Optimization: Java
Optimization

CPSC 501: Advanced Programming Techniques
Fall 2022

Jonathan Hudson, Ph.D

Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, November 23, 2022

** UNIVERSITY OF

/) CALGARY

Java Specific Optimizations

""""""""""""""

7 CALGARY

Code Tuning — Java

* Java is an object oriented language

* That runs in a virtual machine

* There are more inefficiencies that can be improved than we’ve covered for a
language like c++

= UNIVERSITY OF

CALGARY

Strings

n=n UNIVERSITY OF

) CALGARY

Code Tuning — Strings

Not null terminated
* char[] and length are both stored

Immutable
* Any change attempt (making new string)

char[] is better for secure data than String

Also UTF-16 (uses two bytes for all)
* if you want UTF-32 there’s a lot of management steps

LGN UNIVERSITY OF

S8Z

CALGARY

Code Tuning — Strings

* String pool
* Java has a special memory location (PermGen Space)
* Usually for things like class desc, and metadata (exist longterm)

* If a new String literal (“hello”) is made matching existing Java will attempt to
point at same data

* No NEW object
* new String(“hello”) by-passes this

* Also dynamic strings like one created at runtime from input won’t be
associated

LGN UNIVERSITY OF

S8Z

CALGARY

Code Tuning — Strings

* String pool
* Java has a special memory location (PermGen Space)
* Usually for things like class desc, and metadata (exist longterm)

public static void main(String[] args) {
System.out.println(System.identityHashCode ("hello™)) ;
System.out.println(System.identityHashCode ("hello™)) ;
System.out.println(System.identityHashCode (new String("hello™))) ;

* 366712642
* 366712642
* 1829164700

ezl UNIVERSITY OF

[1IE3
=/

&% CALGARY

Code Tuning — Strings

Scannher s;

s = new Scanner (System.in) ;
System.out.println(System.1dentityHashCode ("hello™)) ;
System.out.println(System.identityHashCode ("hello™));
System.out.println(System.identityHashCode (new String("hello")));
String str = s.nextLine() ;

str = str.trim() ;
System.out.println(System.identityHashCode (str)) ;

1442407170
1442407170
1028566121

hello
1118140819

il UNIVERSITY OF

),

&% CALGARY

Code Tuning — Strings

* String pool

* Java has a special memory location (PermGen Space)
* Usually for things like class desc, and metadata (exist longterm)

e USE .equals()

* To get consistent String comparisons on .equals() compares contents, ==
will give you differing behaviour whether or not the String Pool has
been used

LGN UNIVERSITY OF

S8Z

CALGARY

Code Tuning — Strings

* String pool

e USE .equals()

* To get consistent String comparisons on .equals() compares contents, ==
will give you differing behaviour whether or not the String Pool has
been used

* Example: Junit Testing

* Setup will contain string literals String pool which re-use memory, thus
== will work

* however during operation == may fail
* Strings during operation often collected via input steps

LGN UNIVERSITY OF

S8Z

CALGARY

10

11

Code Tuning — Strings

* StringBuilder and StringBuffer
 StringBuilder not thread-safe

* Let you compile a list of Strings which you can convert to a final String once
* Much better than repetitive +, += operations

* Can even set expected capacity needed (like ArrayList) so that hidden array
doesn’t need to expand

LGN UNIVERSITY OF

S8Z

CALGARY

12

Maps

“ UNIVERSITY OF

-

) CALGARY

13

Code Tuning — Maps

* When you want to iterate through a Map, and you need both keys and values,
instead of the following:

for (K key : map.keySet()) {
V value : map.get (key) ;

}
e .. To this:

for (Entry<K, V> entry : map.entrySet()) {
K key = entry.getKey();
V value = entry.getValue() ;

LGN UNIVERSITY OF

S8Z

&% CALGARY

14

Code Tuning — hashCode()/equals()

* Optimise your hashCode() and equals() methods

* A good hashCode() method is essential because it will prevent further calls to
the much more expensive equals()

* Can store a calculated hashCode once in object (only update on modified
object, when sets are called)

LGN UNIVERSITY OF

S8Z

¥ CALGARY

15

Primitives

n=n UNIVERSITY OF

) CALGARY

16

Code Tuning — Primitives

* Reverse of refactoring

* Sometimes code tuning is called ‘defactoring’

Use double instead of Double, int instead of Integer

* Java can store values on stack, instead of heap

LGN UNIVERSITY OF

S8Z

¥ CALGARY

17

Code Tuning — Primitives

* Try to avoid Biginteger and BigDecimal, similarly
* Only if you really need to exceed long, or need precision
* int > Integer > Bigltenger double > Double > BigDecimal

* Integer is not a primitive (it is Object and is immutable)

* x = new Integer(1), x = x + new Integer(2), x = new Integer(3)
* 1,2,3 are all individual objects and x is ‘pointed’ towards a new one

*x=1, x=x+2, x=3, the memory spot x points to is changed from 1 to 3

LGN UNIVERSITY OF

S8Z

CALGARY

18

Logging

n=n UNIVERSITY OF

) CALGARY

19

Code Tuning — Logging

* Strings take a lot of time to create (program-wise)

* Check the current log level first before making log string
// don’t do this
log.debug(“User [” + userName + “] called method X with [+i + “]”);

// or this

log.debug(String.format(“User [%s] called method X with [%d]”,
userName, i));

// do this
if (log.isDebugEnabled()) {
log.debug(“User [” + userName + “] called method X with [” +i + “]");

}

LGN UNIVERSITY OF

CALGARY

20

Libraries

""""""""""""""

7 CALGARY

21

Code Tuning — Libraries

* Use Apache Commons StringUtils.replace instead of String.replace
* Java 9 improved String replace but if on Java 8

// replace this
test.replace(“test”, “simple test”);

// with this
StringUtils.replace(test, “test”, “simple test”);

= UNIVERSITY OF

CALGARY

22

Code Tuning — Libraries

* Avoid regular expressions and instead use Apache Commons Lang.

LN UNIVERSITY OF

Sz

¥ CALGARY

Simple Recursion

""""""""""""""

7 CALGARY

24

Code Tuning — Recursion

* Recursion is great for design of algorithms but not great for optimization

 Stay away from recursion.
* Recursion is very resource intensive!

* Very beneficial to code tune algorithms to be loops instead of recursive calls

* Replace program stack with self-managed stack structure for data that
would normally be passed in recursive call

LGN UNIVERSITY OF

S8Z

CALGARY

Code Tuning — Recursion

{

public void countDown (int n)
if (n == 0) {
return;

}

System.out.println(n +
waltASecond () ;
countDown(n - 1) ;

] " .
. = = r

}

public volid countDown(int n) {

while (n > 0) {
System.out.println(n + "

waltASecond() ;
n -= 1;

25 }

o)

LN UNIVERSITY OF

§ CALGARY

26

Code Tuning — Recursion

public void DFS(Node root) {

System.out.print ("
DFS(x.left) ;
DFS(x.right) ;

"

+ root.data) ;

LN UNIVERSITY OF

§ CALGARY

27

Code Tuning — Recursion

public void DFS(Node root) {
Stack<Node> s = new Stack<Node>() ;
s.add(root) ;

while (s.isEmpty() == false) {
Node x = s.pop()
if (x.right !'= null) {

s.add(x.right) ;

}

if (x.left '= null) {
s.add(x.left) ;

}
System.out.print (" " + x.data);

LN UNIVERSITY OF

Sz

¥ CALGARY

28

Caching

n=n UNIVERSITY OF

) CALGARY

Code Tuning — Hidden Caching/Pooling

* A typical example is caching database connections in a pool.

* The creation of a new connection takes time, which you can avoid if you
reuse an existing connection.

* You can also find other examples in the Java language itself.

* The valueOf method of the Integer class, for example, caches the values
between -128 and 127.

29

LGN UNIVERSITY OF

S8Z

¥ CALGARY

30

Iterators

n=n UNIVERSITY OF

) CALGARY

31

Code Tuning — Iterators

* Common now to use Java iterators
* |s a good refactoring, but depending...
* for (String value: strings) { // Do something useful here }

° a new iterator instance will be created
int size = strings.size();
for (inti=0;i<size; i++) {
String value: strings.get(i);
// Do something useful here

LGN UNIVERSITY OF

S8Z

CALGARY

32

Memory

n=n UNIVERSITY OF

) CALGARY

33

Code Tuning — Memory Leaks

* Java is stuck with garbage collection
* We can stop point at things but not delete them

* If your program naively leaves created objects connected to current code (heap
will continue to grow)

* You can generally see this via Profiling and heap dumps

= UNIVERSITY OF

CALGARY

34

Code Tuning — Heap Structure

* The young generation is
actually garbage collected

quicker than the older
generation

* Lots of new objects, or
aggressive GC in young
generation slows down
program

Oracle HotSpot Heap Structure

eden S0 51 Tenured Permanent
Young Old Metaspace
Generation Generation (JDK 1.8
and later)

LN UNIVERSITY OF

NS

¥ CALGARY

35

Code Tuning — Garbage Collectors

e Serial Collector

* Both Young and Old collections are done serially, using a single CPU and in a

stop-the-world fashion.

* Best client-side

Young Generation

R N

-

10"

X

XX

From

Old Generaiit; 0,

LN UNIVERSITY OF

™/

&% CALGARY

Code Tuning — Garbage Collectors

e Serial Collector

* Both Young and Old collections are done
serially, using a single CPU and in a stop-the-

world fashion.
* Best client-side

* Parallel Collector(throughput collector)

* Designed to take advantage of available CPU
cores. Both Young and Old collections are
done using multiple Gcthreads.

36

Serial Collector Parallel Collector

YYYVYYYY YYYVYYYY
<— Stop the world pause—)»

LGN UNIVERSITY OF

% CALGARY

Code Tuning — Garbage Collectors

* Mostly concurrent collectors (low-latency
collectors)
* Designed to minimize impact on
application response time associated with
Old generation stop-the-world
collections.

* Most of the collection of the old
generation using the CMS collector is
done concurrently with the execution of
the application.

37

Serial Collector

rYYYYY

Paralle| Collector

YrYyyvyy

€—— Slop the world pause —p» *—inifial mark

YYYYYYY

Stop the world pause —p-

+— Concurrenl Mark

YYYYYY
Remark

-+ Concurrent Sveeep

Hil

LN UNIVERSITY OF

Sz

¥ CALGARY

Code Tuning — Garbage Collectors

* Choose wisely between 32-bit or 64-bit VMs

* going from a 32-bit to a 64-bit machine increases heap requirement for an
existing Java application by up to 1.5 times (bigger ordinary object pointers)

* -XX:+UseCompressedOops in Java version prior to 1.7 (which is now default)

* This tuning argument greatly alleviates the performance penalty associated
with a 64-bit JVM.

LGN UNIVERSITY OF

S8Z

CALGARY

38

Code Tuning — Garbage Collectors

* Large heap not always better

* Profile your application for possible memory leaks using tools such as Java
VisualVM or Plumbr (Java memory leak detector).

* Focus your analysis on the biggest Java object accumulation points

* Reducing your application memory footprint will translate in improved
performance due to reduced GC activity.

LGN UNIVERSITY OF

S8Z

CALGARY

39

Threads

""""""""""""""

7 CALGARY

Code Tuning — Thread-Lock/Contention

* Thread lock contention is by far the most common Java concurrency problem

L JVM (Java Virtual Machine)
; Mative &
Java Heap I\:Iaet;ve GC 10 and many other
P Java Threads || Threads program requested
operations. ..
Thread lock .
contention? e
Thread
deadlock? Thread capacity
problem?

Middleware kernel (Weblogic, WAS, JBoss...)

’

Java EE Web & business services (Web Container, EJB

Container, JDBC, JM5_.) I

T

!

I Java EE App A " I Java EE App B ‘|

41

A UNIVERSITY OF

L1150
W

CALGARY

Code Tuning — Thread-Lock/Contention

* True Java-level deadlocks, while less common, are triggered when two or more
threads are blocked forever, waiting for each other.

Thread B
Deadlock Call StrackTrace
situation 1s '

created @ Call #3

and reached @ [|1) Call1
call #5 2) Call2

3) Call3 >> Object @

0x4C monitor locked

4) Call4

5) Call5 == waiting to

acquire Object @

0x2c monitor lock

Thread A
Call StrackTrace

1) Calld
2) Call2
3) Call3 >> Object @
0x2C monitor locked
4) Call4
5) Call5 »> waiting to
acquire Object @
Ox4c monitor lock

A UNIVERSITY OF

&) CALGARY

Code Tuning — Thread-Lock/Contention

* Clock Time and CPU Burn

* Ex. worker not doing anything, just spinning in a loop

Profiler
JVisualVM
Profile: @ cru @ Memory B stop
Status: application terminated
Profiling results CPU burn profiling
E@ e | [Snap5h0t| / Top method contributors
i
Hot Spots - Method Self time [%] * Self time Invocations

org.ph.javaee.training4.WorkerThread.run [
java.util.concurrent. ThreadPoolExecutorsWorker.run ()
java.util.logging.LogManager$Cleaner.run [
org.ph.javaee.training4.WorkerThread.<init> (java.ut...
java.lang.ApplicationShutdownHooks$1.run ()

43

I 2621 ms

0.479 ms
0.109 ms
0.036 ms
0.000 ms

(100%
(0%
(0%
(0%
(0%

B b Bl b R

11
11

10

W

UNIVERSITY OF

CALGARY

Timeout Management

""""""""""""""

7 CALGARY

Code Tuning — Timeout Management

* Lack of proper HTTP/HTTPS/TCP IP timeouts between your Java application and
external systems

* lead to severe performance degradation and outage due to middleware and
JVM threads depletion (blocking 10 calls).

* Proper timeout implementation will prevent Java threads from waiting for too
long in the event of major slowdown of your external service providers.

LGN UNIVERSITY OF

S8Z

CALGARY

45

Onward to ...
python optimization.

Jonathan Hudson

LL1&9 1]
iwhudson@ucalgary.ca UNIVERSITY OF

N
https://pages.cpsc.ucalgary.ca/~jwhudson/ W CALGARY

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Optimization: Java Optimization
	Java Specific Optimizations
	Code Tuning – Java
	Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Maps
	Code Tuning – Maps
	Code Tuning – hashCode()/equals()
	Primitives
	Code Tuning – Primitives
	Code Tuning – Primitives
	Logging
	Code Tuning – Logging
	Libraries
	Code Tuning – Libraries
	Code Tuning – Libraries
	Simple Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Caching
	Code Tuning – Hidden Caching/Pooling
	Iterators
	Code Tuning – Iterators
	Memory
	Code Tuning – Memory Leaks
	Code Tuning – Heap Structure
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Threads
	Code Tuning – Thread-Lock/Contention
	Code Tuning – Thread-Lock/Contention
	Code Tuning – Thread-Lock/Contention
	Timeout Management
	Code Tuning – Timeout Management
	Onward to … �python optimization.

