
Designs, Codes and Cryptography, 30, 281–299, 2003

2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Towards Practical Non-Interactive Public-Key

Cryptosystems Using Non-Maximal Imaginary

Quadratic Orders

DETLEF HÜHNLEIN detlif.huehnlein@secunet.de

secunet Security Networks AG, Sudetenstrasse 16, D-96247 Michelau, Germany

MICHAEL J. JACOBSON, JR. jacobs@cpsc.ucalgary.ca

Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta,

Canada, T2N 1N4

DAMIAN WEBER weber@informatik.fh-trier.de

Fachhochschule Trier, Schneidershof, D-54293 Trier, Germany

Communicated by: P. Wild

Received April 9, 2001; Revised April 22, 2002; Accepted May 21, 2002

Abstract. We present a new non-interactive public-key distribution system based on the class group of a

non-maximal imaginary quadratic order ClðDpÞ. The main advantage of our system over earlier proposals

based on ðZ=nZÞ� [25,27] is that embedding id information into group elements in a cyclic subgroup of the
class group is easy (straight-forward embedding into prime ideals suffices) and secure, since the entire class

group is cyclic with very high probability. Computational results demonstrate that a key generation center

(KGC) with modest computational resources can set up a key distribution system using reasonably secure

public system parameters.

In order to compute discrete logarithms in the class group, the KGC needs to know the prime

factorization of Dp ¼ D1p
2. We present an algorithm for computing discrete logarithms in ClðDpÞ by

reducing the problem to computing discrete logarithms in ClðD1Þ and either F�p or F
�
p2 . Our algorithm is a

specific case of the more general algorithm used in the setting of ray class groups [5]. We prove—for

arbitrary non-maximal orders—that this reduction to discrete logarithms in the maximal order and a small

number of finite fields has polynomial complexity if the factorization of the conductor is known.

Keywords: discrete logarithm, non-maximal imaginary quadratic order, identity based cryptography, non-

interactive cryptography

AMS Classification: 94A60, 11Y40

1. Introduction

Public-key cryptography is undoubtedly one of the core techniques used to enable
authentic, non-repudiable and confidential communication. However, a general
problem inherent in public-key systems is that one needs to ensure the authenticity of
a given public key. The most common way to solve this problem is to introduce a
trusted third party, called a certification authority (CA), which issues certificates for

public keys.* While this approach is widely used in practice, it would be desirable to
have an immediate binding between an identity IDB and its corresponding public key
b, which allows one to avoid the tedious verification of certificates. This leads to the
notion of identity based cryptosystems, as proposed by Shamir [33]. For signature
schemes, the public key b is only needed when a user receives a signed message, and
thus it is tolerable that the public key b is derived from IDB and some identity-
specific system parameter SPB, which can easily be appended in this case. However,
in order to achieve non-interactive public-key encryption and key distribution
schemes, it is necessary that the knowledge of IDB alone is sufficient to derive the
public key b. This type of scheme was first proposed by Maurer and Yacobi [25].
They proposed setting up a discrete logarithm based system in G ¼ ðZ=nZÞ�, where
n ¼ p1; . . . ; pr; pi prime, such that only a key generation center (KGC) which knows
the factorization of n is able to compute discrete logarithms in G. However, as we
will see in Section 2, this approach has a number of drawbacks which render such a
scheme impractical.
In this paper we show that using the class groupClðDpÞ of a non-maximal imaginary

quadratic order is much better suited for this purpose. As in the original scheme, the
KGC knows some trapdoor information which enables it to compute discrete
logarithms, while for anybody else the discrete logarithm problem is (assumed to be)
intractable. We begin by describing an algorithm that reduces the problem of discrete
logarithm computation in the class group of a non-maximal order to computing
discrete logarithms in the much smaller class group of the corresponding maximal
order and a small number of finite fields. This algorithm is a special case of a generic
group-theoretic method employed to compute discrete logarithms in ray class groups
[5]. We prove that this reduction to discrete logarithms in the corresponding maximal
order and finite fields is of polynomial complexity. These results are then applied to set
up a more practical non- interactive scheme using ClðDpÞ.
As noted above there are a few advantages to our approach. Unlike the case of

ðZ=nZÞ�, it is heuristically easy to find class groups ClðDpÞ which are cyclic, and
hence the embedding of an identity IDB into a group element b, for which the
discrete logarithm exists, is straightforward. As the results from Maurer and Yacobi
[26] and Maurer and Kügler [24] demonstrate it seems to be no trivial task to find an
embedding into a subgroup of ðZ=nZÞ� which does not facilitate factoring n. In fact,
the only secure embedding method for ðZ=nZÞ� seems to restrict n to having only two
large prime factors p1 and p2, and the workload for the KGC is consequently very
high. Furthermore, since one chooses pi � 1 smooth and uses Pohlig-Hellman’s
simplification together with Shank’s Baby-Step Giant-Step algorithm, the time
needed for generating k user keys is proportional to k.
In contrast, we use two different subexponential algorithms for the key generation.

After the initial computation of relations over the factor bases, the workload for
each individual key generation is very modest. For the computation of discrete
logarithms in ClðD1Þ we use an analog of the self-initializing quadratic sieve (SIQS)

*We assume throughout this work that Alice (A) wants to encrypt a message m [Z<0 intended for Bob (B).

We denote Bob’s unique identity, for example his email-address, by IDB and his public key by b.

282 HÜHNLEIN, JACOBSON AND WEBER

factoring algorithm [16,17] and for the computation of discrete logarithms in F�p we
use the Special Number Field Sieve, which recently was used for the solution of
McCurley’s challenge [35].
This paper is organized as follows: In Section 2 we briefly recall previous proposals

for non-interactive public-key cryptosystems. In Section 3 we provide the necessary
background and notation for non-maximal imaginary quadratic orders. Section 4
contains the discrete logarithm algorithm for arbitrary non-maximal imaginary
quadratic orders. In Section 5 we present our new non-interactive public-key
cryptosystem, followed by computational examples in Section 6.

2. Previous Proposals of Non-Interactive Cryptosystems

Although the paradigm of identity based cryptography was already introduced by
Shamir in 1984 [33], it seems that Maurer and Yacobi [25] were the first to propose a
non-interactive identity based public-key cryptosystem in which Bob’s public key b
can be derived efficiently, solely from his public identity information IDB, by
computing a publicly-known embedding function b ¼ f ðIDBÞ. The main idea is to
use an (ideally cyclic) group G (generated by g) in which exponentiation is not only a
one-way function but a trapdoor one-way function. The KGC knows the trapdoor
information and hence is able to compute discrete logarithms in G. Thus, the KGC
computes Bob’s private key b such that gb ¼ b ¼ f ðIDBÞ. The KGC hands over the
secret key b to Bob, who can use this key in a conventional ElGamal or Diffie-
Hellman setup. As soon as all users are equipped with their corresponding secret key,
the KGC can destroy the trapdoor information and may cease to exist.
One approach to set up such a non-interactive cryptosystem would be to use the

group G ¼ ðZ=nZÞ�, where n ¼ p1; � � � ; pr is the product of r different primes. The
KGC generates n such that factoring it is hard and publishes n, while it keeps the
prime factors secret. However, it is well-known that ðZ=nZÞ� is cyclic if and only if
n [f2; 4; 2pk; pkg for an odd prime p and k [Z>0. Since we require that factoring n is
hard we obviously cannot use such a modulus n, and consequently, we cannot
guarantee that the discrete logarithm for some b ¼ IDB to a universal base element g
exists. Therefore one needs to apply a more sophisticated embedding function which
maps an identity IDB into a cyclic subgroup of ðZ=nZÞ�. Maurer and Yacobi [25]
proposed two embeddings which solve this problem. Unfortunately, one method is
insecure (allows a single user to factor n) and the second is inefficient.
Kügler [19] studied the application of a public factor base to obtain practical non-

interactive schemes. While the key generation for the KGC can be performed in
polynomial time this approach has the severe drawback that every user needs to
store a public factor base, which may need more than 1MByte in a practical setup.
Furthermore, the size of the factor base needs to be at least as large as the number of
users to prevent an attack by solving a system of linear equations.
Currently, the best proposal for identity based cryptography, due to Boneh and

Franklin [2], uses the Weil pairing of an elliptic curve. In addition to having efficient
and secure private key generation, their scheme has chosen ciphertext security in the

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 283

random oracle model assuming a variant of the computational Diffie-Hellman
problem. Our cryptosystem is certainly not as attractive as that of Boneh and
Franklin [2]. However, as it is based on an unrelated mathematical problem, it should
be considered as a viable alternative should Boneh and Franklin’s method be broken.

3. Background and Notation for Non-Maximal Imaginary Quadratic Orders

The basic notions of imaginary quadratic number fields can be found in Borevich
and Shafarevich [3] and Cohen [4]. For a more comprehensive treatment of the
relationship between maximal and non-maximal orders we refer to Cox [7], Hühnlein
et al. [13], Hühnlein and Takagi [15], and Neukirch [29].

3.1. Maximal Imaginary Quadratic Orders

Let D:0; 1ðmod 4Þ be a negative integer whose absolute value is not a square. The
quadratic order of discriminant D is defined to be

oD ¼ Zþ oZ;

where

o ¼

ffiffiffi
D
4

q
; if D:0 ðmod4Þ;

1þ
ffiffiffi
D

p

2 ; if D:1 ðmod4Þ:

8<
: ð1Þ

The standard representation of a [oD is a ¼ xþ yo, where x; y [Z.
If D1 (or D1=4 if D:0 ðmod 4Þ) is square-free, then oD1

is the maximal order of the
quadratic number fieldQð

ffiffiffiffi
D

p
1Þ andD1 is called a fundamental discriminant. The non-

maximal order of conductor f > 1 with non-fundamental discriminant Df ¼ D1f
2 is

denoted by oDf
. We omit the subscripts to reference arbitrary (fundamental or non-

fundamental) discriminants. BecauseQð
ffiffiffiffiffiffi
D1

p
Þ ¼ Qð

ffiffiffiffiffiffi
Df

p
Þ we also omit the subscripts

to reference the number field Qð
ffiffiffiffi
D

p
Þ. The standard representation of an oD-ideal is

a ¼ q Zþ bþ
ffiffiffiffi
D

p

2a
Z

 !
¼ qða; bÞ;

where q [Q > 0, a [Z>0, c ¼ ðb2 � DÞ=ð4aÞ [Z, gcdða; b; cÞ ¼ 1 and� a < b � a. The
norm of this ideal is nðaÞ ¼ aq2. An ideal is called primitive if q ¼ 1. The standard
representation of a primitive ideal boils down to ða; bÞ. A primitive ideal is called
reduced if jbj � a � c and b 0 if a ¼ c. It can be shown that the norm of a reduced
ideal a satisfiesnðaÞ �

ffiffiffiffiffiffiffiffiffiffiffi
jDj=3

p
and conversely that ifnðaÞ �

ffiffiffiffiffiffiffiffiffiffiffi
jDj=4

p
then the ideal

a is reduced.
The group of invertible oD-ideals is denoted by iD. Two ideals a; b are said to be

equivalent if there is a g [Qð
ffiffiffiffi
D

p
Þ, such that a ¼ gb. This equivalence relation is

284 HÜHNLEIN, JACOBSON AND WEBER

denoted by a*b. The set of principal oD-ideals, i.e., those ideals which are
equivalent to oD, is denoted bypD. The factor groupiD=pD is called the class group
of oD, denoted by ClðDÞ. The group elements are equivalence classes (denoted by
½a�), and the neutral element is the class of ideals equivalent to oD. Each equivalence
class can be represented uniquely by a reduced ideal. Algorithms for the group
operation (multiplication and reduction of ideals) can be found in Cohen [4]. ClðDÞ is
a finite abelian group, and its order is called the class number of oD, denoted by hðDÞ.

3.2. Non-Maximal Imaginary Quadratic Orders

Our cryptosystem makes use of the relationship between a non-maximal order of
conductor f and its corresponding maximal order. Any non-maximal order can be
represented as oDf

¼ Zþ foD1
. If hðD1Þ ¼ 1, then oDf

is called a totally non-maximal
order. An oD-ideal a is called prime to f if gcdðnðaÞ; f Þ ¼ 1. It is well-known that all
oDf

-ideals prime to the conductor are invertible, and in every ideal equivalence class
there is an ideal which is prime to any given integer. We denote the principal oDf

-
ideals, which are prime to f by pDf

ð f Þ and all oDf
-ideals which are prime to f by

iDf
ð f Þ. Then there is an isomorphism

iDf
ð f Þ
	
pDf

ð f Þ ^ iDf

	
pDf

¼ ClðDf Þ; ð2Þ

so we can ‘‘ignore’’ the ideals which are not prime to the conductor if we are only
interested in the class group ClðDf Þ.
There is an isomorphism between the group of oDf

-ideals which are prime to f and
the group of oD1

-ideals which are prime to f, denoted by iDf
ð f Þ, and iD1

ð f Þ,
respectively.

PROPOSITION 1. Let oDf
be an order of conductor f in an imaginary quadratic field

Qð
ffiffiffiffi
D

p
Þ with maximal order oD1

.

i. If A [iD1
ð f Þ, then a ¼ A \ oDf

[iDf
ð f Þ and nðAÞ ¼ nðaÞ.

ii. If a [iDf
ð f Þ, then A ¼ aoD1

[iD1
ð f Þ and nðaÞ ¼ nðAÞ.

iii. The map j : A�A \ oDf
induces an isomorphism iD1

ð f Þ?*iDf
ð f Þ. The inverse

of this map is j�1 : a�aoD1
.

Proof. See Cox [7, Proposition 7.20, p. 144]. &

Thus we are able to switch to and from ideals in the maximal and non-maximal
orders via the map j. The algorithms GoToMaxOrder ða; f Þ to compute j�1 and
GoToNonMaxOrder ðA; f Þ to compute j respectively can be found in Hühnlein et
al. [13]. If a ¼ aZþ ðbþ

ffiffiffiffiffiffi
Df

p
Þ=2Z ¼ ða; bÞ and A ¼ AZþ ðBþ

ffiffiffiffiffiffi
D1

p
Þ=2Z ¼ ðA;BÞ

are reduced ideals, then these algorithms need OðlogðjD1jÞ2Þ and OðlogðjDf jÞ2Þ bit-
operations respectively.

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 285

It is important to note that the isomorphism j is between the ideal groups iD1
ð f Þ

and iDf
ð f Þ and not the class groups. If, for A;B [iDf

ð f Þ we have A*B, it is not
necessarily true that jðAÞ*jðBÞ. On the other hand, equivalence does hold under
j�1. More precisely we have the following:

PROPOSITION 2. The isomorphism j�1 induces a surjective homomorphism
f�1
Cl : ClðDf Þ?ClðD1Þ, where ½a�� ½j�1ðaÞ�.

Proof. This immediately follows from the short exact sequence:

ClðDf Þ?ClðD1Þ? 1

(see Neukirch [29, Theorem 12.9, p. 82]). &

We now focus on the kernel Kerðf�1
Cl Þ of this map, which will turn out to be of

central importance for the computation of discrete logarithms in ClðDf Þ. In
particular, we will need to compute discrete logarithms of elements in Kerðf�1

Cl Þ.
Representing elements of Kerðf�1

Cl Þ as ideal equivalence classes is completely
inadequate for this purpose since we would have to compute discrete logarithms in
ClðDf Þ. Fortunately, there exists an alternative representation which allows us to
reduce the problem of computing discrete logarithms in Kerðf�1

Cl Þ to that in a small
number of finite fields.

PROPOSITION 3. The map c : ðoD1
=foD1

Þ� ?Kerðf�1
Cl Þ, ½a�� ½j aoD1

ð Þ�, is a
surjective homomorphism.

Proof. This is shown in the more comprehensive proof of Theorem 7.24 in Cox
[7, p. 147]. &

This homomorphism suggests the following representation for ideal classes in the
kernel:

Definition 1. Let ½a� ¼ ½xþ yo� [ðoD1
=foD1

Þ� and let a*jðaoD1
Þ be a reduced oDf

-
ideal whose equivalence class is in Kerðf�1

Cl Þ. Then the pair ðx; yÞ is called a generator
representation for the equivalence class ½a�.

Definition 2. Let ImððZ=fZÞ�Þ denote the natural embedding of ðZ=fZÞ� into
ðoD1

=foD1
Þ�, i.e.,

Im : ðZ=fZÞ� � ðoD1
=foD1

Þ�

½x� � ½ðx; xÞ�:

Remark 1. Note that this generator representation ðx; yÞ for the class of a is not
unique. It is easy to see that ðkx; kyÞ, k [ðZ=fZÞ�, is also a generator representation

286 HÜHNLEIN, JACOBSON AND WEBER

for the class of a. This means that we have a*jððxþ yoÞoD1
Þ*jððkxþ kyoÞoD1

Þ.
In other words, Kerðf�1

Cl Þ%ðoD1
=foD1

Þ�=ImððZ=fZÞ�Þ, as illustrated by the exact
sequence (7.27) in Cox [7, p. 147].

Our reduction of the discrete logarithm problem in ClðDf Þ to ClðD1Þ and finite
fields requires computing various preimages of elements in Kerðf�1

Cl Þ under the map
c. Algorithm 1 (Std2Gen) accomplishes this task. The algorithm Reduce reduces
an ideal A given in standard representation and simultaneously computes a reducing
number g [oD1

of the form ðxþ y
ffiffiffiffiffiffi
D1

p
Þ=2 such that A=g is reduced (see, for example,

Jacobson [16, Algorithm 2.6, p.16]).

Algorithm 1. Std2Gen

Input: The standard representation ða; bÞ of a reduced oDf
-ideal a ¼ aZþ

ðbþ
ffiffiffiffiffiffi
Df

p
=2ZÞ representing a class in Kerðf�1

Cl Þ, and the conductor f.
Output: A generator representation ðx; yÞ of the class ½a� [Kerðf�1

Cl Þ
ða; bÞ/ GoToMaxOrder ða; f Þ
ðG; gÞ/ Reduce ða; bÞ, where g ¼ ðxþ y

ffiffiffiffiffiffi
Df

p
Þ=2

if G 6*oD1
then

return (‘‘Error! a 6[Kerðf�1
Cl Þ!’’)

end if
if D1:0 ðmod 4Þ then

x/ x=2 ðmod f Þ
y/ y=2 ðmod f Þ

else
x/ ðx� yÞ=2 ðmod f Þ
y/ y ðmod f Þ

end if
return ððx; yÞÞ

Proof (correctness of Std2Gen). The first step in the routine GoToMaxOrder [13]
is to compute an ideal a0*a with gcdðnða0Þ; f Þ ¼ 1Þ. Thus, we obtain the principal
ideal A ¼ goD1

¼ j�1ða0Þ ¼ aZþ ðbþ
ffiffiffiffiffiffi
D1

p
Þ=2Z in standard representation. The

algorithm Reduce computes G*A such that G is reduced, together with g ¼
ðxþ y

ffiffiffiffiffiffi
D1

p
Þ=2 such that G ¼ A=g. If G 6¼ oD1

, then a cannot be in the kernel
Kerðf�1

Cl Þ and an error is returned. Otherwise, since G ¼ A=g and G ¼ oD1
we have

ðgÞ ¼ A, i.e., g is a generator of the principal ideal A. Finally, we simply convert g to
the form xþ yo, and since gcdðnða0Þ; f Þ ¼ gcdðnðAÞ; f Þ ¼ gcdðNðgÞ; f Þ ¼ 1, we
may apply [10, Lemma 5] and reduce modulo f without leaving the equivalence class
of a. &

PROPOSITION 4. Std2Gen needs OðlogðjDf jÞ2Þ bit-operations.

Proof. Since a is reduced, GoToMaxOrder needs OðlogðjDf jÞ2Þ bit-operations.
Since a ¼ nða0Þ, we know by Biehl and Buchmann [1] that the reduction, including
the computation of g, also takes Oððlog jDf jÞ2Þ bit-operations. &

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 287

4. The DLP for Arbitrary Cl(�f)

Let G be a finite abelian (multiplicatively written) group and g [G be a fixed element.
Then the discrete logarithm problem (DLP) in G for a given a is to determine the
least positive a [Z such that ga ¼ a, or show that no such a exists.
In this section we show that given the conductor f and its prime

factorization one can reduce the DLP in an arbitrary ClðDf Þ to the DLP in
various smaller groups. More precisely, we show that the computation of
discrete logarithms in ClðDf Þ can be reduced to the computation of discrete
logarithms in the class group ClðD1Þ of the maximal order and the
computation of discrete logarithms in Kerðf�1

Cl Þ. Furthermore, we show that
the latter problem boils down to the computation of discrete logarithms in a
small number of finite fields.
It should be noted that our method here is in essence a special case of the more

general methods employed by Cohen et al. [5] to compute discrete logarithms in ray
class groups. The class group of a non-maximal order in any number field, not only
degree 2, can be viewed as a ray class group of the maximal order, where the
modulus is simply an integer, the conductor of the non-maximal order. The
following theorem, presented in a generic group-theoretic setting, encapsulates the
general method employed.

THEOREM 1. Let G, H be finite abelian groups and F : G � H a homomorphism.
Then the DLP in G can be reduced to one discrete logarithm computation in KerðFÞ and
two discrete logarithm computations in H via two applications of F, Oðlog jHjÞ group
operations in G and Oððlog jGjÞ2Þ bit-operations.

Proof. Let g;a [G and suppose we want to compute the discrete logarithm x of a to
the base g. We first computeG ¼ FðgÞ, A ¼ FðaÞ, and solve the corresponding DLP
in H, i.e., find the smallest positive integer x1 such thatG

x1 ¼ A. If no such x1 exists,
then x does not exist because F is a homomorphism.
Let a ¼ gx1h. Then the discrete logarithm x exists if and only if

h ¼ ag�1 [hgi \ KerðFÞ. The smallest power gu such that gu [KerðFÞ is a
generator of the cyclic group hgi \ KerðFÞ. Because F is a homomorphism, u is
the order of FðgÞ ¼ G [H. We compute u by solving a second DLP in H. Compute
the smallest positive integer u0 such that Gu0 ¼ G�1; then u ¼ u0 þ 1 is the order of
G [H.
Finally, we compute the discrete logarithm v of h with respect to gu in the

group KerðFÞ, so that h ¼ guv. Thus, we have a ¼ gx1guv, and x ¼ x1 þ uv.
Because u, v, and x1 are the smallest positive solutions to the corresponding
discrete logarithm problems, x is the smallest positive solution to the original
DLP.
In addition to the two applications of F and the three discrete logarithm

computations, we require Oðlog jHjÞ group operations in G to compute h ¼ ag�x1

and gu because x1 and u are OðjHjÞ. Finally, because x is OðjGjÞ, we require
Oðlog2 jGjÞ bit-operations to compute x ¼ x1 þ uv. &

288 HÜHNLEIN, JACOBSON AND WEBER

If jHj is known and g generates G, as will be the case in our application, then we
can simply set u ¼ jHj and avoid one discrete logarithm computation in H because
FðgÞ generates H (easy exercise). This yields Algorithm 2, in which we assume that
the following subalgorithms are available:

. ComputePhiðgÞ
Accepts an element g [G as input and returns G ¼ FðgÞ [H,

. DLPinHðG;AÞ
returns x [Z with 0 � x < jhGiij such that Gx ¼ A in H, or x ¼ �1 if no such x
exists,

. DLPinKerðg; aÞ
returns x [Z with 0 � x < jKerðFÞj such that gx ¼ a in KerðFÞ, or x ¼ �1 if no
such x exists.

Algorithm 2. ReduceDLP

Input: Two elements g; a [G (g generates G), u ¼ jHj
Output: The discrete logarithm x, such that gx*a, with 0 � x < jGj, or x ¼ �1, if no
such x exists.
{Compute DL in H}
G / ComputePhiðgÞ
A / ComputePhiðaÞ
x1 / DLPinHðG;AÞ
if x1 ¼ �1 then
return (�1)

end if
{Compute DL in H}
v / DLPinKer ðgu; ag�x1Þ
if v ¼ �1 then
return (�1)

end if
{Combine partial results to get DL in G}
x/ x1 þ uv
returnðxÞ

In our application, G/ClðDf Þ (class group of the non-maximal order),
H/ClðD1Þ (class group of the maximal order), and F/f�1

Cl . The subalgorithm
ComputePhi is implemented by the algorithm GoToMaxOrder from Hühnlein
et al. [13]. It remains to show how the subalgorithms DLPinH and DLPinKer are
to be realized.

DLP in ClðDÞ

Because H/ClðD1Þ, the subalgorithm DLPinH must solve the DLP in the class
group of a maximal order. Let oD be any quadratic order. The best available

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 289

algorithm for computing discrete logarithms in ClðDÞ uses a generalization of the
self-initializing quadratic sieve factoring algorithm [17]. This first step of this
algorithm is to compute the structure of the class group; once this is complete, any
DLP instances in that class group are relatively easy to solve. We refer the interested
reader to Jacobson [17] for more details and computational results.

DLP in Kerðf�1
Cl Þ

Because F/f�1
Cl , the subalgorithm DLPinKer must solve the DLP in Kerðf�1

Cl Þ.
The map c : ðoD1

=foD1
Þ�?Kerðf�1

Cl Þ from Proposition 3 induces the isomorphism
Kerðf�1

Cl Þ%ðoD1
=foD1

Þ�=ImððZ=fZÞ�Þ, so we will reduce the computation of DLP’s
in Kerðf�1

Cl Þ to computations in ðoD1
=foD1

Þ�. Our implementation of DLPinKer will
accept two generator representations g; a of classes in Kerðf�1

Cl Þ such that
½g�,½a� [ðoD1

=foD1
Þ� as input and return x [Z with 0 � x < jKerðf�1

Cl Þj such that
cð½g�Þx ¼ cð½a�Þ in Kerðf�1

Cl Þ, or x ¼ �1 if no such x exists.
By the Chinese Remainder Theorem (see, for example, Lang [20, p. 11]), the

DLP in ðoD1
=foD1

Þ�=ImððZ=fZÞ�Þ boils down to DLPs in the groups
ðoD1

=peii oD1
Þ�=ImððZ=peii ZÞ

�Þ for prime powers peii , where f ¼
Q

peii . Furthermore,
this problem can be efficiently reduced to the prime case ðoD1

=pioD1
Þ�=ImðF�piÞ using

an analogous strategy to that in Menezes et al. [28, Algorithm 3.63, p. 108].
Excluding the discrete logarithm computations in ðoD1

=pioD1
Þ�=ImðF�piÞ, exponentia-

tions (polynomial time) are the dominating operations in the resulting algorithm. As
shown in Hühnlein and Merkle [14] and Hühnlein and Takagi [15], ðoD1

=poD1
Þ� is

isomorphic to either F�p6F�p or F
�
p2 , depending how p splits in oD1

.
The best available algorithm for computing discrete logarithms in finite fields is

the number field sieve (NFS) [9,31,32]. Weber has implemented this algorithm [34]
and successfully computed discrete logarithms in a number of very large finite fields.
Recently, he and Denny solved McCurley’s discrete logarithm challenge, a discrete
logarithm problem in a finite prime field for a 426-bit prime [35].

The Main Theorem

THEOREM 2. If the prime factorization of the conductor f ¼
Qk

i¼1 p
ei
i is known and

ei ¼ Oððlog piÞaÞ for some a ¼ Oð1Þ then one can reduce the discrete logarithm problem
in ClðDf Þ in polynomial time (in logDf) to the computation of logarithms in ClðD1Þ and
the following groups ð1 � i � kÞ:

F�pi ; if
D1

pi

� �
[f0; 1g

F�p2
i
; if

D1

pi

� �
¼ �1:

290 HÜHNLEIN, JACOBSON AND WEBER

Proof. If the conductor f and its prime factorization are known, then by
Theorem 1 (using Algorithm 2) one can reduce the DLP in ClðDf Þ to the DLP in
ClðD1Þ and Kerðf�1

Cl Þ. By Theorem 1 this is possible in polynomial time in log jDf j.
By the Chinese Remainder Theorem (using the known factorization of f) the DLP
in Kerðf�1

Cl Þ%ðoD1
=foD1

Þ�=ImððZ=fZÞ�Þ is nothing more than the DLP in groups
of the form ðoD1

=peii oD1
Þ�=ImððZ=peii ZÞ

�Þ, which can be reduced in polynomial
time (in log pi) to the DLP in ðoD1

=pioD1
Þ�=ImðF�piÞ, as long as ei is polynomial in

log pi.
It remains to show how one reduces the discrete logarithm problem in

ðoD1
=poD1

Þ�=ImðF�pÞ to discrete logarithm problems in F�p or F�p2 . Suppose we have
two representatives g; a of classes in ðoD1

=poD1
Þ� for which we want to compute the

discrete logarithm v such that ½g�v:½a� in ðoD1
=poD1

Þ�=ImðF�pÞ. In the inert case
ðD1=pÞ ¼ �1, where ðoD1

=poD1
Þ�%F�p2 , we have ðoD1

=poD1
Þ�=ImðF�pÞ%*F�p2=ImðF�pÞ.

It is well-known that there always exists a surjective homomorphism from F�p2 to
F�p2=ImðF�pÞ. Thus, we first solve the DLP gv

0
:a ðmod poD1

Þ by simply solving the
corresponding DLP in F�p2 . Taking v:v 0modðpþ 1Þ yields the required solution to
the DLP ½g�v:½a� in the group ðoD1

=poD1
Þ�=ImðF�pÞ.

We now restrict our attention to the split case ðD1=pÞ ¼ 1, where we have
ðoD1

=poD1
Þ�%F�p6F�p. The element g ¼ ðx1; y1Þmaps to ðx1 mod p; y1 mod pÞ [F�p6F�p

andsimilarlya ¼ ðx2; y2Þmapstoðx2 mod p; y2 mod pÞ.TheDLPinðoD1
=poD1

Þ�=Im6
ðF�pÞbecomes

ðx1; y1Þv:lðx2; y2Þ ðin F�p6F�pÞ;

which in turn yields the simultaneousDLP’s

xv1:lx2 ðmod pÞ; yv1:ly2 ðmod pÞ:

Since these two DLP’s must be solved for the same v and l, we can combine them and
obtain the singleDLP inF�p

x1

y1

� �v

:
x2

y2

� �
ðmod pÞ

fromwhichwe can find the desired value of v. &

As noted in Hühnlein [11], this simple strategy can be used to improve the general
maps from Hühnlein and Merkle [14] and Hühnlein and Takagi [15]; it is shown that
in this case there not only exists a surjective homomorphism F�p6F�p ? Kerðf�1

Cl Þ,
but even an efficiently computable isomorphism F�p%Kerðf�1

Cl Þ.
Note that the central result of Hühnlein and Takagi [15] now is nothing more than

an immediate corollary. The proof of Theorem 2 also describes an algorithm for
computing discrete logarithms in ðoD1

=poD1
Þ�=ImðF�pÞ.

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 291

4.1. Example

We illustrate the reduction of discrete logarithm computations in ClðDf Þ via a small
example. Suppose D1 ¼ � 1019, f ¼ 23, and Df ¼ D1f

2 ¼ � 539 051. In this case,
both ClðDf Þ and ClðD1Þ are cyclic with hðD1Þ ¼ 13 and hðDf Þ ¼ hðD1Þð23� 1Þ ¼ 286.
The equivalence class represented by the reduced ideal

g ¼ 15Zþ� 7þ
ffi
� 539 051

p

2
Z ¼ ð15;� 7Þ;

generates ClðDf Þ, so we can take u ¼ hðD1Þ ¼ 13.
Suppose we wish to compute the discrete logarithm of ½a� with respect to the base

½g� in ClðDf Þ, where

a ¼ 11Zþ 9þ
ffi
� 539 051

p

2
Z ¼ ð11; 9Þ:

That is, we want to find x such that gx*a. Since g generates ClðDf Þ, we know that
such an x exists. Following ReduceDLP (Algorithm 2), we first compute ½G� ¼
½f�1

Cl ðgÞ� and ½A� ¼ ½f�1
Cl ðaÞ�, and solve the discrete logarithm problem

Gx1*A

in ClðD1Þ. We have G ¼ 15Zþ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1019

p
Þ=2Z ¼ ð15; 1Þ, A ¼ ð11; 9Þ, and we

easily compute x1 ¼ 9.
At this point we know that x has the form x ¼ x1 þ uv ¼ 9þ 13v, and it remains

to compute v. Again following ReduceDLP (Algorithm 2), we compute generator
representations a; g of ½a�; ½g� [ðoD1

=foD1
Þ� such that cð½a�Þ ¼ ½a=gx1 � and

cð½g�Þ ¼ ½ghðD1Þ�. Following Std2Gen (Algorithm 1), we first compute

b*a=gx1*a=g9 ¼ ð311; 277Þ

and

c*ghðD1Þ*g13 ¼ ð297; 295Þ:

To find a and g we compute the principal ideals B ¼ j�1ðbÞ and C ¼ j�1ðcÞ, and
reduce them while simultaneously computing their modulo foD1

reduced generators,
which we take as a and g. We obtainB ¼ ð311;�15Þ ¼ ðaÞ and C ¼ ð297;�13Þ ¼ ðgÞ
where

a ¼ � 8þ 1o; g ¼ � 7þ 1o;

and o ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1019

p
=2.

To compute v, we need to solve the discrete logarithm problem

½g�v:½a� ðin Kerðf�1
Cl Þ¼

*ðoD1
=foD1

Þ�=ImððZ=fZÞ�ÞÞ:

For this example, we have ðD1=f Þ ¼ ð�1019=23Þ ¼ 1, and thus the group

292 HÜHNLEIN, JACOBSON AND WEBER

ðoD1
=foD1

Þ� ^ F�236F�23 by Hühnlein and Takagi [15, Lemma 8]. Since
o:14 ðmod 23Þ and o:10 ðmod 23Þ, we obtain

g � ð�7þ 1o mod 23;�7þ 1o mod 23Þ ¼ ð7; 3Þ [F�236F�23;

and

a � ð�8þ 1o mod 23;�8þ 1o mod 23Þ ¼ ð6; 2Þ [F�236F�23:

Since Kerðf�1
Cl Þ%ðF�p6F�pÞ=ImðF�pÞ, we need to find v by solving the discrete

logarithm problem ð7; 3Þv ¼ lð6; 2Þ in F�236F�23 for every l [F�23. This yields

7v: 6l ðmod 23Þ; 3v: 2l ðmod 23Þ;

and we combine these two discrete logarithm problems to obtain one discrete
logarithm problem in F�23:

ð7=3Þv: ð6=2Þ ðmod 23Þ? 10v: 3 ðmod 23Þ:

Solving yields v ¼ 20, and finally x ¼ 9þ 13 ? 20 ¼ 269. It is easy to verify that x is
indeed the desired discrete logarithm: simply compute the reduced ideal g269 and
verify that it is equal to the reduced ideal a.

5. Towards Practical Non-Interactive Cryptosystems

In this section we apply (parts of) the result from Section 4 concerning the
computation of discrete logarithms to set up a non-interactive cryptosystem.
Before we explain the proposed setup we recall some more preliminaries

concerning imaginary quadratic class groups. Note that for fundamental discrimi-
nants, by the Cohen-Lenstra heuristics [6] the probability that the odd part of the
class group is cyclic is approximately 0.977575. Thus, for a prime discriminant
�D1:3 ðmod 4Þ the probability that ClðD1Þ is cyclic is more than 0.97. Indeed, in
practice it is no problem to find a fundamental discriminant D1 such that the class
group class group ClðD1Þ of the maximal order is cyclic. Furthermore, given such a
maximal order, it is easy to find a prime conductor p such that ClðDpÞ is also cyclic.

PROPOSITION 5. Let q:3 ðmod 4Þ, D1 ¼ � q and let ClðD1Þ be cyclic with class
number hðD1Þ. Furthermore let p be a prime such that

gcd p� ðD1=pÞ; hðD1Þð Þ ¼ 1:

Then ClðDpÞ is cyclic.

Proof. By Proposition 2 we know that f�1
Cl : ClðDpÞ?ClðD1Þ is a surjective

homomorphism, and we have ClðDpÞ^ClðDpÞ=Kerðf�1
Cl Þ6Kerðf�1

Cl Þ. Since
ClðDpÞ=Kerðf�1

Cl Þ^ClðD1Þ is assumed to be cyclic, if we show that Kerðf�1
Cl Þ is

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 293

cyclic, then by elementary group theory ClðDpÞ, the direct product of two cyclic
groups of relatively prime order (also by assumption), is also cyclic.
We know that Kerðf�1

Cl Þ%ðoD1
=poD1

Þ�=ImðF�pÞ (see Remark 1), and by Hühnlein
and Takagi [15, Lemma 8] ðoD1

=poD1
Þ� is isomorphic to either F�p6F�p or F

�
p2 . In the

latter case, since F�p2 is cyclic, ðoD1
=poD1

Þ�=ImðF�pÞ%F�p2=ImðF�pÞ must also be cyclic,
since it is a factor group of a cyclic group.
Suppose now that ðoD1

=poD1
Þ�%F�p6F�p. Then, we have Kerðf�1

Cl Þ%ðF�p6F�pÞ=
ImðF�pÞ where ImðF�pÞ ¼ fðx; xÞjx [F�pg. It is easy to show that ðF�p6F�pÞ=ImðF�pÞ%F�p
under the map ðx; 1ÞImðF�pÞ � x. &

Thus, it is possible to set up a non-interactive scheme in the spirit of Maurer and
Yacobi in a cyclic group ClðDpÞ, where the embedding of some (arbitrarily large)
identity IDB into a group element is straightforward. One has only to take the largest
prime pB � IDB which satisfies ðDp=pBÞ ¼ 1, compute the prime ideal pB lying over
pB, and reduce this ideal. The computation of the discrete logarithm can be
performed in ClðD1Þ and the finite field F�p or F�p2 , depending on ðD1=pÞ, using the
reduction described in Section 4 by anyone who knows the factorization of Dp.
Before we explain our system setup we list the crucial properties:

Required Properties:

1. The DLP in ClðDpÞ without knowing the factorization of Dp ¼ D1p
2 is infeasible.

To determine bounds for D1 and p, we make use of the heuristic model from
Hühnlein [12], which is a refinement of Lenstra and Verheul’s approach [21], since
it also takes into account the asymptotically vanishing oð1Þ-part in subexponen-
tial algorithms. We will now derive bounds for the parameters such that an
attacker would need to spend about 90,000 MIPS years to break the system. This
approximately amounts to a ten-fold higher workload than the recent
factorization of RSA155 and hence corresponds to the very minimum
requirements. The estimates in Hühnlein [12], Table 3] state that Dp should
have at least 576, 667, 423 bits to prevent factoring Dp with the GNFS, factoring
Dp with ECM and computing discrete logarithms in ClðDpÞ with the SIQS-analog
[16], respectively.

1.1. Dp is large enough that using the subexponential algorithm from Jacobson
[17] to directly compute discrete logarithms in ClðDpÞ is infeasible. Dp > 2423

implies an expected workload of more than 90,000 MIPS years.

1.2. Dp cannot be factored to reduce the DLP to DLPs in ClðD1Þ and F�p (or F
�
p2).

1.2.1. Dp is large enough so that the Number Field Sieve would need more
than 90,000 MIPS years. This yields Dp > 2576.

1.2.2. D1 and p are large enough that it would take more than 90,000 MIPS
years to find them with the Elliptic Curve Method. This implies
D1; p > 2222.

294 HÜHNLEIN, JACOBSON AND WEBER

2. D1; p must be small enough to enable the KGC to compute discrete logarithms in
ClðD1Þ and F�p using subexponential algorithms. D1; p < 2300 seems to be feasible.

3. ClðDpÞ must be cyclic.

It is easy to see that the following setup satisfies all above requirements.

System Setup:

1. The KGC randomly chooses a prime q:3 ðmod 4Þ, q > 2260, sets D1 ¼ � q and
computes hðD1Þ and the group structure of ClðD1Þ with the algorithm from
Jacobson [16]. The Cohen-Lenstra heuristics [6] suggest that ClðD1Þ is cyclic with
probability > 0:97. If ClðD1Þ is not cyclic, the KGC selects another prime q until it
is cyclic.

2. The KGC chooses a prime p > 2260 with ðD1=pÞ ¼ 1 and gcdðp� 1; hðD1Þ ¼ 1
such that the SNFS can be applied as in Weber and Denny [35], and computes
Dp ¼ D1p

2. The gcd condition ensures that ClðDpÞ is cyclic.

3. The KGC computes a generator g of ClðDpÞ and publishes it together with Dp.

Given a generator G of ClðD1Þ, which the KGC can easily obtain during the
computation of ClðD1Þ [16, Algorithm 6.1], it is also easy in practice to find a
generator g of ClðDpÞ with the additional property that f�1

Cl ðgÞ ¼ G. The KGC
repeatedly selects random values of a [oD1

and takes the first g ¼ fðaGÞ such that
ghðDpÞ=di 6*oDp

for any positive divisor di of hðDpÞ. Although hðDpÞ is approximately
as large as

ffiffiffiffiffiffiffiffi
jDpj

p
, in practice it has sufficiently many small factors that this condition

can be verified with high probability.

User Registration:

1. Bob requests the public key b corresponding to his identity IDB at the KGC.

2. The KGC verifies Bob’s identity, for example, using a passport, and starts with
the key generation.

3. The KGC computes the 128-bit hash id ¼ hðIDBÞ using, for example, MD5 [30],
of Bob’s identity and embeds id into a group element of ClðDpÞ by taking the
largest prime pB � id, for which ðDp=pBÞ ¼ 1 and computing the prime ideal
b ¼ pBZþ ðbB þ

ffiffiffiffiffiffi
Dp

p
Þ=2, where bB is the uniquely determined square root of

Dp mod 4pB with 0 � bB � pB. Note that b is already reduced, sinceffiffiffiffiffiffiffiffi
jDpj

p
> 2128 > pB. If the KGC recognizes that b is already assigned to another

user it will ask Bob to choose another identity, for example, his postal address.

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 295

4. Finally, the KGC computes the discrete logarithm b such that gb*b using the
secret knowledge of the conductor p and the reduction procedure described in the
Section 4, and returns b to Bob.

As soon as all users are registered this way the KGC can destroy the factorization
of Dp and cease to exist. The users can obtain any other user’s authentic public key
simply by hashing that user’s identity and computing the largest prime ideal whose
norm is less than the hash value. Each user has a public/private key-pair ða; aÞ with
a*ga, so discrete logarithm-based protocols such as Diffie-Hellman or ElGamal can
be directly applied in the class group ClðDpÞ.

6. Practical Experience

6.1. Example 1

As an example of setting up our system, we chose two primes q (265 bits) and p (267
bits) as described above, and set D1 ¼ � q and Dp ¼ � qp2 (798 bits). Using a parallel
version of the algorithm from Jacobson [16] implemented in LiDIA [22] and PVM
[8], we computed the structure of ClðD1Þ and a generator g of ClðDpÞ in 2.27 days on
a cluster of 16 Pentium-III/550 processors running LINUX (36.32 on a single
machine).
The parallelization of the class group algorithm from Jacobson [16] is fairly

straightforward. Since the relation generation stage of the algorithm is based closely
on the SIQS factoring algorithm, the well-known parallelization techniques of that
algorithm can be applied almost directly. In addition, a large portion of the linear
algebra can be done in parallel, and in the end, if the number of processors is
increased by a factor of n, we expect to achieve a speed-up of almost n. Details will be
given in a forthcoming paper.
To demonstrate the assignment of private keys by a KGC, we embedded three

e-mail addresses into prime ideals of oDp
and computed their discrete logarithms with

respect to g using the method described in Section 4. The algorithm from Jacobson
[17] was used to compute the discrete logarithms in ClðD1Þ and that from Weber and
Denny [35] to compute the discrete logarithms in F�p.
Since the information used to compute ClðD1Þ and G has been kept by the KGC,

the computation of the discrete logarithms in ClðD1Þ is very fast in comparison to the
initial setup of the system. In this case the three discrete logarithm computations in
ClðD1Þ each took only about 3.10 minutes each using the Pentium cluster. As in the
computation of ClðD1Þ, increasing the number of machines by a factor of n will yield
a speed-up of almost n, so these computations are completely feasible for a KGC
with even rather modest amounts of computing resources.
Using a single 500Mhz Pentium III, the computation of the discrete logarithms in

F�p each took about 2.3 hours. However, most of the computation of the discrete
logarithms in F�p is also trivially parallelizable, resulting in a linear speed-up for all
stages except the linear algebra.

296 HÜHNLEIN, JACOBSON AND WEBER

6.2. Example 2

Due to recent advances in the efficiency of the elliptic curve factoring method, the
parameters used in the previous example are on the borderline of security.
Computing the structure of the class group, and hence discrete logarithms, in
quadratic orders with arbitrary discriminants of more than 265 bits is quite difficult.
Fortunately, it is possible to choose the prime q in such a way that this computation
is much easier that that for an arbitrary discriminant. As pointed out in Jacobson
[16], if the discriminant D1 a quadratic residue modulo many small primes l, then
computing the class group is significantly easier in practice. Such special
discriminants can be generated easily using numerical sieving devices such as the
MSSU [23].
Thus, for our second example, we chose two primes q (305 bits) and p (304 bits). In

this case, the prime q was found using the MSSU and the method described in
Jacobson and Williams [18], and has the additional property that ð� q=lÞ ¼ 1 for all
primes l < 389. We then took D1 ¼ � q and Dp ¼ � qp2 (913 bits), and using a
parallel version of the algorithm from Jacobson [16], computed the structure of
ClðD1Þ and a generator g of ClðDpÞ. Using the Pentium cluster, this computation
took 2.87 days.
As before, we computed discrete logarithms of three prime ideals in oDp

with
respect to g using the method described in Section 4. The discrete logarithm
computations in ClðD1Þ each took only about 3.30 minutes on the Pentium cluster,
and those in F�p each took about 14 hours each on a single 500Mhz Pentium III.
Thus, although the initial start-up costs are higher, it is still feasible to set up our
non-interactive system with sufficiently large parameters to provide reasonable
security.

Acknowledgments

The authors gratefully acknowledge the assistance of Renate Scheidler for her
careful proof-reading of several versions of the manuscript, and in particular for
correcting the proofs of Theorem 2 and Proposition 5.

References

1. I. Biehl and J. Buchmann, An analysis of the reduction algorithm for binary quadratic forms,

Voronoi’s Impact on Modern Science (Kyiv, Ukriaine) (P. Engel and H. Syta, eds.), Vol. 1, Institute of

Mathematics of National Academy of Sciences (1999).

2. D. Boneh and M. Franklin, Identity based encryption from the Weil Pairing, Advances in Cryptology

– CRYPTO 2001, Lecture Notes in Computer Science, Vol. 2139 (2001) pp. 213–229.

3. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York (1966).

4. H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin (1993).

5. H. Cohen, F. Diaz, Y. Diaz and M. Olivier, Computing ray class groups, conductors, and

discriminants, Math. Comp., Vol. 67, No. 222 (1998) pp. 773–795.

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 297

6. H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory,

Lecture Notes in Math., Vol. 1068, Springer-Verlag, New York (1983) pp. 33–62.

7. D. A. Cox, Primes of the form x2 þ ny2, John Wiley & Sons, New York (1989).

8. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel Virtual

Machine – a user’s guide and tutorial for networked parallel computing, MIT Press, Cambridge, Mass.

(1994).

9. D. Gordon, Discrete logarithms using the number field sieve, Siam J. Discrete Math., Vol. 6 (1993)

pp. 124–138.

10. D. Hühnlein, Efficient implementation of cryptosystems based on non-maximal imaginary quadratic

orders, Selected Areas in Cryptography – SAC’99, Lecture Notes in Computer Science, Vol. 1758

(1999) pp. 150–167.

11. D. Hühnlein, Faster generation of NICE-Schnorr signatures, Topics in Cryptology—CT-RSA 2001,

The Cryptographer’s Track at RSA Conference 2001, Lecture Notes in Computer Science, Vol. 2020

(2001) pp. 1–12.

12. D. Hühnlein, Quadratic orders for NESSIE – overview and parameter sizes of three public key families,

Technical Report No. TI-3/00, TU-Darmstadt, via http://www.informatik.tu-darmstadt.de/TI/

Welcome.html, 2000.

13. D. Hühnlein, M. J. Jacobson, Jr., S. Paulus and T. Takagi, A cryptosystem based on non-maximal

imaginary quadratic orders with fast decryption, Advances in Cryptology—EUROCRYPT ’98,

Lecture Notes in Computer Science, Vol. 1403 (1998) pp. 294–307.

14. D. Hühnlein and J. Merkle, An efficient NICE-Schnorr-type signature scheme, Proceedings of PKC

2000, Melbourne, Lecture Notes in Computer Science, Vol. 1751 (2000).

15. D. Hühnlein and T. Takagi, Reducing logarithms in totally non-maximal imaginary quadratic orders

to logarithms in finite fields, Advances in Cryptology – ASIACRYPT ’99, Lecture Notes in Computer

Science (1999).

16. M. J. Jacobson, Jr., Subexponential class group computation in quadratic orders, Ph.D. thesis,

Technische Universität Darmstadt, Darmstadt, Germany (1999).

17. M. J. Jacobson, Jr., Computing discrete logarithms in quadratic orders, Journal of Cryptology,

Vol. 13 (2000) pp. 473–492.

18. M. J. Jacobson, Jr. and H. C. Williams, The size of the fundamental solutions of consecutive Pell

equations, Exp. Math., Vol. 9, No. 4 (2000) pp. 631–640.

19. D. Kügler, Eine Aufwandsanalyze für identitätsbasierte Kryptosysteme, Master’s thesis, Technische

Universität Darmstadt, Darmstadt, Germany, 1998, (in German), via http://www.informatik.tu-

darmstadt.de/TI/Veroeffentlichung.

20. S. Lang, Algebraic number theory, Second Edition, Springer, Berlin, 1991, ISBN 3-540-94225-4.

21. A. K. Lenstra and E. Verheul, Selecting cryptographic key sizes, Proceedings of Public Key

Cryptography 2000, Lecture Notes in Computer Science, Vol. 1751 (2000) pp. 446–465.

22. The LiDIA Group, LiDIA: a Cþþ library for computational number theory, Software, Technische

Universität Darmstadt, Germany, 1997, See http://www.informatik.tu-darmstadt.de/TI/LiDIA.

23. R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: Their history and some

applications, Nieuw Archief voor Wiskunde, Vol. 13, No. 4 (1995) pp. 113–139.

24. M. Maurer and D. Kügler, A note on the weakness of the Maurer-Yacobi squaring method, Tech.

report, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany,

1999, To appear.

25. U. Maurer and Y. Yacobi, Non-interactive public-key cryptography, Advances in Cryptology—

EUROCRYPT’91, Lecture Notes in Computer Science, Vol. 547 (1991) pp. 498–507.

26. U. Maurer and Y. Yacobi, A remark on a non-interactive public-key distribution system, Advances in

Cryptology—EUROCRYPT’92, Lecture Notes in Computer Science, Vol. 658 (1993) pp. 458–460.

27. U. Maurer and Y. Yacobi, A non-interactive public-key distribution system, Design Codes and

Cryptography, Vol. 9 (1996) pp. 305–316.

28. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of applied cryptography, Series on discrete

mathematics and its applications, CRC Press, Boca Raton, 1996, ISBN 0-8493-8523-7.

29. J. Neukirch, Algebraische zahlentheorie, Springer, Berlin (1992).

298 HÜHNLEIN, JACOBSON AND WEBER

30. R. Rivest, The MD5 message-digest algorithm, 1992, RFC1321, Internet Activities Board, Internet

Engineering Task Force.

31. O. Schirokauer, Discrete logarithms and local units, Theory and applications of numbers without

large prime factors (R. C. Vaughan, ed.), Philos. Trans. Roy. Soc. London Ser. A, Vol. 345, The

Royal Society, London, 1993, pp. 409–423.

32. O. Schirokauer, Using number fields to compute logarithms in finite fields, Math. Comp., Vol. 69

(2000) pp. 1267–1283.

33. A. Shamir, Identity based cryptosystems and signature schemes, Advances in Cryptology—CRYPTO

’84, Lecture Notes in Computer Science, Vol. 196 (1985) pp. 47–53.

34. D. Weber, Computing discrete logarithms with the number field sieve, Algorithmic Number Theory—

ANTS-II (Université Bordeaux I, Talence, France), Lecture Notes in Computer Science, Vol. 1122,

Springer–Verlag, Berlin (1996).

35. D. Weber and T. Denny, The solution of McCurley’s discrete log challenge, Advances in

Cryptology—CRYPTO ’98, Lecture Notes in Computer Science, Vol. 1462 (1998) pp. 56–60.

TOWARDS PRACTICAL NON-INTERACTIVE PUBLIC-KEY CRYPTOSYSTEMS 299

