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Fourier Theorem

* Fourier Theorem:

* Any continuous, periodic waveform can be expressed as the sum of a series
of sine and cosine terms, each having specific amplitude and phase
coefficients

* Any physical function that varies periodically with time with a frequency f

can be expressed as a superposition of sinusoidal components of
frequencies: f,2f,3f,4f,..."
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Additive synthesis

* Pure tones can be added together to form a complex tone (additive synthesis):
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Fourier decomposition

* Fourier analysis decomposes a complex signal into its component parts

* j.e. its spectrum

* The Fourier transform calculates the spectrum of a continuous signal
* Transforms from the time domain to the frequency domain
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Discrete Fourier Transform
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Discrete Fourier Transform

* The discrete Fourier transform (DFT) calculates the spectrum of a digital signal
* Definition:
DFT[x(n)] = X(k)

= YN-ly(n)e /@ (0<k<N-1

* N is the number of samples per period of the waveform
* kis the harmonic number
* and w = 2rt/N
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What frequencies are present

* The discrete Fourier transform (DFT) calculates the spectrum of a digital signal
* Spectrum -> Which frequencies are present

* Harmonic Numbers -> we go up multiples of frequencies (this gives us regular
components to break signal down into)

= UNIVERSITY OF

CALGARY



Breakdown

* Since e/* = cos(x) + j sin(x), can be expressed as:

N—-1 N-1
z x(n) cos(wnk) —j z x(n) sin(wnk) 0<k<N-1
n=0 n=0

Real part a, Imaginary part by,

* We must calculate the real part a; and the imaginary part b, separately
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In code
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Get initial summation values

* Cimplementation:
#tdefine PI  3.141592653589793
#define TWO_PI (2.0 * PI)
void dft(double x[], int N, double a[], double b[]){
int n, k;
double omega = TWO _PI / (double)N;
for (k =0; k < N; k++) {
alk] = b[k] = 0.0;
for (n=0; n < N; n++) {
alk] += (x[n] * cos(omega * n * k));
b[k] -= (x[n] * sin(fomega * n * k));

borol
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Process result

* The results must be further processed :
* a; and b, must be scaled by N:
for (k=0; k < N; k++) {
alk] /= (double)N;
b[k] /= (double)N;
}
* The magnitude or amplitude |X(k)| is given by:

X (k)| = \/a,zc + b
for (k =0; k < N; k++)
amplitude[k] = sqrt( (a[k] * a[k]) + (b[k] * b[k]) )
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What we get?
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Harmonic numbers

* The DFT gives amplitudes for both positive and negative frequencies
(harmonics)

* If N=8:
k Harmonic
0 0 (DC)
1 1
2 2
3 3
4 4
5 -3

~ N
|
(N9
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Final amplitudes

* Add these together to get the amplitude of a harmonic:
X[0] = amplitude][0];
X[N/2] = amplitude[N/2];
for(k=1,j=N-1; k< N/2; k++, j--)
x[k] = amplitude[k] + amplitudelj];
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Performance?
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Performance

* The DFTis O(N?)
* Not practical for large data sets

* Can be calculated more efficiently with the fast Fourier transform (FFT)
* Is O(N log N)

* There are many variants of the FFT
* Most work by reordering the data, and then recursively subdividing it in half
* Thus data size must be a power of 2

* Most FFTs work with complex numbers
* The signal is the real part
* The imaginary partissetto 0O
* This data is packed into an array of size*2:

LIGLN UNIVERSITY OF

S8Z

CALGARY



18

() real (O real
i e e = 0 e F=0
@ imag J (@) imag
FFT @) real ] 3) real
e = A _(:)__it_d _____ f= l
(® imag (@ imag NA
< z
= | = < = < >
o™ ~
o =
‘ig ';:r, v- 1) real Ni2 -1
§< %4 ®  imag - MA
= = | |@aD real 1 |
= = | Em——— AT AT f=:ﬁ (combination)
= = Nis) miag | | -
|7 3 - e || e
imag - NA
- real
et 8 £ 8 B4 T b =
imag 2 s
real real I
——————————— r=(N-1A st (& F . st
imag @)  imag NA
Figure 12.2.2. Input and output arrays for FFI. (a) The input array contains N (a power ol 2)

complex tme samples in a real array of length 2N, with real and imaginary parts alternating. (b) The
outpul array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
js ambicuous with the most negative trequency). Negalive frequencies follow, from the second-most
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Spectral Analysis
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Spectral Analysis

* Like the DFT, the output of the FFT must be further processed to give
meaningful results
* The DFT calculates the spectrum for a single cycle of a waveform
* Result can be displayed as a bar graph
* Shows the relative amplitudes of the harmonics
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Signals as frequency bar graphs
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DFT Window

* The DFT can be applied to an arbitrary “window” of a longer waveform
* Is a “snapshot” of the spectrum at a particular time
* Window is typically 512 or 1024 samples long

* Instead of harmonics, the output represents how much energy is present in
particular “bins”

* When graphed, the amplitudes are joined together to form a
continuous line

* E.g.
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Within an application
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Spectral Analysis

* The spectrum can be plotted as it changes over time

* The analysis window slides along the time axis
* Can be end to end
* Or overlapping

* Can be graphed as a 3D “waterfall”
° E.g.
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Spectral Analysis
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Spectral Analysis

* Can also be displayed as a spectrogram
e X axis: time
* Y axis: frequency
* Darkness of pixel represents amplitude
* White: 0 amplitude
 Black: full amplitude
° E.g.
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Spectral Analysis
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Spectral Analysis
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Spectral Analysis
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Onward to ...
convolution.

Jonathan Hudson
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