

Fundamental Groupoids for Graphs

Laura Scull

FMCS, Kananaskis, 2024

Reflexive Π 0000000 Non-Reflexive I

Edge View

Z/2 Equivariant П Dooooooo Wrap-Up 00

Category of Graphs

Gph is the category with:

- **Objects** are graphs G with:
 - A set of vertices V(G)
 - A set of edges E(G) which are unordered pairs of vertices {v, w}; notate v ~ w
 - We have at most one edge between any two vertices; loops are allowed.

Non-Reflexive I 0000000 Edge View

Z/2 Equivariant П Doooooooo Wrap-Up 00

Graph Homomorphisms

Gph is the category with:

- Homomorphisms f : G → H map vertices to vertices and respect adjacency:
 - $f: V(G) \rightarrow V(H)$ a function of sets
 - If $v \sim w \in E(G)$, then $f(v) \sim f(w) \in E(H)$
 - If $v \sim w$ we can map v, w to the same vertex if we have a loop

Reflexive ∏ ●000000

Non-Reflexive Π 0000000 Edge View

Z/2 Equivariant Γ

Wrap-Up 00

Reflexive Graphs

Let's consider only reflexive graphs:

Reflexive ∏ o●ooooo

Von-Reflexive

Edge View

Z/2 Equivariant П Dooooooo Wrap-Up 00

Reflexive Fundamental Groupoid

Look at (looped) walks: abbcehhj

Reflexive ∏ 00●0000

Non-Reflexive Π 0000000 Edge View

Z/2 Equivariant

Wrap-Up 00

Prunes of Walks

Remove repeated vertices: *abbcehhj* = *abcehj*

Reflexive ∏ 000●000

Non-Reflexive | 0000000 Edge View

Z/2 Equivariant П Dooooooo Wrap-Up 00

 \times -homotopy of Walks

defined by $\Lambda: I_n \times I_m \to G$

Reflexive ∏ 0000●00

Non-Reflexive Π 0000000 Edge View

Z/2 Equivariant Π

Wrap-Up 00

\times -homotopy of Walks

×-homotopy: change one vertex to another connected vertex *abcehj* = *abcfhj*

Reflexive ∏ 00000●0 Non-Reflexive I 0000000 Edge View

Z/2 Equivariant Π

Wrap-Up 00

Equivalences of Walks

• prunes: remove repeats

• ×-homotopy: change one vertex to another connected vertex abcfhj = accfhj = acfjk

Reflexive Fundamental Groupoid

For a reflexive graph G, we define the **reflexive fundamental** groupoid $\Pi_r(G)$, as follows:

- Objects of $\Pi_r(G)$ are vertices v of the graph G.
- An arrow $v_0 \rightarrow v_n$ in $\prod_r(G)$ is given by a walk $v_0v_1v_2v_3...v_n$ where $v_i \sim v_{i+1}$.
- two walks represent the same arrow if they are equvialent under:
 - prunes which remove repetition : [vv] = [v]
 - homotopy rel endpoints as map I_n → G, I_n looped ie shifting one vertex to an adjacent vertex
- Composition of morphisms is defined using concatenation of walks.

Reflexive II

Non-Reflexive ∏ ●000000 Edge View

 $\mathbb{Z}/2$ Equivariant Π 00000000

Wrap-Up 00

Non-reflexive Graphs

Fundamental Groupoid

Look at unlooped walks: abbcehihj

 $\underset{OO}{\mathsf{Category of Graphs}}$

Reflexive Π 0000000 Non-Reflexive ∏ 00●0000 Edge View

Z/2 Equivariant П

Wrap-Up 00

Prunes of Walks

Remove out-and-back: *abbcehihj* = *abbcehj*

Reflexive Π 0000000 Non-Reflexive ∏ 000●000 Edge View

Z/2 Equivariant П Doooooooo Wrap-Up 00

 \times -homotopy of Walks

defined by $\Lambda: P_n \times I_m \to G$

Edge View

ℤ/2 Equivariant Π DOOOOOOO Wrap-Up 00

\times -homotopy of Walks

Change one vertex to another, does NOT need to be connected *abbceh* = *abbcegj*

Equivalences of Walks

- prunes: remove out-and-back
- ×-homotopy: change one vertex to another vertex (doesn't need to be connected)

abbcehihj = *abbceh* = *abbcegj*

Fundamental Groupoid of G

For a graph G, we define the **fundamental groupoid** $\Pi(G)$ as follows:

- Objects of $\Pi(G)$ are vertices v of the graph G.
- An arrow $v_0 \rightarrow v_n$ in $\Pi(G)$ is given by a walk $v_0v_1v_2v_3...v_n$ where $v_i \sim v_{i+1}$.

Fundamental Groupoid of G

For a graph G, we define the **fundamental groupoid** $\Pi(G)$ as follows:

- Objects of $\Pi(G)$ are vertices v of the graph G.
- An arrow $v_0 \rightarrow v_n$ in $\Pi(G)$ is given by a walk $v_0v_1v_2v_3...v_n$ where $v_i \sim v_{i+1}$.

• two walks represent the same arrow if they are equvialent under:

- prunes which remove a backtrack : [vwv] = [v]
- homotopy rel endpoints as map P_n → G, P_n unlooped ie shifting one vertex to a (not necessarily adjacent) vertex
- Composition of morphisms is defined using concatenation of walks.

Fundamental Groupoid of G

For a graph G, we define the **fundamental groupoid** $\Pi(G)$ as follows:

- Objects of $\Pi(G)$ are vertices v of the graph G.
- An arrow $v_0 \rightarrow v_n$ in $\Pi(G)$ is given by a walk $v_0v_1v_2v_3...v_n$ where $v_i \sim v_{i+1}$.

• two walks represent the same arrow if they are equvialent under:

- prunes which remove a backtrack : [vwv] = [v]
- homotopy rel endpoints as map P_n → G, P_n unlooped ie shifting one vertex to a (not necessarily adjacent) vertex
- Composition of morphisms is defined using concatenation of walks.
- Walks are even or odd

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

ℤ/2 Equivariant Γ 00000000 Wrap-Up 00

Walks of Edges

Idea:

- graphs are built out of edges, connected with vertices
- create walks that are sequences of edges

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

Z/2 Equivariant П DOOOOOOOO Wrap-Up 00

Walks of Edges

Idea:

- graphs are built out of edges, connected with vertices
- create walks that are sequences of edges
- two consecutive edges are imes-homotopic as maps $K_2
 ightarrow G$

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

ℤ/2 Equivariant Γ 00000000 Wrap-Up 00

Walks of Edges

Idea:

- graphs are built out of edges, connected with vertices
- create walks that are sequences of edges
- two consecutive edges are imes-homotopic as maps $K_2
 ightarrow G$

In particular, two edges are adjacent when they share a vertex:

$$\begin{array}{c} a & a \\ | \times | \\ b & d \end{array} \qquad \begin{array}{c} a & c \\ | \times | \\ b & b \end{array}$$

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

 $\mathbb{Z}/2$ Equivariant Π 00000000

Wrap-Up 00

Walks of Edges

abbcehj becomes

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

Z/2 Equivariant Γ D0000000 Wrap-Up 00

Walks of Edges

abbcehj becomes

Edges are ordered and cartwheel through the graph

Edge Graph

Define the edge graph of G, denoted, G^E , as looped subgraph of exponential G^{K_2} :

- vertices of G^E are graph homomorphisms $K_2 \rightarrow G$ ie a (directed) edge
- edges of G^E between homomorphisms that are \times -homotopic
- G^E is a reflexive graph

Suppose we have G:

Then G^E is the reflexive graph (loops suppressed):

Example of G^E

Suppose we have G:

Then G^E is the reflexive graph (loops suppressed):

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

ℤ/2 Equivariant ∣ 00000000 Wrap-Up 00

First Connection

Since G^E is reflexive, we can form the reflexive fundamental groupoid $\Pi_r(G^E)$ Thm $\Pi_r(G^E)$ is equivalent to the even subgroupoid of $\Pi(G)$ G:

 G^E :

Reflexive П 0000000 Non-Reflexive [0000000 Edge View

Z/2 Equivariant Π ●0000000 Wrap-Up 00

$\mathbb{Z}/2$ action on Edges

We have said:

- we have $\mathbb{Z}/2$ action on ${\it G}^{\it E}$ that flips edge, reversing direction
- we can form an equivariant fundamental groupoid

Edge View

 $\mathbb{Z}/2$ Equivariant Π 0000000 Wrap-Up 00

Equivariant Fundamental Groupoid

G a reflexive graph with a $\mathbb{Z}/2$ action. $\Pi_{\mathbb{Z}/2}G$ defined by:

- objects are vertices of G
- arrows $x_0 \rightarrow x_n$ of two forms:
 - a walk α from x_0 to x_n in $\prod_r(G)$. Denote by $(\alpha, 1)$.
 - a walk β from x_0 to τx_n in $\prod_r(G)$, plus a 'jump' by the non-zero element $\tau \in \mathbb{Z}/2$. Denote by (β, τ) .

Composition via concatenation:

• $(\alpha, 1) * (\beta, 1) = (\alpha * \beta), 1)$

•
$$(\alpha, 1) * (\beta, \tau) = (\alpha * \beta), \tau)$$

•
$$(\alpha, \tau) * (\beta, 1) = (\alpha * \tau(\beta), \tau)$$

• $(\alpha, \tau) * (\beta, \tau) = (\alpha * \tau(\beta), 1)$

- graph is reflexive, loops suppressed
- equip with antipodal $\mathbb{Z}/2$ -action

A loop in $\Pi_{\mathbb{Z}/2}G$: $(ab - cd - ca - ba, \tau)$

Reflexive Π 0000000 Non-Reflexive F

Edge View

 $\mathbb{Z}/2$ Equivariant Π 0000000

Wrap-Up 00

Better Connection

Given G a graph we have:

- $\Pi(G)$ the non-reflexive fundamental groupoid of G
- G^E the reflexive edge graph with $\mathbb{Z}/2$ action
- $\Pi_{\mathbb{Z}/2}(G^E)$ the $\mathbb{Z}/2$ reflexive fundamental groupoid of G^E

Reflexive Π 0000000 Non-Reflexive П ооооооо Edge View

 $\mathbb{Z}/2$ Equivariant Π 00000000 Wrap-Up 00

Better Connection

Given G a graph we have:

- $\Pi(G)$ the non-reflexive fundamental groupoid of G
- G^E the reflexive edge graph with $\mathbb{Z}/2$ action
- $\Pi_{\mathbb{Z}/2}(G^E)$ the $\mathbb{Z}/2$ reflexive fundamental groupoid of G^E

Thm $\Pi(G)$ is equivalent to $\Pi_{\mathbb{Z}/2}(G^E)$

Reflexive Π 0000000 Non-Reflexive I 0000000 Edge View

 $\mathbb{Z}/2$ Equivariant Π 0000 \bullet 000

Wrap-Up 00

Example of Even Walk

(abcdefa)

Example of Even Walk

Reflexive II

Non-Reflexive F 0000000 Edge View

 $\mathbb{Z}/2$ Equivariant Π

Wrap-Up 00

Example of Odd Walk

(abcdea)

Category	of	Gra	phs
00			

Reflexive Π 0000000 Non-Reflexive F 0000000 Edge View

 $\mathbb{Z}/2 \text{ Equivariant } \Pi \\ \texttt{OOOOOOO} \bullet$

Wrap-Up 00

Example of Odd Walk

Reflexive Π 0000000 Non-Reflexive Π 0000000 Edge View

/2 Equivariant П

Wrap-Up ●O

Future Questions:

- simplicial complexes
 Neighbourhood complex
 Hom complex
- higher homotopy groups??

Reflexive II

Non-Reflexive Π 0000000 Edge View

Z/2 Equivariant Π 00000000 Wrap-Up ○●

Time for a Hike!

