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Abstract

Consistent operation of software-defined network (SDN) switches during the transient periods of

forwarding rule updates is a critical issue. This paper studies the problem of updating SDN rules, while

preserving two essential security and performance consistency properties: (1) Waypoint Enforcement

which mandates that all packets traverse a specific checkpoint (e.g., firewall), and (2) Loop-Freedom

that prevents forwarding packets along a loop. To guarantee these properties, we schedule rule updates

in multiple rounds. To reduce the time that the network stays in the transient period of updating the

switches, we have to solve the NP-hard problem of minimizing the number of update rounds. To this end,

we design a fast algorithm called RRS which can be applied to very large networks. Our experiments

on a large dataset of 28K scenarios show that RRS achieves a 323x improvement in the median of

execution time compared to solving the exact Mixed Integer Program (MIP) formulation.

Index Terms

Consistent Update, Waypoint Enforcement, Loop-freedom

I. INTRODUCTION

A. Background and Motivation

Software-Defined Networking (SDN) is a network architecture which decouples the network

control logic from the underlying switches that forward traffic. The decoupled network control

logic is implemented in a logically centralized SDN controller [1]. The controller installs and

updates forwarding rules on network switches instructing them how to forward traffic in the

network. To maintain an optimal forwarding configuration, the controller updates the forwarding

rules frequently, e.g., in response to events such as flow arrivals, congestion, device outages, or

end-host migrations [2].
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Updating forwarding rules in SDN switches is a challenging task since the delay of sending

new rules to switches as well as the time required to install them in the memory of switches are

non-deterministic. Therefore, even if the controller sends out the new rules at the same time, some

switches may update their forwarding behavior considerably sooner than others [2]. As a result

of this asynchronous behavior, there is a possibility that the network state becomes inconsistent

during transient periods of rule updates, which results in malfunctions such as sending packets

along transient loops [3], overloading some links [4], or bypassing a firewall [5]. Thus, the order

in which switches are updated by the controller is important for avoiding inconsistent network

states.

The network properties that should not be disrupted throughout the rule update process are

called the network consistency properties. For example, Waypoint Enforcement (WPE) is the

consistency property that requires each packet to traverse specific waypoints, i.e., a middlebox

such as a firewall [5]. Modern enterprise networks rely on a large number of in-network functions

[6]–[8] to satisfy a variety of requirements such as security and performance [9]. As such, certain

middleboxes should process every packet that enters the network [10]. Specifically, WPE is a

desirable consistency property in virtualized and security critical environments. Loop Freedom

(LF) is another crucial consistency property [11] that guarantees loops do not occur in the

network, and is considered an important performance requirement. A rule update is consistent

if it does not violate the network consistency properties. In this work, we focus on updating

forwarding rules, while preserving WPE and LF.

Since the consistency of a rule update in a switch depends on the forwarding state of other

switches, the SDN controller should coordinate rule updates across the switches to preserve the

consistency properties. Specifically, it should send the updates to switches in multiple rounds in

such a way that the order of updates in a single round does not affect the network consistency

properties [12]. To reduce the time it takes to complete the update process, i.e., the time that

the network spends in an incorrect or sub-optimal configuration [2], it is desirable to design an

update process that minimizes the number of update rounds. It has been shown that minimizing

the number of update rounds is NP-hard [9], as such, in this paper we focus on designing fast

approximation and heuristic algorithms for the problem of consistent SDN rule update with

minimum number of rounds.
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B. Related Work

A comprehensive survey on consistent network update algorithms is provided in [13]. Although

there exist suitable solutions for the problem in traditional networks [14]–[16], SDN requires

different solutions due to different network constraints and capabilities. We briefly review the

works on consistent SDN rule update that are more relevant to our work.

Update Mechanisms and Objectives. A number of papers consider the basic consistency

properties of congestion freedom [4], [17]–[20] and guaranteed packet delivery [11], [21]. These

works, however, do not consider preserving higher-level policies that network operators usually

demand. Such policies define a set of constraints on the paths a packet can traverse during the

update process. To address this shortcoming, in a seminal work, Reitblatt et al. [3] proposed the

per-packet consistency (PPC) property to ensure that every packet is handled either by the old

policy or the new one, but never a combination of the two. Then, they designed a 2-phase commit

algorithm, which works based on packet tagging, to enforce PPC. However, the 2-phase commit

algorithm doubles the usage of expensive and power hungry TCAM memory in switches, to the

point of making it impractical [22]. As a result, Mahajan et al. [12] proposed to schedule the rule

updates in multiple rounds. Minimizing the required number of rounds is specifically desirable,

because it reduces the time that the network remains in a transient state [2]. However, even

for the most elementary consistency property, i.e., loop-freedom (LF), not only the problem of

minimizing the number of rounds is NP-hard but also it is NP-hard to approximate the number of

rounds with an approximation ratio better than 4/3 [21]. Currently, these exist no approximation

algorithm for this problem in the literature [13]. Instead of minimizing the number of rounds,

Amiri et al. [23] proposed a greedy scheduler which maximizes the number of updated switches

in each round. Nevertheless, this new problem is NP-hard and can increase the number of rounds

by a factor of Ω(|V |) [24].

Policy Preserving Properties. PPC is an unnecessarily strong requirement in practice. As such,

several subsequent works considered different properties. For example, McClurg et al. [25]

studied the class of properties that can be defined as a linear temporal logic formula. However,

they did not consider the problem of minimizing the number of update rounds. Vissicchio and

Cittadini [26] proposed the FLIP algorithm for policy preservation, which guarantees that each

flow traverses a set of pre-defined paths in the network. However, FLIP uses packet tagging to

improve its performance and consequently increases the memory consumption of the switches.
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Ludwig et al. [5] suggested the waypoint enforcement (WPE) property as a replacement for

PPC. Then, they proved the NP-hardness of minimizing the number of scheduling rounds while

satisfying the LF and WPE properties and extended WPE to enforce multiple waypoints in the

network [9]. Their approach for minimizing the number of rounds relies on solving a mixed-

integer program (MIP) which is generally computationally intractable and thus not scalable in

practical applications.

C. Our Work

In response to the shortcomings of existing works on preserving policies in SDNs, i.e.,

solving MIP formulations directly [5], [9], increasing TCAM memory usage [26], and ignoring

the number of rounds as the objective [23], [25], we propose an algorithm, called Reduced-

Round Scheduler (RRS), for computing efficient update schedules that satisfy LF and WPE. Our

contributions can be summarized as follows:

• We design our heuristic based on a critical observation that the consistent rule update

problem is reversible. We prove the reversibility of the problem by showing that any solution

of the backward problem (i.e., the problem of consistently updating the network from the

final configuration that the controller desires to deploy, to the current configuration that the

controller has decided to change) is also a solution for the forward problem.

• We evaluate the performance of the proposed algorithm on an extensive dataset that contains

28K update scenarios with a varying number of switches.

The rest of the paper is organized as follows. Section II defines the problem. The RRS

algorithm is presented in Section III. Evaluation results are presented in Section IV. Section V

concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Network Model

We consider an SDN network with a centralized controller and a set of SDN-enabled switches

that are connected to the controller. We focus on the unsplittable flow model that restricts a flow

to carry its traffic over a single path. Although this model makes the problem more difficult

to solve, complications such as packet re-ordering, which, for instance, negatively affects TCP

performance are avoided. Consider the network depicted in Fig. 1 and assume that the controller
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needs to update the old path of flow f (represented by solid lines), i.e., (1 → 2 → 3 → 4 → 5 → 6) to

a new path (represented by dashed lines), i.e., (1 → 7 → 5 → 4 → 3 → 6). Because updating switches

that are not common between the old and new paths of f is trivial [9], we define an induced

graph G(V,E) over the set of common switches, where V denotes the set of common switches

between both paths, i.e., V = {1, 3, 4, 5, 6}. For every switch pairs u, v ∈ V , the link (u, v)

belongs to E, if 1) there is a direct link between u and v in the original SDN network, or 2)

there is a path in the original SDN network between u and v, such that none of the intermediate

switches are common between the old and new paths. For example, paths 1 → 7 → 5 and 1 → 2 → 3

in Fig. 1 are represented, respectively, as links (1, 5), (1, 3) in Fig. 2, which are included in E.

Denote the old and new paths in G by πold and πnew, respectively, and let s and d denote the

source and destination switches. In Fig. 2, πold is (1 → 3 → 4 → 5 → 6) and πnew is (1 → 5 → 4 → 3 → 6).

In the rest of paper, we focus only on the induced graph G.

B. Consistency Model

We consider Relaxed Loop-Freedom (RLF), which is a fundamental performance-related

consistency property. RLF prevents loops in the routing path of flows. However, since transient

loops which are unreachable from the source switch have a negligible impact on the network

performance [24], RLF allows such loops to happen. Compared to eliminating all loops regardless

of their reachability, RLF can accelerate the update process by a factor of Ω(|V |) [24]. For

example in Fig. 2, suppose that only switch 1 is updated and thus the current forwarding path is

(1 → 5 → 6). Updating switch 4 creates the loop (3 → 4 → 3), however, RLF allows this loop because

it is not reachable from the source switch 1. In addition to RLF, we also consider Waypoint

Enforcement (WPE), which is a desirable security consistency property. WPE ensures that every

packet of each flow goes through a specific node in the network. Throughout the paper, we call

this special node the waypoint and denote it by wp. Consider Fig. 2 for an example of WPE

violation. Let switch 4 be the waypoint. If switch 1 is updated before other switches, traffic will

traverse path (1 → 5 → 6), and hence bypasses the waypoint 4.

C. Update Model

The SDN controller can update the routing path of each flow by changing the rules installed

in the memory of the network switches without affecting the routing of other flows. Therefore,

we assume that there are no conflicts or dependencies among the rules which we install in a
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Fig. 1: An update scenario in which the old
and new paths are represented by solid and
dotted lines, respectively. Switches that are
not common between old and new paths are
shaded.

1
3 4 5 6

Fig. 2: Induced graph G(V,E) in which the
non-common switches are omitted and their
attached links are contracted.

single switch, and consequently we can update a switch in a single round of message passing

[12]. Thus, we focus on the inter-switch rule dependencies and assume all intra-switch rules

are non-conflicting. In each round, the controller updates a subset of switches U ⊆ V , where

updating switches in U in any order preserves LF and WPE. The controller starts a new round

after confirming that the switches chosen in the previous round have installed the new rules in

their memories.

D. Problem Definition

In this paper, we consider the problem of updating the forwarding behaviour of all switches

in G in the minimum number of rounds, while guaranteeing LF and WPE. We call this problem

Pround which is proven to be NP-hard [9]. A closely related problem, denoted by Pswitch, is the

problem of maximizing the number of updated switches in a single round, which is NP-hard as

well [23]. Although one can solve Pround by solving Pswitch in successive rounds, this approach

may encounter a deadlock and consequently fail to update a problem instance that is actually

feasible [5].

III. HEURISTIC RULE UPDATE ALGORITHM

In this section, we design a fast heuristic algorithm, called Reduced Round Scheduler (RRS),

RRS utilizes the structure of the problem to obtain two different update schedules by successively

solving the Pswitch problem and then reduces the required number of rounds by merging those

schedules.

A. Fast State Generation

Let I denote the set of switches, for which updating any single switch v ∈ I does not violate

the network consistency requirements. Our goal in this sub-section is to compute I.
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Fig. 3: Unreachable switches (filled gray) can
form a loop, not having a reachable successor.
In this situation, L is 0 and a reachable switch
(e.g., switch 4) that connects to them can not
be updated.

L(1)=1

L(2)=2 L(3)=3

L(4)=4

L(5)=5

L(6)=5

wp

Fig. 4: Label of the unreachable switch 5
(filled gray) is 5. Therefore, switch 3 can
update and connect to it consistently. Also,
updating switch 5 is consistent because it is
unreachable. But updating both switches cre-
ates a loop.

Label the switches along the current path from s to d with natural numbers in an increasing

order. These numbers show the order of switches that packets visit on their path from s to d. Let

L:V → N denote the labeling function and consider two switches u and v. Assume that after the

update, u connects to v. If L(v) < L(u), RLF is violated because u sends packets back to an

already visited switch v. Likewise, if L(u) < L(wp) < L(v), WPE is violated because a packet

that reaches v never goes back to visit wp. Thus, updating switch u (that afterward connects to

switch v) is consistent (i.e., u ∈ I) if and only if one of the following conditions hold:

L(wp) ≤ L(u) < L(v) (1)

L(u) < L(v) ≤ L(wp) (2)

Clearly we can update any unreachable switch without violating RLF or WPE. However, after

updating u, switch v (u’s next switch) may be unreachable. Thus, we extend the definition of

L to unreachable switches in order to consistently apply conditions (1) and (2). To this end, we

define a successor relation on the set of switches and denote it with function S:V → V . Let

S(u) denote the current next hop of u which is determined from πold if u is not updated, and

from πnew, otherwise. The descendants of switch u are all those switches that are reachable from

u. The label of an unreachable switch is equal to the minimum label of its descendants. With

this definition, we can compare the label of switch u with the first reachable descendant of v

to ensure RLF and WPE are satisfied based on conditions (1) and (2). If an unreachable switch

has no reachable descendant (see Fig. 3) the label of that unreachable switch is defined as 0.

By this definition, reachable switches can not be updated to send packets to such unreachable

switches. With the extended definition, L is now defined for all switches in V . Thus, we can

compute I.

Theorem 1. I can be computed in O(|V |).



7

Algorithm 1 SWITCHX
Input: G(V, E). ▷ Graph described in Sect. II
Output: U ,R.

1: procedure SWITCHX
2: L(G) ▷ Label switches with function L described in Sect. III-A
3: for (u, v) ∈ πnew do
4: if u.updated == False then
5: if G.wp.L ≤ u.L ≤ v.L or u.L ≤ u.L ≤ G.wp.L then
6: I.add(u)
7: for v ∈ I do
8: if v is reachable from s then R.add(v)
9: else U .add(u)

10: return U ,R

Proof. The induced graph that represents the problem has |V | nodes and 2(|V | − 1) edges (πold

and πnew). Therefore we can use Breadth-First search algorithm to compute function L in O(|V |).

We can test conditions (1) and (2) in O(1), therefore I can be computed in O(|V |).

We still can not update the switches in I altogether. Lemma 1 presents a negative result about

I.

Lemma 1. Updating a subset of I may cause RLF or WPE violation.

Proof. Consider Fig. 4 in which updating switch 3 is consistent because 3 = L(3) < L(5) = 5.

Updating switch 5 is also consistent because it is unreachable. However, updating these two

switches simultaneously creates a loop (1 → 2 → 3 → 4 → 5 → 2). There exists a similar scenario for

violation of WPE.

Our goal is to update the maximum number of switches in I, while preserving RLF and WPE.

Observe that if we only update the reachable switches, denoted by R, or only unreachable

switches, denoted by U , the update is consistent. A switch is unreachable if packets cannot

reach it by following the current forwarding rules starting from the source switch s. We can

determine the reachability of switches while computing I without increasing the complexity of

the algorithm. We call the algorithm that uses the function L to update the switches in a single

round SWITCHX. SWITCHX is outlined in Algorithm 1. Lemma 2 proves that either R or U

contains at least half of the maximum number of switches that can be consistently updated in a

single round.
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Algorithm 2 DFU: Deadlock-Free Update Scheduler
Input: G(V, E). ▷ Graph described in Sect. II
Output: A deadlock-free update schedule.

1: procedure DFU
2: init_conf ← [false] ∗ |V |
3: q ← priority_queue(init_conf)
4: while q.has_next do
5: cur_conf ← q.head
6: L(G, cur_conf) ▷ L is described in Sect. III-A
7: U ,R ← SWITCHX(G)
8: for candid ⊂ U or R do
9: next_conf ← UPDATE(cur_conf, candid) ▷ See Sect. III-B

10: if next_conf not visited then
11: if false /∈ next_conf then return solution
12: else q.add(next_conf)
13: return failure

Lemma 2. Updating switches in the bigger set of R and U yields a 2-approximation algorithm

for the problem Pswitch.

Proof. Updating any switch in I individually is consistent. Therefore, the optimum solution

is smaller than I. Furthermore, since every switch that can be updated consistently is either

reachable (a member of R) or unreachable (a member of U), we have I = R∪U . Now assume,

for the sake of contradiction, that |R| < 1
2
|I| and |U| < 1

2
|I|. Since R∩ U = ϕ, we have,

|R ∪ U| = |R|+ |U| − |R ∩ U| = |R|+ |U| < 1

2
|I|+ 1

2
|I| = |I|

However, this contradicts the fact that I = R∪ U .

B. Deadlock-Free Update Scheduler

Our goal is to solve the problem Pround by applying SWITCHX iteratively. Since SWITCHX is a

linear-time 2-approximation algorithm, the iterative solution is expected to result in a reasonably

efficient algorithm. However, it may result in a deadlock [5]. To avoid deadlocks, first we plug

SWITCHX into a search algorithm, called Deadlock-Free Update (DFU), and then apply a MERGE

algorithm to reduce the number of rounds, as described in the following.

DFU uses a list of |V | booleans to represent the state of the switches, i.e., whether a switch

is updated or not. DFU starts from the state where no switch is updated. Then, to search the

solution space (which has at most 2|V |−1 states), it applies SWITCHX to incrementally generate

the next consistently reachable states. DFU uses a priority queue to explore the states with higher
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1 2 3 4 5 6 7

(a) Original Problem

1 4 3 2 6 5 7

(b) Transformed Problem

Fig. 5: An example in which DFU finds a better solution if we transform the problem by swapping
πold and πnew.

number of updated switches sooner, and accelerates the discovery of the final state. The path

that connects the initial state to the final state is a consistent update schedule of all switches.

DFU is outlined in Algorithm 2. In line 2, a list of |V | false entries is used to show the

initial state. The priority queue is initialized in line 3. In line 6, the function L is computed

for all switches. Then, SWITCHX is called in line 7, to calculate sets R and U . In lines 8 to

12, DFU generates the new states and checks if the final state has been found. Specifically,

the UPDATE method takes the current state and a set of switches denoted by candid whose

update is consistent, and generates another state which is identical to the input state except for

the switches in candid that are updated to their final states. In favor of brevity and readability,

details of bookkeeping to retrieve the solution (line 11) and ensuring that each state is visited

once (line 10) are omitted.

C. RRS Algorithm

The Reduced Round Schedule (RRS) algorithm employs DFU to find two different schedules

for the update problem and then merges the schedules to build another update schedule that has

fewer number of rounds. We demonstrate the intuition behind the algorithm through an example.

Example: Consider the network in Fig. 5(a), and let switch 6 be the waypoint. DFU updates

the maximum number of switches (i.e. {1, 2}) in the first round, while in the next 4 rounds

only 1 switch can be updated consistently. In the second round, only switch 3 can be updated

because updating switches 4 and 6 creates the loops (4 → 3 → . . . ) and (6 → 5 → . . . ), respectively,

and updating switch 5 violates WPE. In the third round, we can only update switch 4. Finally,

switches 5 and 6 are updated in the fourth and fifth rounds, respectively. Therefore, it finds an

update schedule with 5 rounds. Now, create a new problem instance by swapping πold and πnew.

The result is depicted in Fig. 5(b). DFU updates this network in 3 rounds ({1, 6} in the first

round, then {3, 4, 5}, and finally {2}). Note that, the second schedule updates the first problem

in 3 rounds if we apply it in the reverse order.
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Next, we prove that if we swap πold and πnew in a network, the solution of the new problem

(updating πnew to πold) correctly solves the original problem (updating πold to πnew) if applied

in reverse order of rounds. We refer to this property as reversibility.

Theorem 2. The problem of consistent network update with RLF and WPE properties is re-

versible.

Proof. Assume that in a problem instance all switches are updated. Let sf denote the final

state of the network (i.e., state of all switches). Suppose that reverting the update of a maximal

set w of switches is consistent and takes the network to another state sf−1. By the definition

of consistency, any state that is obtained by reverting the update of any subset w′ ⊆ w is

also consistent. Furthermore, each state that is obtained from sf by reverting the update of the

switches in w′ ⊆ w, is exactly the state that is obtained from sf−1 by updating the switches in

w − w′. Since any state that is reachable from sf by reverting the update of switches in w is

consistent, all the states reachable from sf−1 by applying w are also consistent. Since in each

round the initial and final states are consistent, by induction, it can be shown that a consistent

schedule for the reversed version of the problem is also a consistent schedule for the original

problem.

The RRS algorithm is presented in Algorithm 3. It uses DFU to solve the original and reverse

problems and then merges the solutions to reduce the number of rounds. We refer to the solutions

of the original and reverse problem as forward and backward schedules, respectively. The MERGE

algorithm which is used to combine the forward and backward schedules is described next.

MERGE Algorithm: Let wi,r ⊂ V be the set of switches that schedule i ∈ {1, 2} (where,

i = 1 refers to the forward and i = 2 refers to the backward schedule) has updated up to
Algorithm 3 RRS: Reduced Round Scheduler
Input: G1(V1, E1). ▷ Graph described in Sect. II
Output: A Scheduling if exists.

1: procedure RRS(G1(V1, E1))
2: G2(V2, E2)← G1.copy()
3: for e ∈ E2 do
4: if e.label == πold then e.label ← πnew

5: else e.label ← πold

6: sol_fwd ← DFU(G1)
7: sol_bwd ← DFU(G2)
8: return MERGE(sol_fwd, sol_bwd) ▷ Defined in Sect. III-C
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(and including) round r. Denote the maximum round number in the schedule i by Ri. For each

schedule i, create a directed graph Gi(Vi, Ei) as follows. For each round r of the schedule i,

add a node to graph Gi. Each node stores three values r, wi,r, and Ri − r. Note that Ri − r

shows the required number of rounds to complete schedule i starting from round r. In each

graph, add the directed edge v{r,.,.} to v{r+1,.,.} (“.” means wildcard) to show a transition from

round r to r + 1 in the corresponding schedule. Consider a pair of nodes v{.,wi,r,d}, v
′
{.,w′

i′,r′ ,d
′}

which are not in the same graph. If wi,r ⊂ w′
i′,r′ and d′ < d− 1, and we can consistently update

the switches in w′
i′,r′ −wi,r in a single round, then add a directed edge from v to v′. Such links

build schedules which are better than schedule i by at least one round. We can reduce the time

of merging the graphs by observing that, if the transition from node v{.,.,d} to v′{.,.,d′} is not

consistent, the transition to any other node v′′{.,.,d′<d′′} is not consistent either. Finally, add two

nodes S and D. Connect the source and destination of the graphs Gi to S and D with proper

directions, respectively. Clearly, the length of the shortest path from S to D minus two is the

length of a consistent update schedule which is never longer than any of the input schedules.

IV. PERFORMANCE EVALUATION

Setup and Parameters. We evaluate RRS by comparing it with the exact solution of Problem

MIP (denoted by MIP) and the greedy algorithm proposed in [23] (denoted by GRD) which

solves Pswitch optimally. All algorithms terminate after 100 seconds if they don’t find a solution

or show infeasibility. Note that, if MIP can not find the optimal solution before 100 seconds, it

will return the best found feasible solution. Therefore, in practice other algorithms may perform

better than MIP. We implemented all algorithms in Python and used Gurobi 8.0 to solve the

optimization problems. We conducted the experiments on a machine with Intel(R) 2.10 GHz

Xeon(R) CPU, 16GB memory, and Ubuntu 16.04 as the operating system. We also present the

results of running DFU on the original and reverse problem instances (Sect. III-C) and denote

them by FWD and BWD, respectively.

Data Set. We use a public dataset of 28, 581 scenarios1. For each problem instance, the new

path, πnew, and the only waypoint, wp, are generated randomly. The number of switches in a

path ranges from 5 to 35. Since the length of any path is less than or equal to the diameter of

the network, the network instances considered in our experiments cover a wide range of network

sizes.

1The dataset is publicly available at http://net.t-labs.tu-berlin.de/∼stefan/netup.tar.gz
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Runtime Comparison. The scenarios are divided into three groups: (1) Small scenarios with

path lengths ≤15, (2) Medium scenarios with path lengths 15 to 25, and (3) Large scenarios

with path lengths >25. There are approximately 9K problem instances in each group. Figure 6

shows the runtime distribution of RRS, MIP, and GRD algorithms. Even in the small scenarios,

the superiority of RRS is evident. While RRS solves all small scenarios in less than 1 second, in

some scenarios MIP reaches the 100 seconds time limit (note the logarithmic y-axis). Runtime

medians of running RRS on small, medium and large scenarios are 9 × 10−4, 0.014, and 0.46

seconds, respectively, which compared to the ones obtained by MIP, namely 0.12, 4.7, and 36

seconds, show 323x speedup. The runtime medians of running GRD on small, medium and large

scenarios are 0.047, 0.089, and 0.12 seconds, respectively, in which RRS shows 5.5x speedup

in comparison. The efficiency of SWITCHX is the main reason behind the performance of RRS.

Ability to Find a Solution. Table I summarizes the ratio of solved, infeasible, and failed

instances. GRD shows its limitation even on small scenarios. Specifically, it fails to solve 1250

small instances (i.e., 13%) which are solved by other algorithms. Likewise, MIP fails to solve

43 small instances (i.e., 0.4%) which are solved by RRS. Note that, for small and medium

scenarios, there is actually no room for improvement, and thus the performances of the algorithms

resemble each other. However, in large scenarios, RRS outperforms MIP and GRD, and achieves

near optimal performance. In general, RRS solves 6% and 14.7% more instances compared to

MIP and GRD. Furthermore, RRS solves 109 more instances compared to the FWD and BWD

algorithms.

Number of Rounds Comparison. Average number of rounds obtained by different algorithms

TABLE I: Ratio of solved, infeasible and failed instances

Size Status Algorithm

RRS MIP GRD FWD BWD

Small
Solved 0.90 0.90 0.86 0.90 0.90

Infeasible 0.09 0.08 0.0 0.09 0.09
Failure 0.0 0.004 0.13 0.0 0.0

Medium
Solved 0.95 0.94 0.82 0.95 0.95

Infeasible 0.04 0.006 0.0 0.04 0.04
Failure 10−4 0.05 0.18 0.001 10−4

Large
Solved 0.99 0.84 0.80 0.98 0.98

Infeasible 0.002 10−4 0.0 0.001 0.001
Failure 0.006 0.15 0.19 0.01 0.01
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Fig. 8: Empirical CDF for the ratio of the number of rounds of different algorithms.

is represented in Fig. 7(a). For small scenarios, the performances of all algorithms are similar.

Most notably, the average number of rounds under RRS is always lower than that of other

algorithms. We can see that MIP is not scalable, and for large scenarios, its performance degrades

significantly. Figs. 7(b), 7(c), and 7(d) show the empirical cumulative distribution functions

(ECDF) of the number of rounds achieved by the algorithms in different scenarios. We observe

that the majority of small scenarios are solved in at most 5 rounds, while 10 rounds are needed

to solve almost all medium and large scenarios. However, in large scenarios, MIP shows a

considerably lower performance and sometimes computes a schedule with more than 30 rounds,

while RRS never uses more than 15 rounds. Note that, GRD fails to solve the complicated

problem instances (e.g., it fails to solve 1700 large scenarios). Therefore, Fig. 7(d) can only

capture the performance of GRD on easier problem instances. Consequently, Fig. 7(d) shows

that GRD schedules rule updates in a small number of rounds. RRS, however, solves more

problem instances, and at the same time finds schedules that have fewer number of rounds. This

means that RRS computes good schedules even for complicated problem instances.

Effect of MERGE algorithm. Consider the ECDF of the ratio of the number of rounds among

different algorithms in Fig. 8. Since RRS uses the approximate SWITCHX algorithm we should

expect an inferior performance compared to GRD which uses the optimal algorithm for Pswitch

problem. However, Fig. 8(a) shows that RRS, by using the MERGE algorithm and combining

the solutions of BWD and FWD, achieves 10% to 20% improvement compared to GRD for

different scenario sizes. Figure 8(b) compares RRS and MIP. We can see that RRS reduces the

number of rounds in 15% of large scenarios. Furthermore, there are scenarios in which the ratio

of the number of rounds between RRS and MIP is close to zero. This means that MIP is not
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scalable, and under the same time constraint as RRS, it performs considerably worse.

V. CONCLUSION

We designed RRS algorithm to update SDNs with minimum number of rounds under RLF

and WPE. RRS uses three novel building blocks and significantly reduces the time complexity of

solving the problem. Extensive evaluations showed that our algorithm is able to find schedules

that are efficient in terms of the number of rounds. In the future, we plan to consider other types

of consistency properties.
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