23m
50 9.91m 2157s 3.47m 3.83m
55 55.57m 54.67 s 20.57 m 21.49m
56 1.18h 1.57m 49.23 m 50.81m
59 3.35h 3.51m 55.07 m 58.59 m
60 2.95h 1.10 m 1.41h 1.43h
65 23.73h 1.15h 4.29h 5.44 h

66 22.99h 57.53 m 3.42h 4.38h
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Table 5.5. Average principality test run-times fak =

10% + 1, x odd.

X 1e] trep tapp tprin

11 2.39s 0.14s 1.72s 1.89s
15 1.72s 0.04 s 1.00s 1.07s
19 3.09s 0.06s 2.48s 2.58s
25 6.33s 0.21s 35.81s 36.09 s
29 9.93s 0.24s 52.31s 52.65s
35 19.52s 0.64s 59.74 s 1.01m
39 47.56 s 212s 211m 2.15m
45 2.20m 9.56s 242 m 2.58m
49 6.18 m 16.84 s 4.25m 4.54 m
55 39.41m 1.47m 23.17m 24.64 m
59 2.34h 4.19m 41.07m 4527 m
65 21.42h 29.16 m 4.00h 4.49h

and evaluating the matrix-vector products required to computene of which are very
time-consuming. The reason for the large jumpdpbetweerx = 59 andx = 65 is, as
specified in [19], that the matric&s are stored in disk files when they have more than
2000 rows in order to conserve main memory.

At the moment, the bottleneck in solving Problem 4.1 is computing the floating point
approximation of(a). In fact, for 25 < x < 45 the average time to compute this ap-
proximation alone was more than that required to compute the class group and regulator.
If all we are interested in is the decision problem, i.e., simply determining whetiser
principal, then this is not a problem. In this case there is even no need to compute the
vectorz; it is sufficient to know that the systemX = v can be solved. Also, if we only
want the quadratic integes, there may be no need to approximate), since

From this representation, it should be possible to find efficiently either an explicit rep-
resentation ofv or a short representation like those described in [8]. However, at the
moment the best way to handle these problems and to comiputef which we are
aware is the method outlined in Algorithm 4.1.

The difficulty in approximating (a) is that the coefficients d are very large, and
extremely high precision is required in order to avoid round-off errors incurred during the
course of the approximation. Furthermore, in order to get an accurate result niadulo
even greater precision must be used. Again, at the moment we know of no way around
this problem. For discriminants with around 30 decimal digits and more we were unable
to obtain accurate results in a reasonable amount of time without Maurer’s method.

As with the regulator computation, the method described in [12] requires that the col-
umn operations performed during the Hermite normal form computation be performed
directly onl, the vector containing the distances corresponding to the relations in the
relation matrix. In other words, the vectois computed during the course of the Hermite
normal form computation, rather than afterwards by making use of the transformation
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matrices. For smaller examples this approach works fine, but whenever modular tech-
nigues are used during the Hermite normal form computation, as is necessary for large
examples, it is no longer possible.

Although algorithms are given in both [1] and [12] for principality testing, to the
best of our knowledge the computations presented here are the first presented for this
problem. Cohen et al. have implemented their algorithm as part of the PARI computer
algebra system, and in [11] they present computations where the regulators for some real
guadratic orders are computed using their algorithm. The largest example they gave was
the quadratic order with 41 digit discriminant®@- 1. Since most of the approximations
required for principality testing are computed during the computation of the regulator
in their algorithm, it is reasonable to assume that they could solve Problem 4.1 for real
guadratic orders with similar sized discriminants.

The largest example for which we were able to perform principality testing was the
real quadratic order with 67-digit discriminant14®® + 3). Even though we can now
compute regulators for orders with discriminants in excess of 80 decimal digits [19], we
are as yet unable to solve Problem 4.1 for these larger orders. The principal ideal decision
problem is certainly possible in these cases, since a Hermite normal form basis of the
relation lattice is always computed. However, as stated in [19] we are unable to compute
transformation matrices with integer coefficients for these larger quadratic orders, and
as a result we cannot directly apply our algorithm to comp@de.
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