
DOI: 10.1007/s001450010013

J. Cryptology (2000) 13: 473–492

© 2000 International Association for
Cryptologic Research

Computing Discrete Logarithms in Quadratic Orders

Michael J. Jacobson, Jr.
Centre for Applied Cryptographic Research,

University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

mjjacobs@cacr.math.uwaterloo.ca

Communicated by Johannes Buchmann

Received 25 November 1999 and revised 29 March 2000
Online publication 6 September 2000

Abstract. We present efficient algorithms for computing discrete logarithms in the
class group of a quadratic order and for principality testing in a real quadratic order, based
on the work of Düllmann and Abel. We show how the idea of generating relations with
sieving can be applied to improve the performance of these algorithms. Computational
results are presented which demonstrate that our new techniques yield a significant
increase in the sizes of discriminants for which these discrete logarithm problems can
be solved.

Key words. Discrete logarithm, Principal ideal testing, Quadratic order, Class group,
Computational number theory.

1. Introduction

It is well known that finite Abelian groups offer an excellent setting for cryptographic
protocols [15], in particular, groupsG in which thediscrete logarithm problem(DLP)
is intractable. That is, giveng,a ∈ G, it should be beyond the reach of an adversary to
recover an integerx such thatgx = a, or determine that no suchx exists. Several types
of finite Abelian groups have been proposed for this purpose, including the original idea
of the multiplicative group of a finite field modulo a prime [15], the group of points on
an elliptic curve over a finite field [20], [27], the group of points on a hyperelliptic curve
[21] over a finite field, and others.

The ideal class group of an imaginary quadratic order has received attention in the
context of key exchange protocols [9], [25], cryptosystems [18], and even an iden-
tification scheme [26]. Although not yet practical, such systems have the advantage
that breaking them appears to be at least as difficult as factoring, and quite possi-
bly harder. Real quadratic orders have also been proposed for use in these contexts
[29], [2]. Breaking theses systems also appears to be at least as difficult as factoring,
and they have the distinction of being the first discrete logarithm-based systems to

473

474 M. J. Jacobson, Jr.

make use of a structure which isnot a group, namely the infrastructure of the principal
class.

In quadratic orders, the general discrete logarithm problem is the following:

Problem 1.1. Given idealsa, b of O1, computeα ∈ Q(√1) andx ∈ Z≥0 such that

a = αbx,

or determine that no suchx andα exist.

Most cryptosystems based on quadratic orders rely on the difficulty of this problem,
or some special case of it [9], [29]. In imaginary quadratic orders, the most difficult
part of solving Problem 1.1 is computing the exponentx. Since every ideal class has
a single unique reduced representative, the problem can be reduced to computing the
discrete logarithm of two ideal classes inCl1. The class group is a finite Abelian group,
so generic methods such as those in [6] can be directly applied. If desired,α can be
found by computing the quadratic numberα such that(1/α)bxa−1 is reduced. However,
the size of the class group is approximately

√|1|, so for large discriminants generic
algorithms are too slow.

In real quadratic orders, the situation is reversed. In general, computingα is the most
difficult part of solving Problem 1.1, since most real quadratic orders have small class
numbers. If we are given the exponentx, thenα is the generator of the principal ideal
b−xa.Thus, one needs to be able to do principal ideal testing in order to solve Problem 1.1
in real quadratic orders. Baby-step giant-step methods are applicable here, but since the
regulator is roughly as large as

√
1when the class number is small, they quickly become

impractical for large discriminants.
Subexponential algorithms have been proposed for computing discrete logarithms in

the class group [4] and for principality testing [1], [12]. Both algorithms require that
the class group and regulator be computed, together with data accumulated during the
course of the computation, after which any instance of the discrete logarithm problem
can be solved relatively quickly. Assuming the Extended Riemann Hypothesis, it has
been shown [4], [1] that these algorithms will compute discrete logarithms in expected
time

L[β] =
(
exp

√
log1 log log1

)β+o(1)
,

whereβ = √2 ≈ 1.41 when1 < 0 andβ = 5
√

3/6 ≈ 1.44 when1 > 0. The
overwhelming majority of time spent in these algorithms is in the computation of the
class group and regulator, after which each individual discrete logarithm problem can
be solved in expected timeL[1

2].
Buchmann and D¨ullmann have implemented their algorithm [4], and they were able

to solve instances of the discrete logarithm problem for imaginary quadratic orders with
discriminants of as many as 40 decimal digits. For real quadratic orders, class groups and
regulators have been computed for orders with discriminants of as many as 41 decimal
digits using an implementation of the algorithm described in [12], so principality testing
is certainly possible for these orders as well.

Computing Discrete Logarithms in Quadratic Orders 475

The improved algorithm for computing class groups and regulators from [19] can be
applied almost directly to these existing algorithms in order to speed up the precompu-
tation step of computing the class group and regulator. The major development in this
algorithm is the application of sieving to the process of generating random relations. An
important component of both the discrete logarithm algorithm in the class group and
the principality testing algorithm is computing a representation of a given ideal over the
factor base, and the idea of relation generation with sieving can also be applied to speed
up this step. Further improvements can be obtained in the linear algebra necessary to
compute discrete logarithms in the class group and in computing an approximation of
δ(α) for principality testing.

Unfortunately, these algorithms, although significantly more efficient in practice, make
use of a number of heuristic ideas, and as such are difficult to analyze without relying
on additional unproved hypotheses. Thus, in this paper we focus on the practical perfor-
mance of our algorithms. We review the algorithms of [4], [1], and [12], and describe
our improved versions of both, together with computational results demonstrating their
efficiency.

2. Quadratic Orders

We give here a brief review of the concepts related to quadratic orders which we will
need in this exposition. For further details and proofs, the interested reader is invited to
refer to any standard text on the subject, for example [17], [10].

Given a non-square integer1 ≡ 0,1(mod 4), thequadratic orderof discriminant1
is defined as theZ-module

O1 = Z+ 1+
√
1

2
Z.

O1 is a Dedekind domain, and its field of quotients is the quadratic fieldQ(
√
1). The

units inO1 can be completely characterized as follows. If1 < 0, there are finitely many
units given by 

±1 if 1 < −4,
±1,±i if 1 = −4,

±1,±i,
1±√−3

2
if 1 = −3.

If 1 > 0, the unit group is given by

O∗1 = 〈ε1〉 × 〈−1〉.
In other words, the unit group of a real quadratic order is the direct product of the infinite
cyclic subgroup generated byε1 > 1, the fundamental unit, and the torsion subgroup
〈−1〉 or order 2. We define theregulatorasR1 = logε1.

A fractional ideal ofO1 can be represented by theZ-module

a = q

[
aZ+ b+√1

2
Z

]
,

476 M. J. Jacobson, Jr.

wherea,b ∈ Z, b2 − 1 ≡ 0(mod 4a), andq ∈ Q [22], [8]. In this representation,a
andq are unique, andb is unique modulo 2a. Thenormof a is given byN (a) = q2a.
The product of two ideals is defined asab = {∑(a,b)∈U ab: U ⊂ a× b finite}. For any
ideala represented as above, if we have gcd(a,b, (b2−1)/4a) = 1, thena is invertible
under this operation, and its inverse is given by

a−1 = 1

q

[
Z+ −b+√1

2a
Z

]
.

O1 is a unit under ideal multiplication, and it is easy to see thatI1, the set of invert-
ible ideals ofO1, forms a group under this operation. Efficient algorithms for ideal
multiplication can be found in [5] and [19].

It can be shown that every ideal ofO1 is generated by at most two elements ofO1,
i.e., we can write the ideala as aO1-moduleαO1 + βO1 for someα, β ∈ O1. If
a = αO1, it is called aprincipal ideal. The set of invertible, principal ideals,P1, forms
a subgroup ofI1 under ideal multiplication. Theclass groupof O1, denoted byCl1,
is defined as the factor groupI1/P1. The class group is a finite Abelian group, and we
define theclass number h1 as its order. Elements ofCl1 will be denoted by [a].Clearly,
if a, b ∈ [a], thena = βb for someβ ∈ Q(√1). In this case we say thata andb are
equivalent, writtena ∼ b.

We call the ideala reducedif−b < a < b, b > 0 when a = b2−1
4a

if 1 < 0,√
1− 2a < b <

√
1+ 2a if 1 > 0.

Any given ideal can be reduced quickly [10], and we define the operation in the class
group as ideal multiplication followed by reduction, i.e., all arithmetic will be performed
with reduced ideals. This has the advantage that the operands used are bounded by

√|1|
[10]. For1 < 0, there is exactly one reduced ideal per equivalence class. If1 > 0,
this is unfortunately not the case, but there are finitely many reduced representatives. If
(α)O1 = a,we callα thegeneratorof the principal ideala,and we define thedistanceas
δ(a) = δ(α) = 1

2 log |α/σ(α)|(modR1).For two reduced principal idealsa andb, it can
be shown thatδ(ab) ≈ δ(a)+ δ(b). Using this construction, Shanks showed that some
structure can be imposed among the reduced principal ideals, called theinfrastructure
[31], [22], [19]. The infrastructure exhibits group-like properties, in fact, the only group
axiom which fails is associativity.

The prime ideals ofO1 can be characterized as follows. If(1/p) 6= −1 andbp is the
uniquely determined square root of1(mod 4p) with 0≤ bp ≤ p, then

p(p) = pZ+ bp +
√
1

2
Z

are the prime ideals of normp. Given any invertible integral ideal, we can represent it
as a unique power-product of prime ideals.

Computing Discrete Logarithms in Quadratic Orders 477

Theorem 2.1. If for some invertible ideala = aZ+ ((b+√1)/2)Z we have

N (a) =
∏

p prime

pt (p),

thena is equal to ∏
p prime

p(p)e(p)t (p),

where e(p) ∈ {−1,1} such that b≡ e(p)bp(mod 2p).

Thus, in order to factor an invertible integral ideal, one simply factors its norm (an
integer) and applies Theorem 2.1.

Let a = aZ + ((b + √1)/2)Z be an integral ideal ofO1. The norm formof a is
the binary quadratic formf = aX2 + bXY+ cY2, wherec = (b2 − 1)/(4a). Every
elementα = ax+ ((b+√1)/2)y ∈ a for fixed x, y ∈ Z has normασ(α) = a f (x, y),
whereσ(α) = ax+ ((b−√1)/2)y.

Proposition 2.2. If f is the norm form ofa ∈ O1 and f(x, y) = n for some x, y ∈ Z,
then there exists an idealb = nZ+ ((b′ + √1)/2)Z such thata ∼ b.

Proof. Construct a formg by solving the linear Diophantine equation

ux+ vy = 1

for u andv and then applying the transformation matrix[
x −v
y u

]
∈ GL(2,Z)

to f, yielding the formg = f (x, y)X2+(2(asu+ctv)+b(sv+ tu))XY+ f (u, v)Y2 =
nX2 + b′XY + c′Y2. Sinceg is obtained fromf via a unimodular transformation of
variables, we havef ∼ g. Furthermore,g is the norm form of an ideal

b = nZ+ b′ + √1
2

Z,

and it can be shown thatf ∼ g impliesa ∼ b [10].

3. Discrete Logarithms inCl

Let O1 be any quadratic order. In this section we restrict our attention to solving the
following problem:

Problem 3.1. Given reduced idealsa, b ∈ Cl1, computex ∈ Z≥0 such that

[a] = [b]x,

or determine that no suchx exists.

478 M. J. Jacobson, Jr.

In order to solve the more general Problem 1.1, it is first necessary to computex by
solving Problem 3.1. For cryptographic purposes, the intractability of this problem is
especially important in the context of protocols based on imaginary quadratic orders
[9], [25], [18], [26]. These protocols are usually not directly adapted to real quadratic
orders since the class number is almost always small [13]. However, since instances of
real quadratic orders with large class groups and small regulators can be constructed
easily, for example1 = 10x+1 with x even, we will not omit this case in the following
discussion.

Our algorithm stems from earlier work by Buchmann and D¨ullmann [4]. The main
idea behind their algorithm is as follows. First, compute the structure ofCl1 as a direct
product of cyclic subgroups,

Cl1 ∼=
l⊗

i=1

C(mi),

together with generatorsgi of each cyclic subgroup (order ofgi in Cl1 is mi). Then
compute the representations

a ∼
l∏

i=1

g
ai
i

and

b ∼
l∏

i=1

g
bi
i

of a andb over the generators. If Problem 3.1 is solvable, then there existsx ∈ Z≥0 such
that

l∏
i=1

g
ai
i ∼

l∏
i=1

g
xbi
i ,

andx can be found by solving the system of simultaneous congruences

ai ≡ xbi (modmi), 1≤ i ≤ l , (3.1)

using the generalized Chinese remainder theorem. If (3.1) cannot be solved, then there
is no solution to Problem 1.1.

3.1. Computing the Class Group

The first problem which must be solved in order to implement this method is to compute
the structure ofCl1.We used the method described in [19] (Algorithm 4.3). The under-
lying strategy of this algorithm is the same as that of Hafner and McCurley [16] and its
variants [14], [3], [1], [11]. Suppose we have computed a factor baseFB= {p1, . . . , pk}
consisting of invertible prime ideals such that the equivalence classes of some subset of
FB generatesCl1. For Ev ∈ Zk we define

FBEv =
k∏

i=1

p
vi
i ,

Computing Discrete Logarithms in Quadratic Orders 479

wherepi ∈ FB . We call Ev a relation if FBEv ∼ O1, i.e., the ideal given byFBEv is
principal. A generating systemL = {Ev1, . . . , Evn} of therelation lattice

3 = {Ev ∈ Zk | FBEv ∼ O1} (3.2)

is then produced, which is the kernel of the homomorphism

Zk → Cl1, Ev→ FBEv . (3.3)

Since the equivalence classes of the ideals ofFB generate the class group, it follows that
the homomorphism 3.3 is surjective, and we have

Cl1 ∼= Zk/3.

This implies that3 is ak-dimensional lattice and its determinant is equal toh1. Also,
the relation matrix A= (EvT

1 , . . . , EvT
n), the matrix formed by taking the relationsEvi as

columns, has rankk. The diagonal elements which are greater than 1 inS, the Smith
normal form ofA, are precisely the elementary divisors ofCl1.

This strategy can be easily extended to compute class groups and regulators of real
quadratic orders [3], [1]. In this case, we compute relations of the form(Ev, log|γ |)where
FBEv = (γ), i.e.,γ generates the principal idealFBEv . We produce a generating system

L ′ = {(Ev1, log|γ1|), (Ev2, log|γ2|), . . . , (Evl , log|γl |)}
of the extended relation lattice

3′ = {(Ev, log|γ |) ∈ Zk × R | FBEv = (γ)}. (3.4)

Then, if3 is the part of3′ in Zk, as before we haveCl1 ∼= Zk/3. Furthermore, it can
be shown [3] that det(3′) = h1R1, so by computing this determinant and the structure
of Cl1 we also get the regulator.

The major difference between our approach and that of [16], [14], etc., is in the way the
generating system of the relation lattice is produced. The solution employed by earlier
algorithms is to attempt to factor randomly produced ideals over the factor base. We
replace this step by a sieve-based strategy similar to that used in the MPQS factoring
algorithm [32]. The idea of employing sieving to compute relations in similar contexts
was first suggested by Seysen [30], and later by Paulus [28].

In the MPQS, one sieves over quadratic polynomialsF(X) = aX2+2bX+c in order
to find values ofx for which F(x) completely factors over a finite factor base of prime
integers. By sieving a polynomialF(X) over an interval, we mean testing each value of
x in a given interval as to whether all the prime factors ofF(x) are contained in a finite,
given set. The observation thatF(x) ≡ F(x + i p)(modp) for i ∈ Z, p prime, allows
one to use a sieve to perform this test rather than evaluating every value ofF(x) and
attempting to factor it.

In our case, we first compute an ideala as a power-product of the prime ideals in
our factor baseFB, i.e., a = FBEe for someEe ∈ Zk. Then we search for integersx
and y such thatf (X,Y) = aX2 + bXY+ cY2, the norm form ofa, factors over the
norms of the ideals inFB . For each such pair(x, y), there exists a quadratic numberγ

480 M. J. Jacobson, Jr.

such thata/(γ) = b−1 splits over the factor base. We can explicitly computeb and its
decomposition overFB using Proposition 2.2. Sincea splits overFB by construction,
we have thatab = (γ) yields a relation.

The main work in generating relations with the strategy outlined above is finding
smooth values of the quadratic polynomialf (X,Y). It is certainly possible to sieve
f (X,Y) in two dimensions. However, most sieve-based factoring algorithms, including
the MPQS, work exclusively with univariate quadratic polynomials. Hence, in order to
parallel these factoring methods as closely as possible, we also work with the univariate
polynomialsF(X) = f (X,1) = aX2+ bX+ c.

We have thus reduced the problem of finding relations for class group computation to
the same problem for finding relations in the MPQS factoring algorithm. A large amount
of effort has been invested in making the MPQS and its variants as efficient as possible,
and we attempt to make use of as many of these techniques as possible. most notable
self-initialization. See [19] for more details and computational results.

3.2. Computing a System of Generators

Once the class group has been computed, the next step is to compute a system of gen-
erators ofCl1. More generally, we need to be able to convert from representations of
ideals as power-products of factor base elements,

a ∼ FBEv,

to and from power-products of the generators,

a ∼
l∏

i=1

g
ai
i .

Suppose we are given a Hermite normal form basisH = (hi, j)k×k of the relation
lattice3 (3.2). The diagonal entries ofS, the Smith normal form ofH,which are greater
than 1 correspond to the elementary divisors ofCl1. During the course of the Smith
normal form computation we also computeU,V ∈ GL(k,Z) (recallk is the size of the
factor baseFB) such that

S= UHV .

If U−1 = (u′i j)k×k, then

gi ∼
k∏

j=1

p
u′j i
j , 1≤ i ≤ k,

form a system of generators ofCl1, if we ignore thosegi ∼ O1, i.e.,mi = 1.Conversely,
if U = (ui j)k×k, then for each factor base elementpj we have

pj ∼
k∏

i=1

g
ui j

i .

Computing Discrete Logarithms in Quadratic Orders 481

Thus, ifa ∼ FBEv, it can be represented over the system of generators by

a ∼
k∏

i=1

g
(6k

j=1vj ui j)

i . (3.5)

For the purpose of computing discrete logarithms, all we need is the matrixU−1—we
never need to compute a system of generators explicitly. However, a partial verification
of the class group is to check whether the orders of a system of generators are actually
the elementary divisors. If the dimensions ofH are large, then it is very difficult to
compute a system of generators, since it involves inverting a matrix of roughly the same
dimension.

Algorithm 4.3 from [19] can be easily extended to compute a system of generators
and all the information required to execute the transformations necessary for computing
discrete logarithms, while avoiding the problem of computing the large transformation
matrix U. Instead of computing the Smith normal form (SNF) of the entire matrixH,
we use only its essential part, i.e., the matrix formed by the rows and columns ofH
corresponding to diagonal entries greater than 1. Let H ′ denote the essential part of
H. Clearly, the diagonal entries greater than 1 in SNF

(
H ′
)

are the same as those of
SNF(H) , so we get the same elementary divisors ofCl1. However, in practice the
dimensions ofH ′ are much smaller than those ofH, and hence the Smith normal form
transformation matrices will also be much smaller. Cohen and Lenstra [13] give heuristics
which indicate that the class group is almost always cyclic or close to it, so we expect that
the total number of elementary divisors will be small. The number of rows and columns
in the essential part ofH is equal to or greater than the rank ofCl1. In practice, if they
differ at all it is only a very slight difference (see for example p. 145 of [14]).

3.3. Computing the Discrete Logarithm

Once the structure ofCl1 is computed, we have to compute representations ofa andb

over a system of generators ofCl1. If we know representations ofa andb over the factor
baseFB used to computeCl1, then we can use (3.5). In practice, we will require that
representations ofa andb be computed over the prime ideals ofFB corresponding to the
essential part of the Hermite normal form relation matrix. However, in order to compute
these representations, it is still necessary first to compute representations over the entire
factor base.

Fortunately, computing these representations is no harder than finding a single relation
corresponding to each ofa andb. As shown in [10], if we can find an idealc equivalent
to a FBEv which factors overFB as c = FBEe, thena FBEv ∼ FBEe and it follows that
a ∼ FBEe−Ev . In practice, we first compute

d = a FBEe = aZ+ b+√1
2

Z

for some randomEe∈ {−1,0,1}k such that

N (d) ≈
√|1|/2

M
, (3.6)

482 M. J. Jacobson, Jr.

where M is the sieve radius (all polynomials sieved over−M ≤ x ≤ M). If f =
aX2 + bXY+ cY2 is the norm form ofd and we find somex ∈ [−M,M] such that
f (x,1) factors over the norms of the prime ideals inFB, then we can computeγ and Ew
such thatd/(γ) = FBEw using Proposition 2.2. Thus, sinced = a FBEe we can write

a = (γ)FBEw−Ee .

The reason we select the exponent vectorsEe in {−1,0,1} satisfying (3.6) is so that
our sieve polynomialsf (x,1) resemble those used in the MPQS factoring algorithm as
closely as possible. In [32] Silverman shows that ifd satisfies (3.6) for a given sieve
radiusM, then the values off (x,1) for x ∈ [−M,M] will be minimal compared with
other quadratic polynomials of the same discriminant. Thus, we are more likely to find
smooth values off (x,1) in this case.

We present this method in the following algorithm.

Algorithm 3.1 (REPRESENT OVER FB).
Computes a representation ofa over the factor base.
Input: a, factor baseFB= {p1, . . . , pk}
Output: Ev ∈ Zk andγ ∈ O1 such thata = (γ)FBEv

1. Select the sieve radiusM.
2. Randomly selectEe∈ {−1,0,1} and computed such thatd = a FBEe = aZ+ ((b+√

1)/2)Z and

N (d) ≈
√|1|/2

M
.

3. Set f = aX2 + bXY+ cY2 to be the norm form ofd. SetF(X) = f (X,1) and
sieveF(X) over the interval(−M,M).

4. If we find nox ∈ (−M,M) such thatF(x) completely factors over the norms of
the prime ideals inFB, go to Step 2.

5. For the smallestx ∈ (−M,M) such thatF(x) completely factors over the norms
of the prime ideals inFB:
(a) Compute the exponentswi such that

F(x) =
k∏

i=1

N (pi)
wi .

(b) Computeg = nX2+ b′XY+ c′Y2 andc = nZ+ ((b′ + √1)/2)Z ∼ d using
Proposition 2.2 (g is the norm form ofc).

(c) ComputeEw such thatwi = ±wi andc = FBEw using Theorem 2.1.
(d) SetEv = Ew − Ee.
(e) γ = ax+ (b+√1)/2.

Given a representation ofa over the factor baseFB, a ∼ FBEv, it is a simple matter to
compute a representation ofa over a system of generators using (3.5). However, rather
than computing SNF(H) , we want to compute SNF

(
H ′
)

and the corresponding left
transformation matrixU = (ui j)k′×k′ , so we can also explicitly compute a system of

Computing Discrete Logarithms in Quadratic Orders 483

generators. Hence, we need a method to compute a representation ofa over Q, where
Q contains the prime ideals inFB corresponding to the rows ofH taken in the essential
part of H. If a = Q Ew for Ew ∈ Zk′ , then a similar relation to (3.5) holds, namely

a ∼
l∏

i=1

g
(6k′

j=1wj ui j)(modmi)

i .

The following observation allows us to computeEw. The columns ofH, the Hermite
normal form of the relation matrix produced during the computation of the class group,
form a basis of the relation lattice3. Furthermore, columni of H is a relation which
involves only prime idealspj for j ≤ i, i.e.,

O1 ∼ p
hii
i

i−1∏
j=1

p
hji

j ,

sincehji = 0 for j > i . Thus, ifhii = 1, we can representpi in terms ofpj for j < i :

pi ∼
i−1∏
j=1

p
−hji

j . (3.7)

Assume we have computedEv ∈ Zk such thata ∼ FBEv . Let i be the largest index
such thatHii = 1. If we substitute the representation ofpi (3.7) into the representation
a ∼ FBEv we obtain

a ∼
k∏

j=1
j 6=i

p
vj

j

i−1∏
j=1

p
−vi hj i

j ∼
k∏

j=1
j 6=i

p
vj−vi hj i

j ∼ FB
Ev′ .

Note that we now havea = FBEv′ with v′i = 0, a representation ofa overFB which does
not involvepi . Also, the substitution ofpi does not affect the entries inEv with index
greater thani, since (3.7) is a representation ofpi consisting only of thosepj with j < i .
Hence, if we start withi = k and repeat the substitution with successively decreasing
indicesi, we will eventually obtain a vectorEw′ ∈ Zk such thata = FB Ew′ andw′j = 0 for

every j such thatHj j = 1. Taking Ew to be those entries ofEw′ whose indices correspond
to the diagonal entries ofH greater than 1 (all other entries are zero), we have that
a = Q Ew, as required.

The overall procedure for computing a representation of an ideal over a system of
generators ofCl1 is summarized in the following algorithm.

Algorithm 3.2 (REPRESENT OVER GENS).
Computes a representation ofa over a system of generators ofCl1.
Input: a, factor baseFB, Hermite normal form basis of relation latticeH, left transfor-

mation matrixU for computing Smith normal form of essential part ofH, elementary
divisors ofCl1 mi , 1≤ i ≤ l

Output: Ea ∈ Zl such thata ∼∏l
i=1 g

ai
i

1. ComputeEv = REPRESENT OVER FB(a, FB) (Algorithm 3.1).
2. i = k = |FB |.

484 M. J. Jacobson, Jr.

3. If Hii = 1, setvj = vj − vi hj i for 1≤ j ≤ k, j 6= i . Setvi = 0. Decrementi and
repeat whilei > 1.

4. i = 1, j = 1.
5. If Hii 6= 1, setwj = vi and j = j + 1. Incrementi and repeat whilei ≤ k.
6. Set

ai =
l∑

j=1

(wj ui j) (modmi), 1≤ i ≤ l .

Finally, we present our complete algorithm for computingx in Problem 3.1.

Algorithm 3.3 (DISCRETE LOG).
Solves the discrete logarithm problem in the class group ofO1.
Input: 1, a, b
Output: x ∈ Z≥0 such thata ∼ bx, or−1 if no suchx exists

1. Compute themi such thatCl1 = C(m1)× . . .×C(ml) using Algorithm 4.3 from
[19, p. 57]. Keep the factor baseFB and the Hermite normal form (HNF) basis of
the relation latticeH.

2. k = |FB |, H ′ = H. For eachi ∈ {1, . . . , k} such thatHii = 1, remove rowi and
columni from H ′.

3. ComputeSandU such thatS= UH′ V.
4. Compute

Ea = REPRESENT OVER GENS(a, FB, H, U, {mi })

and

Eb = REPRESENT OVER GENS(b, FB, H, U, {mi })
using Algorithm 3.2.

5. Computex ∈ Z≥0 such that

ai ≡ xbi (modmi), 1≤ i ≤ l .

If no suchx exists, setx = −1.

4. Principality Testing

The second task necessary to solve Problem 1.1 once the exponentx has been computed
is to determine the quadratic numberα such thata = αbx. Computingα can be reduced
to determining the generator of the principal idealb−xa, since we have(α) = b−xa.

Thus, we now focus our attention on the principal ideal problem.

Problem 4.1. Given a reduced ideala, determine whethera is principal and if so,
computeδ(a).

Computing Discrete Logarithms in Quadratic Orders 485

Recall thatδ(a) = 1
2 log|α/σ(α)|(modR1), where(α) = a. Given this distance, it is

not difficult to computeα explicitly if desired, or some quadratic numbers whose product
is equal toα [8].

Cryptographic protocols based on real quadratic orders derive their security on the
supposed intractability of Problem 4.1 [29], [2]. For these protocols, it is important that
there be many reduced principal ideals, otherwise simple methods like exhaustive search
or baby-step giant-step suffice to solve Problem 4.1. Hence, real quadratic orders with
small regulators and imaginary quadratic orders are not suitable for these protocols.

Subexponential algorithms for principality testing have been proposed by Abel [1]
and Cohen et al. [12]. As in the algorithm for computing discrete logarithms in the class
group, both algorithms require that the class group and regulator first be computed using
an index calculus-type algorithm, after which any instance of Problem 4.1 in the same
quadratic order is relatively easy.

The algorithm we describe here follows that of [1]. The overall strategy is the same,
but we introduce a number of practical improvements, primarily centered around using
sieving methods. Given a reduced ideala and a quadratic orderO1, we first compute
the class group and regulator ofO1 using Algorithm 4.3 from [19, p. 57]. In addition
to the usual output of the algorithm, we keep the factor baseFB= {p1, . . . , pk}, matrix
H ∈ Zk×k such that HNF(A) = [0 | H] where A ∈ Zk×n is the relation matrix (all
relations produced appear as columns ofA), the unimodular transformation matricesTi ,

1≤ i ≤ s such thatAT1 · · · Ts = HNF(A) , and the vectorEγ = {γ1, . . . , γn} containing
the generators corresponding to the relations inA, i.e., if Eai is column i of A, then
FBEai = (γi).

Notice that the columns ofH form a basis of the relation lattice3.Thus, every principal
ideal ofO1 can be represented by a vectorEv ∈ Zk whereEv is a linear combination of
the columns ofH. In order to determine whether an ideala is principal, we computeEv
such thata = (γ)FBEv and test whether there exists a solutionEx ∈ Zk of H Ex = Ev. If not,
thena is not principal. Otherwise, letT ′s be the matrix formed by the lastk columns of
Ts. Then we haveAT1 · · · Ts−1T ′s = H. Furthermore, we have that the elements in

Er = El T1 · · · Ts−1T ′s,

wherel i = 1
2 log|γi /σ(γi)|(modR1), are approximately the distances of the principal

ideals corresponding to the columns ofH. In other words, if columni of H is Ehi and
hi = FBEhi = (αi), thenri ≈ 1

2 log|αi /σ (αi)|(modR1). It follows that the generatorβ
of FBEv satisfies

1
2 log

∣∣∣∣ β

σ(β)

∣∣∣∣ (modR1) ≈ Er Ex (modR1),

since
k∏

i=1

h
xi
i ∼ FBEv .

Finally, sincea = (γ)FBEv we have that

d = 1
2 log

∣∣∣∣ γ

σ(γ)

∣∣∣∣+ n∑
i=1

zi l i (modR1), Ez= T1 · · · T ′s Ex, (4.1)

486 M. J. Jacobson, Jr.

is an approximation ofδ(a). We take asδ(a) the value ofd + j R1 for j ∈ Z such that
0< d + j R1 ≤ R1.

There are two main computational tasks required in this method, assuming that the
class group and regulator have already been computed. The first is to compute a rep-
resentation ofa over the factor base, which can be done using Algorithm 3.1. Recall
that this algorithm makes use of our method for finding relations based on sieving tech-
niques, and is hence more efficient in practice than the corresponding methods in [1]
and [12] which do not use sieving. The linear algebra required, solving a linear system
of equations overZ, is very easy in our case, since the matrixH is in upper-triangular
form (Hermite normal form). However, computingd can be very difficult, because the
precision required in order to ensure an accurate approximation is very high. We used the
tools of Maurer [24] to compute this approximation. Using the fact thata = (α) where

α = γ
n∏

i=i

γ zi ,

andEz is given in (4.1), we use Maurer’s methods to determine the precision required
to guarantee that the floating point approximation ofδ(a)we compute is sufficiently accu-
rate. The floating point approximations are computed using routines from thexbigfloat
class in LiDIA [23]. This class contains routines designed to compute with rational ap-
proximations of real numbers while keeping track of the errors incurred, and is described
in [7].

Our method for principality testing is given by the following algorithm.

Algorithm 4.1 (PRINCIPAL).
Determines whethera is principal, and if so computes its distance.
Input: 1, a reduced
Output: −1 if a is not principal, otherwiseδ(a)

1. ComputeR1 with the algorithm from [19]. Keep the factor baseFB= {p1, . . . , pk},
Hermite normal form basis of the relation latticeH, transformation matrices
T1, . . . , Ts and vectorEγ = {γ1, . . . , γn} containing the generators of each rela-
tion generated.

2. Compute(Ev, γ) = REPRESENT OVER FB(a, FB) (Algorithm 3.1).
3. ComputeEx ∈ Zk such thatH Ex = Ev. If no suchEx exists, exit and return−1.
4. ComputeEz = T1 · · · T ′s Ex, where T ′s is the matrix formed by taking the lastk

columns ofTs. Evaluate the product from right to left, using only matrix-vector
multiplication.

5. ComputeEl such that

l i = 1
2 log

∣∣∣∣ γi

σ(γi)

∣∣∣∣ (modR1).

6. Compute

d ≈ 1
2 log

∣∣∣∣ γ

σ(γ)

∣∣∣∣+ k∑
i=1

zi l i .

Takeδ(a) to be the smallest value ofd+ j R1 such thatj ∈ Z and 0< d+ j R1 ≤
R1.

Computing Discrete Logarithms in Quadratic Orders 487

5. Computational Results

5.1. Discrete Logarithms in Cl1

We present some computational results of applying our implementation of Algorithm 3.3
in the LiDIA computer algebra system [23]. We have computed discrete logarithms for
four test classes of discriminants, namely1 = −4(10x + 1) and1 = −(10x + 3) for
imaginary quadratic orders and1 = 4(10x + 3) and1 = 10x + 1 for real quadratic
orders. In all cases we have computed the average time for solving each of six random
instances of Problem 3.1 for each different value of1. These run-times, given in CPU
seconds (s), minutes (m), hours (h), or days (d) on a 296 MHz UltraSPARC-II processor,
are presented in Tables 5.1–5.3. The average time for solving each of the six instances
of Problem 3.1 is given bytdl, and the time required to compute the structure of the class
group is given bytCl.

Notice that in all cases, the time required to solve Problem 3.1 is very small once the
class group has been computed. For the largest example,−4× (1080+1), each instance
requires about 4.5 hours, compared with almost 5.5 days for computing the class group.
The times for the real quadratic orders are somewhat smaller than those for the imaginary
quadratic orders, since the bulk of the time is spent computing representations of the
idealsa andb over a system of generators. The main part of this procedure is computing
representations over the factor base (i.e., relation generation), and as observed in [19],
relation generation is in general faster for real quadratic orders.

For the sake of comparison, we note that the largest imaginary quadratic order for
which Problem 3.1 had been solved previously wasO−4F7,whereF7 is the seventh Fermat
number and1 = −4F7 has 40 decimal digits [4]. It took Buchmann and D¨ullmann
about 6 days to compute the class group and about 114 seconds on a SPARCStation 1 to
evaluate any individual discrete logarithm. We were able to compute the class group for

Table 5.1. Average discrete logarithm run-times for1 < 0.

1 = −4(10x + 1) 1 = −(10x + 3)

x tCl tdl tCl tdl

10 0.51 s 0.02 s 0.37 s 0.02 s
15 0.51 s 0.03 s 0.45 s 0.03 s
20 1.05 s 0.07 s 0.85 s 0.07 s
25 1.60 s 0.16 s 1.66 s 0.15 s
30 3.14 s 0.25 s 2.93 s 0.25 s
35 5.79 s 0.48 s 10.93 s 0.53 s
40 22.00 s 0.96 s 36.63 s 1.68 s
45 1.32 m 9.57 s 2.22 m 12.24 s
50 4.03 m 6.57 s 6.47 m 18.06 s
55 26.70 m 1.34 m 19.22 m 35.44 s
60 1.15 h 1.11 m 2.37 h 1.86 m
65 4.85 h 4.73 m 5.20 h 1.63 m
70 13.01 h 12.71 m 1.28 d 19.19 m
75 1.86 d 47.73 m 1.88 d 55.78 m
80 5.37 d 4.35 h 10.00 d 4.79 h

488 M. J. Jacobson, Jr.

Table 5.2. Average discrete logarithm run-times for1 = 4(10x + 3).

x tCl tdl x tCl tdl

10 2.04 s 0.00 s 40 53.04 s 0.72 s
15 2.08 s 0.01 s 45 2.59 m 0.42 s
16 1.79 s 0.00 s 46 4.55 m 0.01 s
19 3.18 s 0.09 s 49 8.87 m 50.41 s
20 4.69 s 0.10 s 50 9.91 m 2.83 s
25 5.68 s 0.22 s 55 55.57 m 0.01 s
26 7.69 s 0.09 s 56 1.18 h 0.00 s
29 9.96 s 0.06 s 59 3.35 h 17.59 s
30 11.66 s 0.08 s 60 2.95 h 14.24 s
35 21.21 s 0.51 s 65 23.73 h 9.47 s
36 25.86 s 0.71 s 66 22.99 h 32.41 s
39 46.01 s 0.00 s

this discriminant in only 15 seconds, and each discrete logarithm problem instance took
less than 1 second. Using the rough figure that an UltraSPARC-II is 24 times faster than
a SPARCStation1, we estimate that our algorithm using sieving computes each instance
of the discrete logarithm problem about four times faster than without.

Tables 5.2 and 5.3 appear to contain the first examples of computing discrete logarithms
in the class group of real quadratic orders. The most interesting examples are the case
1 = 10x + 1, x even, since the quadratic orders of these discriminants have very small
regulators, and hence by the analytic class number formula the class number is large. The
run-times in this case are actually somewhat faster than those for the imaginary quadratic
orders. This is to be expected, since the Hermite normal form computation is the same
as that for imaginary quadratic orders (the transformation matrix is not needed) and as

Table 5.3. Average discrete logarithm run-times for1 = 10x + 1.

x odd x even

x tCl tdl x tCl tdl

— — — 10 0.37 s 0.01 s
11 2.39 s 0.00 s 12 0.42 s 0.02 s
15 1.72 s 0.04 s 16 0.60 s 0.05 s
19 3.09 s 0.04 s 20 0.85 s 0.09 s
25 6.33 s 0.04 s 26 2.00 s 0.20 s
29 9.93 s 0.06 s 30 3.39 s 0.41 s
35 19.52 s 0.23 s 36 11.93 s 1.07 s
39 47.56 s 3.52 s 40 22.28 s 1.90 s
45 2.20 m 0.59 s 46 1.57 m 8.08 s
49 6.18 m 0.31 s 50 3.08 m 36.48 s
55 39.41 m 1.63 s 56 20.90 m 3.00 m
59 2.34 h 14.32 s 60 1.32 h 46.48 s
65 21.42 h 27.85 s 66 4.77 h 2.24 m
69 — — 70 12.03 h 6.46 m
75 — — 76 1.78 d 38.77 m
79 — — 80 5.24 d 23.70 m

Computing Discrete Logarithms in Quadratic Orders 489

observed in Chapter 5 of [19], relation generation is in general faster for real quadratic
orders.

5.2. Principality Testing

We present some computational results of applying our implementation of Algorithm 4.1
in the LiDIA computer algebra system [23]. Since principality testing is trivial in imag-
inary quadratic orders, we have only considered the two test classes of positive discrim-
inants,1 = 4(10x + 3) and1 = 10x + 1. Also, since principality testing is easy for
1 = 10x+1, x even, we only consider oddx for this type of discriminant. In all cases, we
have computed the average time for solving each of six random instances of Problem 4.1
for each different value of1. These run-times, given in CPU seconds (s), minutes (m),
hours (h), or days (d) on a 296 MHz UltraSPARC-II processor, are presented in Tables 5.4
and 5.5. The average time for solving the each of the six instances of Problem 4.1 is
given bytprin, and the time required to compute the structure of the class group is given
by tCl. We also give the average time required to compute the representation of each
ideal over the factor base and the correspondingEz (Steps 1–4 of Algorithm 4.1) bytrep,

and the average time required to compute an approximation ofδ(a) by tapp.

In most cases, the time required to compute a representation ofa over the factor base
and to evaluateEz was very small compared with that required to compute the class group
and regulator. The main work in this part of the algorithm is computing one relation (for
representinga over the factor base), solving an upper-triangular linear system overZ,

Table 5.4. Average principality test run-times for1 = 4(10x + 3).

x tCl trep tapp tprin

10 2.04 s 0.07 s 1.41 s 1.50 s
15 2.08 s 0.03 s 1.25 s 1.31 s
16 1.79 s 0.03 s 1.01 s 1.10 s
19 3.18 s 0.08 s 3.36 s 3.48 s
20 4.69 s 0.09 s 3.19 s 3.32 s
25 5.68 s 0.17 s 21.23 s 21.48 s
26 7.69 s 0.17 s 27.70 s 27.95 s
29 9.96 s 0.31 s 54.51 s 54.90 s
30 11.66 s 0.20 s 37.23 s 37.54 s
35 21.21 s 0.69 s 1.83 m 1.84 m
36 25.86 s 0.89 s 1.17 m 1.19 m
39 46.01 s 1.58 s 3.05 m 3.09 m
40 53.04 s 0.86 s 54.76 s 55.82 s
45 2.59 m 3.82 s 2.64 m 2.70 m
46 4.55 m 3.86 s 3.16 m 3.23 m
49 8.87 m 1.06 m 3.16 m 4.23 m
50 9.91 m 21.57 s 3.47 m 3.83 m
55 55.57 m 54.67 s 20.57 m 21.49 m
56 1.18 h 1.57 m 49.23 m 50.81 m
59 3.35 h 3.51 m 55.07 m 58.59 m
60 2.95 h 1.10 m 1.41 h 1.43 h
65 23.73 h 1.15 h 4.29 h 5.44 h
66 22.99 h 57.53 m 3.42 h 4.38 h

490 M. J. Jacobson, Jr.

Table 5.5. Average principality test run-times for1 =
10x + 1, x odd.

x tCl trep tapp tprin

11 2.39 s 0.14 s 1.72 s 1.89 s
15 1.72 s 0.04 s 1.00 s 1.07 s
19 3.09 s 0.06 s 2.48 s 2.58 s
25 6.33 s 0.21 s 35.81 s 36.09 s
29 9.93 s 0.24 s 52.31 s 52.65 s
35 19.52 s 0.64 s 59.74 s 1.01 m
39 47.56 s 2.12 s 2.11 m 2.15 m
45 2.20 m 9.56 s 2.42 m 2.58 m
49 6.18 m 16.84 s 4.25 m 4.54 m
55 39.41 m 1.47 m 23.17 m 24.64 m
59 2.34 h 4.19 m 41.07 m 45.27 m
65 21.42 h 29.16 m 4.00 h 4.49 h

and evaluating the matrix-vector products required to computeEz, none of which are very
time-consuming. The reason for the large jump intrep betweenx = 59 andx = 65 is, as
specified in [19], that the matricesTi are stored in disk files when they have more than
2000 rows in order to conserve main memory.

At the moment, the bottleneck in solving Problem 4.1 is computing the floating point
approximation ofδ(a). In fact, for 25≤ x ≤ 45 the average time to compute this ap-
proximation alone was more than that required to compute the class group and regulator.
If all we are interested in is the decision problem, i.e., simply determining whethera is
principal, then this is not a problem. In this case there is even no need to compute the
vectorEz; it is sufficient to know that the systemH Ex = Ev can be solved. Also, if we only
want the quadratic integerα, there may be no need to approximateδ(a), since

α = γ
n∏

i=1

γ
zi
i .

From this representation, it should be possible to find efficiently either an explicit rep-
resentation ofα or a short representation like those described in [8]. However, at the
moment the best way to handle these problems and to computeδ(a) of which we are
aware is the method outlined in Algorithm 4.1.

The difficulty in approximatingδ(a) is that the coefficients ofEz are very large, and
extremely high precision is required in order to avoid round-off errors incurred during the
course of the approximation. Furthermore, in order to get an accurate result moduloR1,
even greater precision must be used. Again, at the moment we know of no way around
this problem. For discriminants with around 30 decimal digits and more we were unable
to obtain accurate results in a reasonable amount of time without Maurer’s method.

As with the regulator computation, the method described in [12] requires that the col-
umn operations performed during the Hermite normal form computation be performed
directly onEl , the vector containing the distances corresponding to the relations in the
relation matrix. In other words, the vectorEr is computed during the course of the Hermite
normal form computation, rather than afterwards by making use of the transformation

Computing Discrete Logarithms in Quadratic Orders 491

matrices. For smaller examples this approach works fine, but whenever modular tech-
niques are used during the Hermite normal form computation, as is necessary for large
examples, it is no longer possible.

Although algorithms are given in both [1] and [12] for principality testing, to the
best of our knowledge the computations presented here are the first presented for this
problem. Cohen et al. have implemented their algorithm as part of the PARI computer
algebra system, and in [11] they present computations where the regulators for some real
quadratic orders are computed using their algorithm. The largest example they gave was
the quadratic order with 41 digit discriminant 1040+1.Since most of the approximations
required for principality testing are computed during the computation of the regulator
in their algorithm, it is reasonable to assume that they could solve Problem 4.1 for real
quadratic orders with similar sized discriminants.

The largest example for which we were able to perform principality testing was the
real quadratic order with 67-digit discriminant 4(1066+ 3). Even though we can now
compute regulators for orders with discriminants in excess of 80 decimal digits [19], we
are as yet unable to solve Problem 4.1 for these larger orders. The principal ideal decision
problem is certainly possible in these cases, since a Hermite normal form basis of the
relation lattice is always computed. However, as stated in [19] we are unable to compute
transformation matrices with integer coefficients for these larger quadratic orders, and
as a result we cannot directly apply our algorithm to computeδ(a).

References

[1] C.S. Abel, Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer
Ordnungen, Ph.D. thesis, Universit¨at des Saarlandes, Saarbr¨ucken, 1994.

[2] I. Biehl, J. Buchmann, and C. Thiel, Cryptographic protocols based on discrete logarithms in real-
quadratic orders,Advances in Cryptology - CRYPTO ’94, Lecture Notes in Computer Science, vol. 839,
Springer-Verlag, Berlin, 1995, pp. 56–60.

[3] J. Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic
number fields,Śeminaire de Th́eorie des Nombres(Paris), 1988–89, pp. 27–41.

[4] J. Buchmann and S. D¨ullmann, On the computation of discrete logarithms in class groups,Advances in
Cryptology - CRYPTO ’90, Lecture Notes in Computer Science, vol. 537, Springer-Verlag, Berlin, 1991,
pp. 134–139.

[5] J. Buchmann, S. D¨ullmann, and H.C. Williams, On the complexity and efficiency of a new key exchange
system,Advances in Cryptology - EUROCRYPT ’89, Lecture Notes in Computer Science, vol. 434,
Springer-Verlag, Berlin, 1990, pp. 597–616.

[6] J. Buchmann, M.J. Jacobson, Jr., and E. Teske, On some computational problems in finite abelian groups,
Math. Comp. 66 (1997), 1663–1687.

[7] J. Buchmann and M. Maurer, Approximate Evaluation ofL(1, χ1), Tech. Report TI-6/98, Department
of Computer Science, Technical University of Darmstadt, Darmstadt, 1998.

[8] J. Buchmann, C. Thiel, and H.C. Williams,Short Representation of Quadratic Integers, Computational
Algebra and Number Theory, Mathematics and its Applications, 325, Kluwer, Dordrecht, 1995, pp. 159–
185.

[9] J. Buchmann and H.C. Williams, A key-exchange system based on imaginary quadratic fields,J. Cryp-
tology1 (1988), 107–118.

[10] H. Cohen,A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.
[11] H. Cohen, F. Diaz y Diaz, and M. Olivier, Calculs de nombres de classes et de r´egulateurs de corps

quadratiques en temps sous-exponentiel,Śeminaire de Th́eorie des Nombres(Paris), 1993, pp. 35–46.
[12] H. Cohen, F. Diaz y Diaz, and M. Olivier, Subexponential algorithms for class and unit group computa-

tions,J. Symbolic Comp. 24 (1997), 433–441.

492 M. J. Jacobson, Jr.

[13] H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups, inNumber Theory(Noordwijkerhout, 1983),
Lecture Notes in Mathematics, vol. 1052, Springer-Verlag, New York, 1984, pp. 26–36.

[14] S. Düllmann, Ein Algorithmus zur Bestimmung der Klassengruppe positiv definiter bin¨arer quadratischer
Formen, Ph.D. thesis, Universit¨at des Saarlandes, Saarbr¨ucken, 1991.

[15] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms,IEEE
Trans. Inform. Theory31 (1985), 469–472.

[16] J.L. Hafner and K.S. McCurley, A rigorous subexpoential algorithm for computation of class groups,
J. Amer. Math. Soc. 2 (1989), 837–850.

[17] L.K. Hua, Introduction to Number Theory, Springer-Verlag, New York, 1982.
[18] D. Hühnlein, M.J. Jacobson, Jr., S. Paulus, and T. Takagi, A cryptosystem based on non-maximal imag-

inary quadratic orders with fast decryption,Advances in Cryptology - EUROCRYPT ’98, Lecture Notes
in Computer Science, vol. 1403, Springer-Verlag, Berlin, 1998, pp. 294–307.

[19] M.J. Jacobson, Jr., Subexponential Class Group Computation in Quadratic Orders, Ph.D. thesis, Tech-
nische Universit¨at Darmstadt, Darmstadt, 1999.

[20] N. Koblitz, Elliptic curve cryptosystems,Math. Comp. 48 (1987), 203–209.
[21] N. Koblitz, Hyperelliptic cryptosystems,J. Cryptology1 (1989), 139–150.
[22] H.W. Lenstra, Jr.,On the Calculation of Regulators and Class Numbers of Quadratic Fields, London

Mathematical Society Lecture Note Series, vol. 56, Cambridge University Press, Cambridge, 1982,
pp. 123–150.

[23] LiDIA, http://www.informatik.tu-darmstadt.de/TI/LiDIA, 1997.
[24] M. Maurer, Regulator Approximation and Fundamental Unit Computation for Real-quadratic Orders,

Ph.D. thesis, Technische Universit¨at Darmstadt, Darmstadt, 2000, in preparation.
[25] K.S. McCurley,Cryptographic Key Distribution and Computation in Class Groups, NATO ASI on

Number Theory and Applications (R.A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 459–479.
[26] A. Meyer, Ein neues Identifikations- und Signaturverfahren ¨uber imaginär-quadratischen Zahlk¨orpern,

Master’s thesis, Universit¨at des Saarlandes, Saarbr¨ucken, 1997.
[27] V. Miller, Use of elliptic curves in cryptography,Advances in Cryptology - CRYPTO ’85, Lecture Notes

in Computer Science, vol. 218, Springer-Verlag, Berlin, 1986, pp. 417–426.
[28] S. Paulus, An algorithm of subexponential type computing the class group of quadratic orders over

principal ideal domains,Algorithmic Number Theory - ANTSII(Université Bordeaux I, Talence), Lecture
Notes in Computer Science, vol. 1122, Springer-Verlag, Berlin, 1996, pp. 243–257.

[29] R. Scheidler, J. Buchmann, and H.C. Williams, A key-exchange protocol using real quadratic fields,
J. Cryptology7 (1994), 171–199.

[30] M. Seysen, A probabilistic factorization algorithm with quadratic forms of negative discriminant,Math.
Comp. 48 (1987), 757–780.

[31] D. Shanks, The infrastructure of real quadratic fields and its applications,Proc. 1972Number Theory
Conference, Boulder, Colorado, 1972, pp. 217–224.

[32] R.D. Silverman, The multiple polynomial quadratic sieve,Math. Comp. 48 (1987), 329–339.

