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Introduction The abacus

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called The Glass Bead Game.

It depicts a monastic community of thinkers, led by a “game master”.

The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

Players represent connections between math, music, philosophy, etc.

The moving glass beads weave these subjects together in harmony.

To play well is to contemplate and communicate profound insights.

I loved the idea of the book, but something was missing.

Hesse only roughly describes the instrument—the abacus—itself.

What sort of combinatorial object is capable of this grand scope?

To my lights, Poly can serve as an abacus; I hope to justify that to you.
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Introduction Plan

Approximate plan for tutorial

First session:

Introduce Poly and its combinatorics (how the abacus works);

Discuss its pleasing properties and monoidal structures;

Present the framed bicategory Cat♯.
Second session:

Recall Cat♯ and discuss some properties of it;

Consider applications: dynamical systems, data, and deep learning;

Conclude with a summary.
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Theory Poly as a category

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The free coproduct completion of Setop;

The full subcategory of [Set,Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The category of typed sets and colax maps between them.

Objects: pairs (I , τ), where I ∈ Set and τ : I → Set.

Morphisms (I , τ)
φ−→ (I ′, τ ′): pairs (φ1, φ

♯), where

I I ′

Set

τ

φ1

τ ′

φ♯

But let’s make this easier.
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Theory Poly as a category

What is a polynomial?

Algebraic Bundle Corolla forest

y2 + 3y+ 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

One could repurpose this machine to represent 15y5×2 ∈ Poly.
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Theory Poly as a category

Terminology woes

Issue: prior terminology from computer science doesn’t fit my conception.

p := y3 + y2 + y2 + 1

Container terminology from Abbott: “shapes and positions”.

data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux

Container p has four “shapes”, e.g. Foo has three “positions”.

We prefer to think of these “positions” as projection arrows.

• • • •

Hard decision but I’ll say positions and directions. Reasons:

Dynamical systems: position = point, direction = vector.

Categories: position = object, direction = morphism.

Terminal coalgebra trees: position = label, direction = arrow.
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Theory Poly as a category

Combinatorics of polynomial morphisms

Let p := y3 + 2y and q := y4 + y2 + 2

•
1
•
2
•
3

p

•
1
•
2
•
3
•
4

q

A morphism p
φ−→ q delegates each p-position to a q-position, passing

back directions:

•
1

•
1

•
2

•
1

•
3

•
4

Example: how to think of

y2 + y6 → y52 ?

p → y for arbitrary p ?
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Theory Poly as a category

The category of polynomials

Easiest description: Poly = “sums of representables functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .

Def: a polynomial is a sum p =
∑

i∈I y
p[i ] of representable functors.

Def: a morphism of polynomials is a natural transformation.
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Theory Poly as a category

Notation

We said that a polynomial is a sum of representable functors

p ∼=
∑
i∈I

yp[i ].

But note that I ∼= p(1). So we can write

p ∼=
∑

i∈p(1)

yp[i ].

Here’s a derivation of the combinatorial formula for morphisms:

Poly(p, q) = Poly

 ∑
i∈p(1)

yp[i ],
∑

j∈q(1)

yq[j]

 ∼= ∏
i∈p(1)

Poly

yp[i ],
∑

j∈q(1)

yq[j]


∼=

∏
i∈p(1)

∑
j∈q(1)

Set(q[j ], p[i ])

“For each i ∈ p(1), a choice of j ∈ q(1) and a function q[j ]→ p[i ].”
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Theory Poly as a category

Notation for the abacus

For any polynomial p ∈ Poly, I’ll use the following sort of notation

p(1)

p[−]

The bottom part is filled by indicating a position, say i ∈ p(1).

Only then can the top part be filled by a direction, say d ∈ p[i ].

This gets more interesting for maps. A map φ : p → q is shown: The
map φ is a formula saying “however you fill blue’s, I’ll fill whites.”

For any i ∈ p(1) you choose, I’ll return φ1(i) ∈ q(1), and

for any e ∈ q[φ1(i)] you choose, I’ll return φ♯i (e) ∈ p[i ].

But this notation will really come in handy later in handling composition.
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Theory A quick tour of Poly

Pleasing aspects of Poly

Here are some properties enjoyed by Poly:

Poly contains two copies of Set and one copy of Setop.

Sets A can be represented as a constant or linear: A,Ay ∈ Poly.

Sets A can be op-represented as representables yA ∈ Poly.

Each of these inclusions is full and has at least one adjoint.

Poly has all coproducts and limits (extensive), and is Cartesian closed;

These agree with coproducts, limits, closure in “ SetSet ”.

0 is initial, 1 is terminal, + is coproduct, × is product.

yA is internal hom between A, y ∈ Poly. For fun: yy ∼= y+ 1.

Poly has coequalizers, though these differ from coeq’s in “ SetSet ”.

Poly has two factorization systems: epi-mono, vertical-cartesian.
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Theory A quick tour of Poly

Monoidal structures on Poly

There are many monoidal structures on Poly.

It has a coproduct (0,+) structure.

Day convolution can be applied to any SMC structure (I , ·) on Set.

The result is a distributive monoidal structure (yI ,⊙) on Poly.

In the case of (0,+), the result is the product (1,×).
In the case of (1,×), the result is (y,⊗).

p × q ∼=
∑

i∈p(1)

∑
j∈q(1)

yp[i ]+q[j] and p ⊗ q ∼=
∑

i∈p(1)

∑
j∈q(1)

yp[i ]×q[j].

The ⊗ product has a closure (internal hom) [−,−] given by

[p, q] :=
∑

φ : p→q

y
∑

i∈p(1) q[φ1(i)]

There’s one more monoidal product, which will be of great interest.
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Theory A quick tour of Poly

Composition monoidal structure (Poly, y, ◁)

The composite of two polynomial functors is again polynomial.

Let’s denote the composite of p and q by p ◁ q.

Example: if p := y2, q := y+ 1, then p ◁ q ∼= y2 + 2y+ 1.

This is a monoidal structure, but not symmetric. (q ◁ p ∼= y2 + 1)

The identity functor y is the unit: p ◁ y ∼= p ∼= y ◁ p.

Why the we weird symbol ◁ rather than ◦?
We want to reserve ◦ for morphism composition.

The notation p ◁ q represents trees with p under q.
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Theory A quick tour of Poly

Composition given by stacking trees

Suppose p := y2 + y and q := y3 + 1.

•
1
•
2

p

•
1
•
2

q

Draw the composite p ◁ q by stacking q-trees on top of p-trees:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

p ◁ q

You can also read it as q feeding into p, which is how composition works.
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Theory A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p → q1 ◁ · · · ◁ qk .
A map φ : p → q ◁ r is an element of

φ ∈ Poly(p, q ◁ r) ∼=
∏

i∈p(1)

∑
j∈q(1)

∏
e∈q[j]

∑
k∈r(1)

∏
f ∈r [k]

∑
d∈p[i ]

1.

We could write it with our abacus pictures:

p

q

r

φ
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∑
d∈p[i ]

1.

We could write it with our abacus pictures:

d

i
p

e

j
q

f

k
r

φ

These will come in handy when asking if two such φ,ψ are equal.
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Theory Comonoids in Poly

Comonoids in (Poly, y, ◁)

In any monoidal category (M, I ,⊗), one can consider comonoids.

A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where

m ∈M is an object, the carrier,

ϵ : m→ I is a map, the counit, and

δ : m→ m ⊗m is a map, the comultiplication.

In (Poly, y, ◁), comonoids are exactly categories!1

If C is a category, the corresponding comonoid has carrier

c :=
∑

i∈Ob(C)

yC[i ]

where C[i ] is the set of morphisms in C that emanate from i .

The counit ϵ : c→ y assigns to each object an identity.

The comult δ : c→ c ◁ c assigns codomains and composites.

1Ahman-Uustalu. “Directed Containers as Categories”. MSFP 2016.
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Theory Comonoids in Poly

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.

Let (c , ϵ, δ) be a comonoid, where ϵ : c → y and δ : c → c ◁ c.

c y

ϵ1

ϵ♯

c

c

c

δ1

δ2

δ♯

Here’s the first unitality law, (idc ◁ ϵ) ◦ δ = idc :

c

cidc

ϵ♯

δ1

δ2

δ♯

c c

idc=
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Theory Comonoids in Poly

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.

Let (c , ϵ, δ) be a comonoid, where ϵ : c → y and δ : c → c ◁ c.

c y

ϵ1

ϵ♯

c

c

c

δ1

δ2

δ♯

Here’s the first unitality law, (idc ◁ ϵ) ◦ δ = idc :

δ♯i (ϵ
♯(δ2(f )))

i
c

f

δ1(i)

ϵ♯(δ2(f ))

δ2(f )

f

δ1(i)
cidc

ϵ♯

δ1

δ2

δ♯

f

i

c

f

i

c

idc=

Equation: ∀i ∈ c(1), δ1(i) = i ∧ ∀f ∈ c[i ], δ♯i (f , ϵ
♯(δ2(f ))) = f . 16 / 49



Theory Comonoids in Poly

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

For example, we found out that δ1(i) = i for all i ∈ c(1), so...

c y

!

ϵ♯

c

c

c

δ2

δ♯

To make sense of the other equations, let’s rename ϵ♯, δ2, and δ
♯.

Namely, let’s write idy := ϵ♯, cod := δ2, and # := δ♯.

Then the previous equation says: f # idy(cod(f )) = f .

The other unitality eq’n gives: cod(idy(i)) = i and idy(i) # f = f .

The associativity eq’n gives: cod(f # g) = cod(g) and
(f # g) # h = f # (g # h).
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Theory Comonoids in Poly

A brief glance at associativity

c

c

c

c

c

c

cod

#
cod

#

c

c

c

c

c

c

cod

#

cod

#=

Let’s fill it in and read off the abacus:

∀i ∈ c(1), i = i ∧
∀f ∈ c[i ], codf = codf ∧
∀g ∈ c[codf ], codg = cod(f # g) ∧
∀h ∈ c[codg ], f # (g # h) = (f # g) # h.
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Theory Comonoids in Poly

A brief glance at associativity

f #(g#h)

i

c

f

i

c

g#h

codf

c

f

i
c

g

codf
c

h

codg
c

cod

#
cod

#

(f #g)#h

i

c

f # g

i

c

h

cod(f #g)

c

f

i
c

g

codf
c

h

cod(f #g)
c

cod

#

cod

#=
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Theory Comonoids in Poly

Comonoid maps are “retrofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.

A comonoid morphism φ : C ↛ D is called a retrofunctor.

It includes a Poly map on carriers. For each object i ∈ c(1), we get:

an object j := φ1(i) ∈ d(1) and

for each emanating f ∈ d[j ], an emanating φ♯i (f ) ∈ c[i ].

Rules: φ♯ preserves ids and comps, and φ1 preserves cods.

Denote this by Cat♯ := Comon(Poly) = (cat’ys and retrofunctors).

Example: what is a retrofunctor C
φ↛ yQ ?

It is trivial on objects i ∈ Ob(C). Passing back morphisms gives:

... a map φ♯i (q) : i → i+q emanating from i for each q ∈ Q, s.t....

... φ♯i (0) = idi , so i+0 = i , and φ♯i (q) # φ♯i+q
(q′) = φ♯i (q + q′).

“That’s a strange sort of structure to put on a category!”

Cofunctors offer a whole new world to explore. Think “vector fields”.

The natural co-transformations between them are even wilder.
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Theory Comonoids in Poly

Cat♯: examples and facts

Here are some examples of the polynomial c carrying a category C.

c never has constant part: every object needs an outgoing arrow.

The following are equivalent:

the comonoid structure maps ϵ, δ are cartesian;

c = Oy is a linear polynomial;

C is a discrete category, with Ob(C) = O.

c = yM is representable iff M ∈ Set carries a monoid.

If C =
1• → 2• → · · · → N• then c = yN + yN−1 + · · ·+ y.

Other facts about Cat♯:

Coproducts in Cat♯ and in Cat agree; carrier is c+ d.

Cat♯ has finite products (Niu), and they’re very interesting.

Cat♯ inherits ⊗ from Poly, and c⊗ d is the usual categorical product.
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Theory Comonoids in Poly

Cofree comonoids

To any polynomial p, we can associate the cofree comonoid on p.

That is, the forgetful functor Cat♯ → Poly has a right adjoint.

I’ll give an explicit description on the next slide.

There’s a standard construction for this type of thing.

We need a polynomial cp and maps cp → y and cp → cp ◁ cp.

Starting with p ∈ Poly, we first copoint it by multiplying by y.

That is, py is the universal thing mapping to p and y.

We get cp by taking the limit of the following diagram in Poly:

cp := lim
(

y py py ◁ py py ◁ py ◁ py · · ·
)

For us, a main use of cp is an equivalence cp-Set ∼= p-Coalg.

A coalgebra S → p(S) corresponds to cp → Set with elements S .

For example, the object set cp(1) is the terminal p-coalgebra.
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Theory Comonoids in Poly

The cofree comonoid cp via p-trees

Comonoids in Poly are categories, so cp is a category; which one?

It’s actually free on a graph, but the graph is very interesting.

The vertex-set cp(1) of the graph is the set of p-trees.
A p-tree is a possibly infinite tree t, where each node...

...is labeled by a position i ∈ p(1) and has p[i ]-many branches.

Example object t ∈ cp(1), where p = {•, •}y2 + {•} ∼= 2y2 + 1:

For any vertex t ∈ cp(1), an arrow a ∈ cp[t] emanating from t is...

...a finite path from the root of t to another node in t.

Its codomain is the p-tree sitting at the target node (its root).

Identity arrow = length-0 path; composition = path concatenation.

Imagine the whole graph cp: every possible “destiny” is included.
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Theory The framed bicategory Cat♯

Bicomodules in (Poly, y, ◁)

Given
categories

comonoids C,D, a (C,D)-bicomodule is another kind of map.

It’s a polynomial m, equipped with two morphisms in Poly

c ◁m
λ←−− m

ρ−−→ m ◁ d

each cohering naturally with the comonoid structure ϵ, δ for c, d.

I denote this (C,D)-bicomodule m like so:

c

▷

◁m d or C

▷

◁m
D

The ◁’s at the ends help me remember the how the maps go.

Maybe it looks like it’s going the wrong way, but hold on.
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Theory The framed bicategory Cat♯

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m ∈ CModD, which we’ve denoted

C

▷

◁m
D or c

▷

◁m d

can be identified with parametric right adjoint functors (prafunctors)

D-Set
M−→ C-Set.

From this perspective the arrow points in the expected direction.

Assuming Garner’s result, check: CMod0 ∼= C-Set.

Prafunctors C ▷ ◁ D generalize profunctors C D:

A profunctor C D is a functor C → (D-Set)op

A prafunctor C ▷

◁ D is a functor C → Coco
(
(D-Set)op

)
...

...where Coco is the free coproduct completion.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI
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Theory The framed bicategory Cat♯

Let’s ask the abacus

To prove that bicomodules c ▷ ◁m d are prafunctors dMod0 → cMod0:

Write out the bicomodule equations and run the abacus.

m

m

d

ρ

ϵ

m mid= m

m

d

m

d

d

ρ

ρ

id

m

m

d

m

d

d

id

ρ

δ

and =

m

c

m

λ

ϵ

m mid= m

c

m

c

c

m

δ

λ

id

m

c

m

c

c

m

id

λ

λ

and =

m

m

d

c

m

d

λ

ρ

id

m

c

m

c

m

d

id

λ

ρ

=
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Theory The framed bicategory Cat♯

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

A left comodule c ◁m
λ←− m can be identified with a functor c→ Poly.

m ∼=
∑
i∈c(1)

∑
x∈mi

ym[x]

The right comodule conditions on m
ρ−→ m ◁ d say that each m[x ] ...

... is not just a set, it’s the set of elements for a copresheaf on d!

When we add the coherence condition, it all falls into place.

The idea is that each i ∈ c(1) functorially gets a set mi and...

... each x ∈ mi gets a d-set with elements m[x ].

The prafunctor d-Set→ c-Set associated to m takes any d-set N, ...

... hom’s in the m[x ]’s, and adds them up to get a c-set.

We’ll understand this better semantically when we get to applications.

26 / 49



Theory The framed bicategory Cat♯

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

A left comodule c ◁m
λ←− m can be identified with a functor c→ Poly.

m ∼=
∑
i∈c(1)

∑
x∈mi

ym[x]

The right comodule conditions on m
ρ−→ m ◁ d say that each m[x ] ...

... is not just a set, it’s the set of elements for a copresheaf on d!

When we add the coherence condition, it all falls into place.

The idea is that each i ∈ c(1) functorially gets a set mi and...

... each x ∈ mi gets a d-set with elements m[x ].

The prafunctor d-Set→ c-Set associated to m takes any d-set N, ...

... hom’s in the m[x ]’s, and adds them up to get a c-set.

We’ll understand this better semantically when we get to applications.

26 / 49



Theory The framed bicategory Cat♯

Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with c

▷

◁m d.

If d = 0 then carrier m ∈ Poly is constant, i.e. m = M for M ∈ Set.

If carrier m = M is constant, then m factors as c ▷ ◁M 0 ▷ ◁! d.

The following cat’ies are isomorphic and all are equivalent to c-Set:

Cartesian retrofunctors over c = Discrete opfibrations over c.

The constant left c-comodules, i.e. with constant carrier m = M.

The linear left c-comodules, i.e. with linear carrier m = My.

The representable right c-comodules, i.e. with carrier yM .
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Theory The framed bicategory Cat♯

Bicomodule composition

If you’ve ever tried to compose prafunctors; this might look familiar.

• • •

• •

• • • •

e d c

comma

dist.

comma

pb

But in Poly, it’s just given by the usual bicomodule composition.

The composite of c ▷

◁m d

▷

◁n e, is carried by the equalizer:

m ◁d n
eq−→ m ◁ n⇒ m ◁ d ◁ n

This has a natural (c, e)-structure, because ◁ preserves conn. limits.

It’s amazing to see the combinatorics handle all this complexity.
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Theory The framed bicategory Cat♯

The framed bicategory Cat♯

Poly como’ds, retrofuns, and bicomodules form a framed bicategory Cat♯.

c d

c′ d′

\φ

▷ ◁m

\ ψ⇓α

▷ ◁
m′

It’s got a ton of structure, e.g. two monoidal structures, +,⊗.
It’s actually not too hard to describe.

Here are some facts about CModD for categories C,D.

CMod0 ∼= C-Set, copresheaves on C.

1ModD ∼= Coco
(
(D-Set)op

)
.

CModD ∼= Cat(C, 1ModD).

There’s a factorization system on Cat♯:
Every m ∈ cModd can be factored as m ∼= f ◦ p,

c

▷

◁f c′

▷

◁
p

d

where f “is” a discrete opfibration and p “is” a profunctor.
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Theory The framed bicategory Cat♯

Gambino-Kock’s framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory PolySet.
Its vertical category is Set.

A horizontal map I → J is J-many polynomials in I -many variables.

2-cells are natural transformations between polynomial functors.

This is a full subcategory Poly ⊆ Cat♯.
Objects in Cat♯ are caty’s; those in Poly are the discrete categories.

Verticals in Cat♯ are retrofunctors; Set(I , I ′) ∼= Cat♯(Iy, I ′y).

Horizontals in Cat♯ are prafunctors; between discretes, these are poly’s

In both, 2-cells are the natural transformations.

The comonoid theory Cat♯ of (one-variable) Poly includes all of Poly.
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Theory The framed bicategory Cat♯

Adjunctions in Cat♯

The map −Mod0 : (Cat♯)op → Cat is locally fully faithful; i.e....

...for categories C,D, only some functors m : D-Set→ C-Set count...

... as bimodules C ▷ ◁m
D, but for those m, n that do...

... the bimodule maps m⇒ n are exactly the natural transformations.

Thus it is easy to say when C

▷ ◁m
D has an adjoint in Cat♯, namely if...

...the induced D-Set
m−→ C-Set has an adjoint C-Set

m′
−→ D-Set and...

... m′ is in Cat♯! (i.e. the adjoint m′ needs to preserve conn’d limits).

Both functors C
F−→ D and retrofun’s C

φ

↛ D induce adjunctions in Cat♯.
The pullback and right Kan extension along F are adjoint ∆F ⊣ ΠF .

The companion and conjoint of φ are adjoint Σφ ⊣ ∆φ.

A dopf F is both a functor and a retrofunctor, and the ∆’s coincide.

Note that retrofunctors C ↛ D induce interesting maps between toposes:

Whereas geometric morphisms C-Set⇆ D-Set preserve finite limits...

... retrofunctors induce adjunctions that preserve connected limits.
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Theory Monads in Cat♯

Operads as monads in Cat♯

In any framed bicat’y, notation from Cat♯, a monad (C,m, η, µ) consists of

An object C, the type

a bicomodule C

▷ ◁m
C, the carrier

a 2-cell η : idc ⇒ m, the unit

a 2-cell µ : m ◦m⇒ m, the multiplication

satisfying the usual laws.

In Cat♯, these generalize operads in a number of ways:

When C ∼= I is discrete, η, µ are cartesian, you get colored operads.

Relaxing discreteness of C, the domain of a morphism can be...

... a diagram, rather than a mere set, of objects.

Relaxing “iso” condition, composites and ids can have “weird” arities.
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satisfying the usual laws.

In Cat♯, these generalize operads in a number of ways:

When C ∼= I is discrete, η, µ are cartesian, you get colored operads.3

Relaxing discreteness of C, the domain of a morphism can be...

... a diagram, rather than a mere set, of objects.

Relaxing “iso” condition, composites and ids can have “weird” arities.
3Not quite the standard definition of operad, but no less elegant: the input to a

morphism is a set, rather than a list of objects. You can also talk about standard
(list-based) operads and their generalizations within the Cat♯ setting; see
Gambino-Kock.
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Theory Monads in Cat♯

“Categories = monads in Span” in Cat♯

It is well-known that “categories are monads in Span.” Let O be a set.

A prafunctor Oy

◁

▷m Oy acts as a span iff it’s a left adjoint.

If a monad m has a right adjoint Oy

▷

◁c Oy, then c is a comonad.

Now, since the vertical part of Cat♯ is already Comon(Poly),

... c has a canonical comonoid structure c, equipped with c ↛ Oy.

This map c ↛ Oy is identity on objects because c was right adjoint.

Thus we see internally how m induces a category c with object-set O.

Here’s how functors and retrofunctors look in this perspective:

Oy Oy

O ′y O ′y

◁

▷m

◁

▷
m′

⇓ vs.

Oy Oy

O ′y O ′y

▷

◁c

▷

◁
c ′

⇓
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Theory Monads in Cat♯

Grothendieck sites give Cat♯-monads

Every Grothendieck site (Cop, J) has an associated monad mJ in Cat♯.
A J-sheaf is an mJ -algebra, but not all mJ -algebras are J-sheaves.

An mJ -algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top’y J, we need (m, η, µ) where C

▷ ◁m
C.

The topology J assigns to each V ∈ C a set JV , “covering families”...

... and each F ∈ JV is assigned a subfunctor SF ⊆ C[V ].

From this data we define m ∈ Poly:

m :=
∑

V∈Ob(C)

∑
F∈JV

ySF .

The Grothendieck top’y axioms endow the bimodule and monad structure.

An algebra structure m ◦ P h−→ P assigns
a section hV (F , s) ∈ PV to each V -covering
family F and matching family s of sections.

C C 0▷ ◁m

▷ ◁

P

▷ ◁P

h
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Applications

Bringing the abacus out of the monastery

I hope it’s now clear that we’ve got a well-oiled machine:

Poly and Cat♯ have excellent formal properties, and

we can see how they work using very concrete calculations.

Our next job is to take this shiny abacus out for a spin.

How do I see Poly as appropriate for the Glass Bead Game?

We can use this instrument to talk about many aspects of the world.
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Applications Interacting Moore machines

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

S
A B

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , r , u, s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.
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Applications Interacting Moore machines

Moore machines as maps in Poly

We can understand Moore machines SA B in terms of polynomials.

A Moore machine r : S → B and u : S × A→ S is:

A function S → B × SA, i.e. a ByA-coalgebra.
(It can also be phrased as a polynomial map SyS → ByA.)

A p-coalgebra allows different input-sets at different positions.

For arbitrary p ∈ Poly we can interpret a map φ : S → p ◁ S as:

a readout: every state s ∈ S gets a position i := φ1(s) ∈ p(1)

an update: for every direction d ∈ p[i ], a next state φ2(s, d) ∈ S .

Even more general: a functor S : C → Set for any category C.

This generalizes the above, because p-Coalg ∼= cp-Set.

Imagine its elements (c , s) as states; each reads out its object c ∈ C...

... and for any morphism f : c → c ′, it can be updated to (c ′, s.f ).

We’ll call any of these things dynamical systems.
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Applications Interacting Moore machines

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

p1

p2

p3

p4

p5

q

A

B

C

(φ)

Each box represents a monomial, e.g. p3 = CyAB ∈ Poly.

The whole interaction, p1 sending outputs to p2 and p3, etc....

... is captured by a map of polynomials φ : p1 ⊗ · · · ⊗ p5 → q.

Given the positions (outputs) of each pi , we get an output of q...

... and when given an input of q, each pi gets an input.

Now each subsystem can be endowed with a coalgebra Si → pi ◁ Si .

We tensor and compose to give S → q ◁ S , where S := S1 × · · · × S5.

So φ applied to dynamics in p1, . . . , p5 gives dynamics in q.
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Applications Mode-dependence

More general interaction

Supplier 1

Supplier 2

Company

W

•

Supplier 1

Supplier 2

Company

W

•

Change
supplier!

The whole picture above represents one morphism in Poly.

Let’s suppose the company chooses who it wires to; this is its mode.

Then both suppliers have interface Wy for W ∈ Set.

Company interface is 2yW : two modes, each of which is W -input.

The outer box is just y, i.e. a closed system.

So the picture represents a map Wy⊗Wy⊗ 2yW → y.

That’s a map 2W 2yW → y.

Equivalently, it’s a function 2W 2 →W . Take it to be evaluation.

In other words, the company’s choice determines which w ∈W it
receives.
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Applications Mode-dependence

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T .

Discrete: N, reversible: Z, real-time: R.
If T is a monoid and S is a set, a T -action on S is equivalently...

... a functor S : T → Set, as in our general definition above.

Summary: Poly can encode dynamical systems and rewiring diagrams.
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Applications Databases

Categorical databases

One view on databases is that they’re basically just copresheaves.

C :=
Employee
•

Department
•

WorksIn
Mngr

Admin

Department.Admin.WorksIn = idDepartment

A functor I : C → Set (i.e. C ▷ ◁I 0) can be represented as follows:

Employee WorksIn Mngr
♡ P9 ♡

T**** bLue orca
orca bLue orca

Department Admin
bLue T****
P9 ♡
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A functor I : C → Set (i.e. C ▷ ◁I 0) can be represented as follows:

Employee WorksIn Mngr
♡ P9 ♡

T**** bLue orca
orca bLue orca

Department Admin
bLue T****
P9 ♡

But where’s the data? What are the employees names, etc.?
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C :=
Employee
•

Department
•

WorksIn
Mngr

Admin
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More realistically, data should include attributes and look like this:

Employee FName WorksIn Mngr
♡ Alan P9 ♡

T**** Dani bLue orca
orca Sara bLue orca

Department DName Secr
bLue Sales T****
P9 IT ♡

Assign a copresheaf T : Ob(C)→ Set, e.g. T (Employee) = String.

Using the canonical retrofunctor C ↛ Ob(C), attributes are given by
α:

C 0

Ob(C) 0

\

▷ ◁I

⇓α

▷ ◁
T
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Applications Databases

Data migration

The framed bicategory structure of Cat♯ is very useful in databases.

We hinted at this in the last slide, adding attributes via a retrofunctor.

But so-called data migration functors are precisely prafunctors.

A prafunctor C ▷

◁P
D in CModD can be understood as follows.

First, it’s a functor C → 1ModD, so what’s an object in 1ModD?

We said it’s a formal coproduct of formal limits in D.

A formal limit in D is called a conjunctive query on D.

So a prafunctor 1 ▷ ◁
Q

D is a disjoint union of conjunctive queries.

Let’s call Q a duc-query on D.

Example: if D =

(
City
• in−→ State• in←−

County
•

)
, a duc-query might be...

(City×StateCity) + (City×StateCounty) + (County×StateCounty)

A general bimodule P ∈ CModD is a C-indexed duc-query on D.
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•

)
, a duc-query might be...

(City×StateCity) + (City×StateCounty) + (County×StateCounty)

A general bimodule P ∈ CModD is a C-indexed duc-query on D.
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Applications Cellular automata

Cellular automata

Cellular automata are like Moore machines, except with no internal state.

Here’s a picture of a glider from Conway’s Game of Life:

⇝

GoL takes place on a grid, a set V := Z× Z of “squares”

Each square has neighbors; think of the grid as a graph A⇒ V .

Each square can be in one of two states: white or black.

The state at any square is updated according to a formula, e.g.

If the square is ■ and has 2 or 3 ■ neighbors, it stays ■.
If the square is □ and has 3 ■ neighbors, it turns ■.
Otherwise it turns / remains □.
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Applications Cellular automata

Cellular automata as algebras in Cat♯

How do we encode this in Cat♯?
We encode the graph A⇒ V as a prafunctor Vy

▷ ◁
g

Vy

Each v ∈ V queries its neighbors (and itself).

The carrier of the prafunctor for GoL is g := Vy9.

In fact, g ’s a profunctor: it preserves the terminal, (g ◦ V ) ∼= V .

We encode the color-set for each node as a prafunctor Vy

▷

◁C 0

In GoL, each v ∈ V gets the set 2; i.e. C := 2V .

We encode the update formula as a map u of prafunctors
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Cellular automata as algebras in Cat♯

How do we encode this in Cat♯?
We encode the graph A⇒ V as a prafunctor Vy

▷ ◁
g

Vy

Each v ∈ V queries its neighbors (and itself).

The carrier of the prafunctor for GoL is g := Vy9.

In fact, g ’s a profunctor: it preserves the terminal, (g ◦ V ) ∼= V .

We encode the color-set for each node as a prafunctor Vy

▷ ◁C 0
In GoL, each v ∈ V gets the set 2; i.e. C := 2V .

We encode the update formula as a map u of prafunctors

And we encode the initial color setup as a point V
i−→ C :

Vy Vy 0▷

◁g▷ ◁
C

▷

◁
C

▷ ◁

V

u

i

From here you can iteratively “run” the cellular automaton.
44 / 49



Applications Cellular automata

Running the cellular automaton

Vy Vy Vy Vy 0▷ ◁g

▷
◁

V

▷ ◁

C

▷ ◁g

▷
◁

V
▷ ◁

C

▷ ◁g

▷
◁

V
▷ ◁

C

▷ ◁
C

▷
◁

V

∼=

∼=

∼=

⇓i

⇓u
⇓u

⇓u

Use that Vy

▷ ◁V 0 is terminal and Vy

▷ ◁
g

Vy preserves terminals.
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Applications Deep learning

What is deep learning?

In Backprop as functor4 “deep learning” is expressed in terms of SMCs.

Objects are Euclidean spaces Rn; monoidal product is ×.
A morphism Rm ⇝ Rn consists of

Another Euclidean space Rp, parameter space,
A function I : Rp × Rm → Rn, implement
A function U : Rp × Rm × Rn → Rp × Rm, update and backprop

Explanation:

The update takes an (inp, outp) pair and updates the parameter.
Without backprop, morphism composition cannot be defined.

Typically, I and U have very particular forms.

I is usu. a composite of linear maps and logistic-like maps.
U is usu. gradient descent along a “loss covector” ℓ∈T ∗(Rn)∼=Rn.

4Fong, B; Spivak, DI; Tuyéras, R. “Backprop as functor”. LICS 2019.
46 / 49



Applications Deep learning

What is deep learning?

In Backprop as functor4 “deep learning” is expressed in terms of SMCs.

Objects are Euclidean spaces Rn; monoidal product is ×.
A morphism Rm ⇝ Rn consists of

Another Euclidean space Rp, parameter space,
A function I : Rp × Rm → Rn, implement
A function U : Rp × Rm × Rn → Rp × Rm, update and backprop

Explanation:

The update takes an (inp, outp) pair and updates the parameter.
Without backprop, morphism composition cannot be defined.

Typically, I and U have very particular forms.

I is usu. a composite of linear maps and logistic-like maps.
U is usu. gradient descent along a “loss covector” ℓ∈T ∗(Rn)∼=Rn.
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Applications Deep learning

Deep learning in Poly

The best-known methods use calculus, but the structure is set-theoretic.

Learn(A,B) := {(P, I ,U) | P ∈ Set, I : P×A→ B,U : P×A×B → P×A}

We can see this inside of Poly:

Learn(A,B) ∼= [AyA,ByB ]-Coalg

That is, it’s the cat’y of dynamical systems in [AyA,ByB ], where recall

[AyA,ByB ] ∼=
∑

φ : AyA→ByB

yAB

An (A,B)-learner is thus a set P and a map P → [AyA,ByB ] ◁ P.
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Applications Deep learning

Learners’ languages

For any polynomial p, the category p-Coalg forms a topos.

Indeed, letting cp be the cofree comonoid on p,...

...there is an equivalence p-Coalg ∼= cp-Set.

Since cp is free on a graph, cp-Set is about as easy as toposes get.

In particular, the topos p-Coalg has an internal type theory and logic.

The logic describes constraints on dynamical systems.

A proposition ϕ is any subobject of the terminal p-coalgebra:

a set ϕ of p-trees where if t ∈ ϕ then so is the subtree at any node.

Gradient descent-backprop is a proposition in [RmyR
m
,RnyR

n
]-Coalg.

That is, it is a constraint on (Rm,Rn)-learners.

It has a very particular flavor: it can be checked in one timestep.

But the logic is much more expressive. We’ll leave that for a later time.
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Conclusion Summary

Summary

Poly is a category of remarkable abundance.

It’s completely combinatorial.

Calculations using “the abacus” are concrete.

Much is already familiar, e.g. (y+ 1)2 ∼= y2 + 2y+ 1.

It’s theoretically beautiful.

Comonoids are categories.

Coalgebras are copresheaves.

It’s got a wide scope of applications.

Databases and data migration.

Dynamical systems and cellular automata.

Deep learning and its generalizations.

Thank you for your time; questions and comments welcome.
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