McKay for Reflection Groups and Semiorthogonal Decompositions

> Katrina Honigs Simon Fraser University

Foundational Methods in Computer Science July 2024

#### Outline

- Classical McKay Correspondence
- Derived equivalence and generalizing McKay
- Semi-orthogonal decompositions
- Reflection groups example
- Further work on reflection groups

#### Classical McKay Correspondence McKay (1980): Finite subgroups $G \leq SL(2, \mathbb{C})$

### Classical McKay Correspondence

McKay (1980): Finite subgroups  $G \leq SL(2, \mathbb{C})$ 

Irreducible representations of  $G \Leftrightarrow$  Singularity of  $\mathbb{C}^2/G$ 

#### Classical McKay Correspondence McKay (1980): Finite subgroups $G \leq SL(2, \mathbb{C})$

Irreducible representations of  $G \Leftrightarrow$  Singularity of  $\mathbb{C}^2/G$ 

Visualization of the connection: ADE Dynkin diagrams



Natural representation:

$$egin{aligned} &
ho_{\mathsf{nat}}:\mathbb{Z}/(n+1)\,\leq\,\mathsf{SL}(2,\mathbb{C})\ &1\mapsto egin{pmatrix} \zeta&0\0&\zeta^{-1}\end{pmatrix},\quad \zeta:=e^{rac{2\pi i}{n+1}} \end{aligned}$$

Natural representation:

$$egin{aligned} &
ho_{\mathsf{nat}}:\mathbb{Z}/(n+1)\,\leq\,\mathsf{SL}(2,\mathbb{C})\ &1\mapsto egin{pmatrix} \zeta&0\0&\zeta^{-1}\end{pmatrix},\quad \zeta:=e^{rac{2\pi i}{n+1}} \end{aligned}$$

Irreducible representations:

$$egin{aligned} &
ho_i:\mathbb{Z}/(n+1) o\mathbb{C}^*\ &\ &1 o\zeta^i\quad &0\leq i\leq n \end{aligned}$$

Natural representation:

$$egin{aligned} &
ho_{\mathsf{nat}}:\mathbb{Z}/(n+1)\,\leq\,\mathsf{SL}(2,\mathbb{C})\ &1\mapsto egin{pmatrix} \zeta&0\ 0&\zeta^{-1} \end{pmatrix},\quad \zeta:=e^{rac{2\pi i}{n+1}} \end{aligned}$$

Irreducible representations:

$$egin{aligned} &
ho_i:\mathbb{Z}/(n+1) o\mathbb{C}^*\ &\ &1 o\zeta^i\quad 0\leq i\leq n \end{aligned}$$

 $\rho_{\mathsf{nat}} = \rho_1 \oplus \rho_{-1}, \quad \rho_{\mathsf{nat}} \otimes \rho_i = \rho_{i+1} \oplus \rho_{i-1}$ 

Natural representation:

$$egin{aligned} &
ho_{\mathsf{nat}}:\mathbb{Z}/(n+1)\,\leq\,\mathsf{SL}(2,\mathbb{C})\ &1\mapsto egin{pmatrix} \zeta&0\ 0&\zeta^{-1} \end{pmatrix},\quad \zeta:=e^{rac{2\pi i}{n+1}} \end{aligned}$$

Irreducible representations:

$$ho_i : \mathbb{Z}/(n+1) o \mathbb{C}^*$$
 $1 o \zeta^i \quad 0 \le i \le n$ 

 $\rho_{\mathsf{nat}} = \rho_1 \oplus \rho_{-1}, \quad \rho_{\mathsf{nat}} \otimes \rho_i = \rho_{i+1} \oplus \rho_{i-1}$ 



Kapranov–Vasserot (1998):  $D_G^b(\mathbb{C}^2) \cong D^b(Y)$ 

Kapranov–Vasserot (1998):  $D_G^b(\mathbb{C}^2) \cong D^b(Y)$ 

 Y is the resolution of C<sup>2</sup>/G. (Ito-Nakamura (1999): Y ≃ G-Hilb(C<sup>2</sup>))

Kapranov–Vasserot (1998):  $D^b_G(\mathbb{C}^2) \cong D^b(Y)$ 

- Y is the resolution of C<sup>2</sup>/G. (Ito-Nakamura (1999): Y ≃ G-Hilb(C<sup>2</sup>))
- *D* is the derived category of coherent sheaves. Its objects are (bounded) complexes of coherent sheaves.

Kapranov–Vasserot (1998):  $D^b_G(\mathbb{C}^2) \cong D^b(Y)$ 

- Y is the resolution of C<sup>2</sup>/G. (Ito–Nakamura (1999): Y ≃ G-Hilb(C<sup>2</sup>))
- *D* is the derived category of coherent sheaves. Its objects are (bounded) complexes of coherent sheaves.
- The equivalence comes from the universal closed subscheme of G-Hilb(ℂ<sup>2</sup>) as a moduli space.

Bridgeland-King-Reid (2001):
 For G ≤ SL(3, ℂ), D<sup>b</sup><sub>G</sub>(ℂ<sup>3</sup>) ≅ D<sup>b</sup>(Y)

- Bridgeland-King-Reid (2001):
   For G ≤ SL(3, ℂ), D<sup>b</sup><sub>G</sub>(ℂ<sup>3</sup>) ≅ D<sup>b</sup>(Y)
- Wunram (1988): G ≤ GL(2, C) small exceptional divisors ⇔ special representations

- Bridgeland-King-Reid (2001):
   For G ≤ SL(3, ℂ), D<sup>b</sup><sub>G</sub>(ℂ<sup>3</sup>) ≅ D<sup>b</sup>(Y)
- Wunram (1988): G ≤ GL(2, C) small exceptional divisors ⇔ special representations
- Ishii–Ueda (2015):  $G \leq GL(2, \mathbb{C})$  small  $D^b(Y) \hookrightarrow D^b_G(\mathbb{C}^2)$

- Bridgeland-King-Reid (2001):
   For G ≤ SL(3, ℂ), D<sup>b</sup><sub>G</sub>(ℂ<sup>3</sup>) ≃ D<sup>b</sup>(Y)
- Wunram (1988): G ≤ GL(2, C) small exceptional divisors ⇔ special representations
- Ishii-Ueda (2015):  $G \leq GL(2, \mathbb{C})$  small  $D^{b}(Y) \hookrightarrow D^{b}_{G}(\mathbb{C}^{2})$
- Kawamata (2016): any finite  $G \leq GL(2, \mathbb{C}), GL(3, \mathbb{C})$  $D^b(Y) \hookrightarrow D^b_G(\mathbb{C}^2)$

- Bridgeland-King-Reid (2001):
   For G ≤ SL(3, ℂ), D<sup>b</sup><sub>G</sub>(ℂ<sup>3</sup>) ≅ D<sup>b</sup>(Y)
- Wunram (1988): G ≤ GL(2, C) small exceptional divisors ⇔ special representations
- Ishii–Ueda (2015):  $G \leq GL(2, \mathbb{C})$  small  $D^{b}(Y) \hookrightarrow D^{b}_{G}(\mathbb{C}^{2})$  with SOD of  $D^{b}_{G}(\mathbb{C}^{2})$
- Kawamata (2016): any finite  $G \leq GL(2, \mathbb{C}), GL(3, \mathbb{C})$  $D^{b}(Y) \hookrightarrow D^{b}_{G}(\mathbb{C}^{2})$  with SOD of  $D^{b}_{G}(\mathbb{C}^{2})$
- Polishchuk–Van den Bergh Conjecture: G ≤ GL(2, C) reflection group

 $D^b_G(\mathbb{C}^2)$  has SOD in bijection with irred. rep.s of G

SOD with  $E_1, \ldots, E_m$  exceptional sequence:

$$D^b_G(\mathbb{C}^2) = \langle D(Y), E_1, \ldots, E_m \rangle$$

SOD with  $E_1, \ldots, E_m$  exceptional sequence:

$$D^b_G(\mathbb{C}^2) = \langle D(Y), E_1, \ldots, E_m \rangle$$

• semi-orthogonality, "generates" category, exceptional objects

SOD with  $E_1, \ldots, E_m$  exceptional sequence:

$$D^b_G(\mathbb{C}^2) = \langle D(Y), E_1, \ldots, E_m \rangle$$

- semi-orthogonality, "generates" category, exceptional objects
- Example (Beilinson):  $D^b(\mathbb{P}^n) = \langle \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n-1) \rangle$

SOD with  $E_1, \ldots, E_m$  exceptional sequence:

$$D^b_G(\mathbb{C}^2) = \langle D(Y), E_1, \ldots, E_m \rangle$$

- semi-orthogonality, "generates" category, exceptional objects
- Example (Beilinson):  $D^b(\mathbb{P}^n) = \langle \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n-1) \rangle$
- When G is a reflection group (my case of interest) it is conjectured the exceptional objects should be in bijection with the non-trivial irreducible representations of G.

#### Some reflection groups of interest

 Classical McKay groups in SL(2, ℂ) are all index 2 subgroups of reflection groups in U(2, ℂ).

## Some reflection groups of interest

- Classical McKay groups in SL(2, ℂ) are all index 2 subgroups of reflection groups in U(2, ℂ).
- Representation theory closely related to intersections with  $\mathsf{SL}(2,\mathbb{C})$

## Some reflection groups of interest

- Classical McKay groups in SL(2, ℂ) are all index 2 subgroups of reflection groups in U(2, ℂ).
- Representation theory closely related to intersections with  $\mathsf{SL}(2,\mathbb{C})$
- $A'_n$  and  $A_n$  example:



 $A'_n$  case

- Potter (2018): Explicit description of SOD for  $A'_n$ .
- Let  $G \leq GL(2, \mathbb{C})$ ,  $H := G \cap SL(2, \mathbb{C})$ ,  $A := G/H \simeq \mathbb{Z}/(2)$ , Y := H-Hilb( $\mathbb{C}^2$ ), M the minimal res. of  $\mathbb{C}^2/G$  (itself)

- Potter (2018): Explicit description of SOD for  $A'_n$ .
- Let  $G \leq GL(2, \mathbb{C})$ ,  $H := G \cap SL(2, \mathbb{C})$ ,  $A := G/H \simeq \mathbb{Z}/(2)$ , Y := H-Hilb( $\mathbb{C}^2$ ), M the minimal res. of  $\mathbb{C}^2/G$  (itself)
- Strategy:

- Potter (2018): Explicit description of SOD for  $A'_n$ .
- Let  $G \leq GL(2, \mathbb{C})$ ,  $H := G \cap SL(2, \mathbb{C})$ ,  $A := G/H \simeq \mathbb{Z}/(2)$ , Y := H-Hilb( $\mathbb{C}^2$ ), M the minimal res. of  $\mathbb{C}^2/G$  (itself)
- Strategy:
  - (Ishii–Ueda)  $D^b_G(\mathbb{C}^2) \cong D^b_A(Y)$

- Potter (2018): Explicit description of SOD for  $A'_n$ .
- Let  $G \leq GL(2, \mathbb{C})$ ,  $H := G \cap SL(2, \mathbb{C})$ ,  $A := G/H \simeq \mathbb{Z}/(2)$ , Y := H-Hilb( $\mathbb{C}^2$ ), M the minimal res. of  $\mathbb{C}^2/G$  (itself)
- Strategy:
  - (Ishii–Ueda)  $D^b_G(\mathbb{C}^2) \cong D^b_A(Y)$
  - D<sup>b</sup><sub>A</sub>(Y) ≅ ⟨D([Y/A]<sup>can</sup>, D(D̃<sub>1</sub>),..., D(D̃<sub>r</sub>), intersections of D̃<sub>i</sub>⟩ D<sub>i</sub> are components of branch locus of A acting on H-Hilb(C<sup>2</sup>).

- Potter (2018): Explicit description of SOD for  $A'_n$ .
- Let  $G \leq GL(2, \mathbb{C})$ ,  $H := G \cap SL(2, \mathbb{C})$ ,  $A := G/H \simeq \mathbb{Z}/(2)$ , Y := H-Hilb( $\mathbb{C}^2$ ), M the minimal res. of  $\mathbb{C}^2/G$  (itself)
- Strategy:
  - (Ishii–Ueda)  $D^b_G(\mathbb{C}^2) \cong D^b_A(Y)$
  - D<sup>b</sup><sub>A</sub>(Y) ≅ ⟨D([Y/A]<sup>can</sup>, D(D̃<sub>1</sub>),..., D(D̃<sub>r</sub>), intersections of D̃<sub>i</sub>⟩ D<sub>i</sub> are components of branch locus of A acting on H-Hilb(C<sup>2</sup>).
  - If Y/A is smooth...(toric charts for Y)

- Potter (2018): Explicit description of SOD for  $A'_n$ .
- Let  $G \leq GL(2, \mathbb{C})$ ,  $H := G \cap SL(2, \mathbb{C})$ ,  $A := G/H \simeq \mathbb{Z}/(2)$ , Y := H-Hilb( $\mathbb{C}^2$ ), M the minimal res. of  $\mathbb{C}^2/G$  (itself)
- Strategy:
  - (Ishii–Ueda)  $D^b_G(\mathbb{C}^2) \cong D^b_A(Y)$
  - D<sup>b</sup><sub>A</sub>(Y) ≅ ⟨D([Y/A]<sup>can</sup>, D(D̃<sub>1</sub>),..., D(D̃<sub>r</sub>), intersections of D̃<sub>i</sub>⟩ D<sub>i</sub> are components of branch locus of A acting on H-Hilb(C<sup>2</sup>).
  - If Y/A is smooth...(toric charts for Y)
  - D([Y/A]<sup>can</sup> ≅ ⟨D(M), E<sub>1</sub>,..., E<sub>s</sub>⟩ where the E<sub>i</sub> are divisors to be blown down in Y/A to get M.



#### Results in $A'_n$ case

- *n* even:  $D_G(\mathbb{C}^2) \cong \langle D(M), E_1, \dots, E_{\frac{n}{2}}, D(\tilde{D}) \rangle$
- *n* odd:  $D_G(\mathbb{C}^2) \cong \langle D(M), E_1, \dots, E_{\frac{n+1}{2}}, D(\tilde{D}_1), D(\tilde{D}_2) \rangle$
- Capellan (2024) confirms matching of semi-orthogonal decomposition with representations.

Work in progress: other reflection groups

- Same strategy for SOD's as Potter.
- However, these singularities are not toric
- Main tool: explicit computations in *H*-Hilb(ℂ<sup>2</sup>) using Ito and Nakamura's work Example: *G* = *G*<sub>12</sub>

Example:  $G = G_{12}$ 

 $E_6$  and  $E'_6$ :



Example:  $G = G_{12}$ 



 $D^b_G(\mathbb{C}^2) \cong \langle D(M), E_1, \ldots, E_4, D(\mathbb{P}^1), D(\tilde{D}) \rangle$ 

Example:  $G = G_{12}$ 



 $D^b_G(\mathbb{C}^2) \cong \langle D(M), E_1, \ldots, E_4, D(\mathbb{P}^1), D(\tilde{D}) \rangle$ 

Interesting difference: Branch locus of Y/A comes from both  $\mathbb{C}^2/G$  branch locus and a fixed  $\mathbb{P}^1$  in the exceptional locus of Y

Thank you!